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Abstract. The gut microbiota plays a significant role in 
the pathogenesis of Crohn's disease (CD). In this study, we 
analyzed the disease activity and associated fecal microbiota 
profiles in 160 CD patients and 121 healthy individuals. Fecal 
samples from the CD patients were collected during three 
different clinical phases, the active (n=66), remission‑achieved 
(n=51) and remission‑maintained (n=43) phases. Terminal 
restriction fragment length polymorphism (T‑RFLP) and data 
mining analysis using the Classification and Regression Tree 
(C&RT) approach were performed. Data mining provided a 
decision tree that clearly identified the various subject groups 
(nodes). The majority of the healthy individuals were divided 
into Node‑5 and Node‑8. Healthy subjects comprised 99% 
of Node‑5 (91 of 92) and 84% of Node‑8 (21 of 25 subjects). 
Node‑3 was characterized by CD (136 of 160 CD subjects) 
and was divided into Node‑6 and Node‑7. Node‑6 (n=103) 
was characterized by subjects in the active phase (n=48; 
46%) and remission‑achieved phase (n=39; 38%) and Node‑7 
was characterized by the remission‑maintained phase (21 of 
37 subjects; 57%). Finally, Node‑6 was divided into Node‑9 
and Node‑10. Node‑9 (n=78) was characterized by subjects 
in the active phase (n=43; 55%) and Node‑10 (n=25) was 
characterized by subjects in the remission‑maintained phase 

(n=16; 64%). Differences in the gut microbiota associated with 
disease activity of CD patients were identified. Thus, data 
mining analysis appears to be an ideal tool for the character-
ization of the gut microbiota in inflammatory bowel disease.

Introduction

Inflammatory bowel disease (IBD), comprising ulcerative 
colitis (UC) and Crohn's disease (CD), is a chronic intestinal 
disorder of unknown etiology  (1‑4). The pathogenesis of 
IBD involves an aberrant response by the mucosal immune 
system toward luminal antigens, such as dietary factors 
and/or commensal microbiota in genetically susceptible 
individuals (2,5‑8). In particular, the commensal microbiota 
is regarded as the major environmental factor associated with 
IBD (5,7,9‑12). IBD is mainly localized to those intestinal areas 
in which the majority of the bacteria are congregated, namely, 
the distal small intestine and the colon. The commensal micro-
biota is essential for the development of experimental colitis in 
various animal models of IBD (6,9).

The global composition of the gut microbiota, rather than the 
presence of certain pathogens, is most relevant to the etiology 
and pathogenesis of IBD (dysbiosis hypothesis)  (5,13‑16). 
Molecular approaches targeting the 16S ribosomal (r)DNA 
have been used to define significant changes in the diver-
sity and composition of the gut microbiota in IBD (17). For 
example, a marked decrease in the relative abundance of 
members of the phylum Firmicutes, particularly Clostridium 
clusters  IV and  XIV, has been reported in IBD  (5,17,18). 
The etiological significance of this finding is supported by a 
recent study by Atarashi et al (19), which demonstrated that 
the genus Clostridium plays a significant role in the induc-
tion of colonic regulatory T cells, which play a central role 
in maintaining immune homeostasis. Other reports indicated 
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that Faecalibacterium prausnitzii, a member of Clostridium 
cluster IV, is also clinically significant (20‑22).

It was previously demonstrated, using terminal restriction 
fragment length polymorphism (T‑RFLP) analysis, that the 
fecal microbiota profile of CD patients differs from that of 
healthy individuals (14,18). This difference was observed even 
in patients with inactive disease (18). However, no differences  
associated with the activity of the disease were detected in the 
fecal microbiota profiles of CD patients with active and inac-
tive disease. To further investigate the fecal microbiota of CD 
patients, we performed a data‑mining analysis on the T‑RFLP 
results from the analysis of fecal samples collected at three 
clinical time points (prior to induction therapy, immediately 
after the achievement of remission and ≥6 weeks later, while 
under continuous remission).

Materials and methods

Patients and samples. The patients and fecal samples used 
in this study were the same as those used in our previous 
study (14). In total, 66 patients with active CD [CD activity 
index (CDAI)>150 as reported by Best  et  al  (23)] were 
recruited. The diagnosis of CD was based on clinical, 
endoscopic and pathological criteria. A total of 121 healthy 
individuals residing close to each center were also enrolled.

Fecal samples were collected from each patient at three 
different clinical phases: i) active disease at entry (active 
phase), ii)  immediately after achievement of remission 
(CDAI<150; remission‑achieved phase) and iii) maintained 
remission for ≥6  weeks (remission‑maintained phase). 
The average period of remission between ii)  and  iii) was 
15.7±10.8 weeks (mean ± SD). Samples from patients with 
ileostomy, patients who received surgical treatment or those 
who failed to achieve remission during the course of the 
study were excluded.

This study was approved by the Institutional Review 
Boards and the patients provided written informed consent 
prior to enrolment.

DNA extraction. Each fecal sample (0.5 g) was suspended 
in 5 ml of Tris‑EDTA buffer (pH 7.5) and centrifuged. This 
washing step was repeated 4  times. The sample was then 
resuspended in 5 ml of the same buffer containing lysozyme 
(5 mg/ml; Sigma, St. Louis, MO, USA), N‑acetylmuramidase 
(0.5  mg/ml; Sigma) and achromopeptidase (0.5  mg/ml; 
Sigma). The following manipulations of DNA extraction were 
performed as previously described (24) and the final concen-
tration of the DNA sample was adjusted to 20 ng/µl.

Polymerase chain reaction (PCR) amplification and T‑RFLP 
analysis. The 16S rRNA gene was amplified from human 
fecal DNA using the 27 forward 5'‑AGAGTTTGATCCTGG 
CTCAG‑3' and 1492 reverse 5'‑GGTTACCTTGTTACG 
ACTT‑3' primers (25,26). The 5'‑ends of the forward primers 
were labeled with 6'‑carboxyfluorescein, which was synthe-
sized by Applied Biosystems (Tokyo, Japan). The PCR 
amplifications of the DNA samples (10 ng of each DNA) were 
performed as previously described (25,26). The amplified 16S 
rDNA genes were purified using polyethylene glycol (PEG 
6000) and redissolved in 20 µl distilled water.

The restriction enzymes were selected according to 
Matsumoto  et  al  (25). The purified PCR products (2  µl) 
were digested with 20 U HhaI and MspI at 55˚C for 1 h. 
The length of the T‑RF fragments was determined with an 
ABI PRISM® 3100 or ABI 3130xl genetic analyzer (Applied 
Biosystems) in GeneScan mode. Standard size markers, such 
as GS500  ROX and GS1000  ROX (Applied Biosystems), 
were used. The fragment sizes were estimated using the 
local Southern method in GeneScan 3.1 software (Applied 
Biosystems). As the apparent size of identical T‑RFs may vary 
by 1‑2 bp among different gels and/or lanes of the same gel, 
major T‑RFs similar in size by 1‑2 bp were summarized to 
operational taxonomic units (OTUs). The major T‑RFs were 
identified by computer simulation, which was performed using 
a T‑RFLP analysis program (27), a phylogenetic assignment 
database for T‑RFLP analysis of human colonic micro-
biota (25) and Microbiota Profiler (InfoCom T‑RFLP Database 
& Analysis Software, Infocom Co., Tokyo, Japan). T‑RFs with 
a peak height <25 fluorescence units were excluded from the 
analysis. Cluster analyses were performed using BioNumerics 
software (Applied Maths, Kortrijk, Belgium) based on the HhaI 
or MspI T‑RFLP patterns. The distances were calculated to 
determine any similarity among the samples and were graphi-
cally represented by constructing a dendrogram. Pearson's 
similarity coefficient analysis and the unweighted pair‑group 
methods with arithmetic means were used to establish the type 
of dendrogram.

Data mining. Data mining analysis was performed using SPSS 
Clementine  14 software (IBM, Tokyo, Japan). A dividing 
system using the Classification and Regression Tree (C&RT) 
approach, which is the most typical method for constructing 
decision trees, using the Gini coefficient  (28) between 
geographic districts and OTU data was applied. The records 
were divided into two subsets, so that the records within each 
subset were more homogeneous compared to the previous 
subset. C&RT is quite flexible and allows unequal misclas-
sification costs to be considered, unlike other growing systems 
of data mining.

Results and Discussion

Data mining provided a decision tree as shown in Fig. 1, 
which clearly identified the various subject groups (nodes). 
A decision tree is a decision‑supporting pathway that forms 
a tree‑like graph. Each OTU was expressed as a restriction 
enzyme and RF length (bp), e.g., the HhaI 32‑bp OTU was 
abbreviated as Hh32 and the MspI 225‑bp OTU was abbre-
viated as M225. Node‑0 (the left end of the decision tree) 
is referred to as the root node, which is the starting point 
for tree construction and the decision tree grew toward the 
right to divide the subjects. As shown in Fig. 1, Node‑0 was 
divided into Node‑1 and Node‑2 by Hh93, with a cut‑off value 
of 0.086. This cut‑off value was calculated from Hh93 data 
for all the subjects using the Gini coefficient and the C&RT 
method. Similar steps were repeated to fully construct the 
decision tree. The details of the decision tree and the pathway 
to the next node clearly indicated the species and quantities 
of OTUs, which contributed to the division of the various 
subject groups.
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Node‑1 included almost all the CD subjects and a small 
number of healthy subjects. By contrast, Node‑2 consisted 
primarily of healthy subjects. These data indicate that Hh93 
plays a significant role in the discrimination of healthy 
individuals from those with CD. Hh93 also played a role 
in the discrimination of the healthy individuals of Node‑2 
into Node‑5. The database assignment of Hh93 included 
Desulfovibrio (a genus of sulfate‑reducing bacteria) and 
Lawsonia; however, the pathological roles of these bacteria in 
human disease have not been clearly determined.

Node‑1 was divided into Node‑3 and Node‑4 by M208, 
with a cut‑off value of 0.11. Node‑3 was characterized by 
CD  patients in all phases; however, Node‑4 consisted of 
22 healthy individuals (58%) and 16 subjects with CD (42%), 
indicating that the gut microbiota profile of certain CD patients 
resembles that of healthy individuals. The database assign-
ment of M208 included Coprococcus, Roseburia, Dorea and 
Blautia; however, the role of these bacteria has not been fully 
elucidated. M53 (Faecalibacterium), which had a cut‑off value 
>0.18, led to further segregation of healthy individuals from 
Node‑4 into Node‑8.

As shown in Fig. 1, Node‑3 included 56 CD subjects in 
the active, 45 in the remission‑achieved and 33 in the remis-
sion‑maintained phase. Node‑3 was divided into Node‑6 and 
Node‑7 based on Hh32 (Faecalibacterium, Bacteroides), with 
a cut‑off of 1.37. Node‑6 included 48 subjects in the active 
phase (46%) and 39 subjects in the remission‑achieved phase 
(38%), indicating that there are no significant differences in 
fecal microbiota profiles between CD patients in the active and 

remission‑achieved phases. By contrast, Node‑7 was character-
ized by 21 subjects in the remission‑maintained phase (57%), 
indicating that the gut microbiota profile tends to change 
according to the duration of remission maintenance. Hh32 is 
assigned to Faecalibacterium and remission maintenance may 
stimulate the growth of this bacterium, which exhibits strong 
anti‑inflammatory activity (20‑22).

We previously reported the results of cluster analyses of the 
gut microbiota profiles of the same samples used in the present 
study (14). However, disease‑associated differences were not 
identified, possibly due to the several limitations of the cluster 
analysis. For example, the cluster analysis only shows some 
classified groups and it does not produce clearly defined reasons 
for the creation of these groups. In addition, the obtained 
clusters lack flexibility, meaning that a slight modification of 
the data affects cluster formation. Furthermore, data mining 
constructs a decision tree, which is a set rule that predicts 
target variables and enables the creation of classification trees 
by repeated data division. During this process, a tree branch is 
formed and every branch determines the classification criteria 
for the dividing data. Therefore, exploration of a dataset by 
data mining enables the researcher to predict the most signifi-
cant predictor variable. Additionally, once the decision tree is 
constructed, all the subsequent new records may be run with 
the same data mining tree, as long as the basic concepts of 
the data remain active. The main difference between data 
mining and cluster analysis is the capacity for handling data 
noise. Data mining skips characteristic noise and selects a 
series of related fields; however, cluster processing respects all 

Figure 1. Decision tree constructed using the Classification and Regression Tree (C&RT) approach. Each operational taxonomic unit (OTU) is expressed as 
a restriction enzyme and RF length (bp), e.g. HhaI 93‑bp OTU is abbreviated as Hh93 and MspI 208‑bp OTU is abbreviated as M208. The cut‑off value of 
each dividing OTU was calculated from the OTU data of all the subjects, using the Gini coefficient with the C&RT method. Similar steps were repeated for 
the construction of a decision tree. Node‑0 (the left end of the decision tree) is referred to as the root node, which is the starting point for tree construction. 
The details of the decision tree and the pathway indicate the species and quantities of OTUs, which contribute to dividing the various subject groups. RF, 
restriction fragment.
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data, without consideration of any numerical noise. Thus, in 
the present study it was possible to demonstrate geographical 
differences in the human gut microbiota in Japan.

In conclusion, to the best of our knowledge, this study is 
the first to identify disease activity and associated differences 
in the gut microbiota profiles of CD patients, which differ 
from those of healthy individuals. Among the CD patients, 
the gut microbiota profiles may differ according to disease 
activity. These results indicate that data mining is an ideal tool 
for characterizing human gut microbiota. Further investiga-
tions of the gut microbiota profiles associated with CD may 
lead to improved diagnostics and the development of novel 
therapeutic agents.
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