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Abstract. As a common injury, anterior cruciate ligament 
(ACL) injury is unable to heal itself naturally, which possibly 
increases knee instability, accelerates the risk of joint degener-
ation and leads to knee osteoarthritis (OA) in the ACL-injured 
knee. Thus, ACL reconstruction using an autograft or allograft 
tendon is proposed to maintain the biomechanical stability of 
the knee joint. However, previous studies demonstrate that 
surgical management of ACL reconstruction failed to abrogate 
the development of OA completely, indicating that biochem-
ical disturbance is responsible for the osteoarthritic changes 
observed following ACL injury. Inflammatory mediators are 
elevated subsequent to ACL injury or rupture, inducing matrix 
metalloproteinase production, proteoglycan degradation, 
collagen destruction, chondrocyte necrosis and lubricin loss. 
These potential biochemical mediators may aid in the develop-
ment of effective biological management to reduce the onset of 
future posttraumatic OA. Furthermore, during the degenerative 
process of cartilage, there are a number of cartilage‑specific 
biomarkers, which play a critical step in the loss of structural 
and functional integrity of cartilage. The present review illus-
trates several specific biomarkers in the ACL‑injured knee 
joint, which may provide effective diagnostic and prognostic 
tools for investigating cartilage degenerative progression and 
future posttraumatic OA of ACL-injured patients.
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1. Introduction

Anterior cruciate ligament (ACL) rupture is one of the most 
common injuries in sports activity, often accompanied by artic-
ular cartilage damage and meniscal tear (1‑3). ACL deficiency 
can significantly alter the knee joint biomechanics (4,5), which 
will subsequently result in secondary damage to the cartilage 
with increasing time from injury (6-9). As a consequence, 
the articular cartilage of load-bearing joints is inexorably 
destroyed and the cartilage degeneration develops in an accel-
erated rate in the ACL‑deficient knee (10‑12). With regards to 
this, ACL reconstruction with an autograft or allograft tendon 
becomes a major method in maintaining the stability and 
normal biomechanics of the knee joint.

Restoring knee joint stability, however, was unable to 
decrease the incidence of posttraumatic osteoarthritis (OA) 
following ACL reconstruction, as previous studies have 
indicated that cartilage degeneration or radiographic signs of 
OA were detected in patients with ACL-reconstructed knees 
several years postoperatively (13-15). In a recent study exam-
ining 210 ACL-reconstructed patients, it was stated that 71% 
of the patients had radiographic knee OA and 24% showed 
moderate or severe radiographic knee OA postoperatively (16). 
Collectively, these data indicate that biomechanical instability 
is not the only cause for the occurrence of OA in the knee 
joint with ACL injury. Administered within the first month 
following ACL tear, intra-articular interleukin (IL)-1 receptor 
antagonist reduced knee pain and improved function over a 
2-week interval (17). In addition to biomechanical disturbance, 
various biochemical alterations caused by ACL injury, such 
as inflammatory cytokines infiltration, matrix metallopro-
teinase (MMP) production, proteoglycan (PG) degradation, 
collagen destruction, chondrocyte death and lubricin loss, are 
postulated to play an important role in the development of 
posttraumatic OA.
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2. Degenerative alteration of knee cartilage: MMP produc-
tion

In the ACL-injured knee, synoviocytes, chondrocytes and 
other intra-articular tissues are activated to produce several 
inflammatory mediators, such as IL‑1β, IL-6, IL-8, IL-10 and 
tumor necrosis factor-α (TNF-α) (18,19). IL-1 modulates the 
metabolic balance of cartilage in dual means, decreasing the 
production of the cartilage matrix components and promoting 
the expression of MMPs, including MMP-1, MMP-3, MMP-9, 
MMP-10 and MMP-13 (20-23). Recruitment of IL-1 to the 
IL-1 receptor activates four intracellular signaling pathways, 
including three mitogen-activated protein kinases (MAPKs) 
pathways [the extracellular signal-regulated kinase (Erk), p38 
MAPK, c-Jun N-terminal kinases (JNK)] and the nuclear 
factor-κB (NF-κB) pathway. Activation of transcription 
factors, such as NF-κB (activated by Erk and p38) and acti-
vator protein-1 (activated by JNK), induces the expression of 
numerous MMPs (24). Thus far, 24 associated products of the 
MMP family have been found in mammals (25). Secreted and 
anchored to the cell membrane, MMPs catalytically interact 
with various proteins, including protein components of the 
extracellular matrix. In a load-induced injury model on the 
mature bovine cartilage, Lin et al (26) found that the expression 
of MMP-3 increased consistently in the superficial‑loading 
cartilage zone followed by cell death. MMP-3 can activate 
procollagenase, which induces the degradation of cartilage 
matrix, consequently affecting the cartilage repair. Thus, 
the MMP-3 selective inhibitor may be an effective option for 
retarding such osteoarthritic changes (27).

3. PGs degradation

PG contains a protein core with glycosaminoglycans (GAGs) 
side chains. As a main component, GAG is one important 
specific PG biomarker. In the ACL‑injured knee, infiltration 
of numerous inflammatory cytokines accelerates the degrada-
tion of PGs and the decrease of GAGs in the cartilage to a 
significant extent (28). In an ACL‑injured rabbit model (29), 
loss of GAGs was observed in the cartilage layer for a long 
time period. Hattori et al (29) found that the average thickness 
of the GAG-stained area in the ACL-injured group (7.7 µm) 
was significantly less compared to the control group (69.4 µm), 
even six weeks after surgery. The apoptosis of chondrocytes has 
been proposed to induce GAG loss. In a similar ACL-injured 
rabbit model, it was also proved that apoptosis of chondrocytes 
lead to the decrease of GAGs in the cartilage layer of the ACL 
insertion following resection (30).

MMPs and aggrecanases cleave the GAGs of aggrecan at 
specific peptide bonds and release fragments. The proteolytic 
cleavage process has a destructive effect, resulting in the loss 
of GAGs from the matrix (31). MMPs have been reported 
as responsible for the C-terminal catabolic processing of 
aggrecan, which may accelerate the loss of matrix aggrecan 
in the articular cartilage (32). Cleavage of aggrecan in the 
interglobular domain between the N-terminal G1 and G2 
globular domains is considered of greatest pathological impor-
tance, as this releases the GAG-bearing region of aggrecan 
from the cartilage matrix (33). Furthermore, the study by 
Caterson et al (34) showed that aggrecanase is primarily 

responsible for the catabolism and loss of aggrecan from the 
articular cartilage in the early stages of arthritic joint diseases, 
and MMPs begin to mediate the degradation of the small 
proportion of aggrecan remaining in the tissue with the occur-
rence of collagen catabolism at later stages. The cleavage of 
the Asn341-Phe342 bond in the interglobular domain can be 
attributed to the proteolytic activity of MMPs, while aggre-
canase is responsible for the cleavage of the Glu373-Ala374 
bond in the interglobular domain. In a previous study, 
Sondergaard et al (35) found that inhibition of the activation 
of MAPK p38, p44/42 and Src family prevented the degrada-
tion of proteolytic cartilage by blocking MMP synthesis and 
activity and MAPK p44/42 was essential for the degradation 
of aggrecan mediated by aggrecanase. Understanding of these 
detailed signaling pathways involved in the matrix degrading 
process may aid in the potential usage of corresponding inhibi-
tors to treat the damaged cartilage.

4. Collagen destruction

Collagen, as an important structural macromolecule of 
cartilage, contributes to ~60% of the dry weight of articular 
cartilage and the type II collagen accounts for 90-95% of 
the articular cartilage collagen. In the early stage following 
ACL rupture, expression of the type II and type I collagens is 
elevated temporarily in the articular cartilage (36). However, 
with the consistent infiltration of inflammatory cytokines 
and activation of catabolic proteinases, cartilage specific 
macromolecules, such as type II collagen, are destroyed. 
Different from PGs, collagen loss is believed to be irreversible. 
Subsequently, the full thickness cartilage lesion fail to heal 
itself with biological repair by type II collagen, rather, they 
become filled with a fibrocartilage repair tissue that is deficient 
of the biomechanical properties. IL-1 reduces the production 
of type II collagen by modulating the expression of transcrip-
tion factors Sp1 and Sp3 and it can also downregulate the 
expression of transforming growth factor-β (TGF-β) type II 
receptor, which has a significant influence on the synthesis of 
type II collagen (37). In the study by Chadjichristos et al (38), it 
was found that the production of newly synthesized collagens 
is inhibited by IL-1β in proliferating rabbit articular chon-
drocytes, accompanied by a decreased level of steady-state 
type II collagen. IL-1β downregulates the transcription of 
the COL2A1 gene through a -41/-33 basepair sequence that 
is bound by a multimeric complex, including Sp1 and Sp3 
transcription factors. Furthermore, Porée et al (39) found 
that IL-6 and/or soluble IL-6 receptor (sIL-6R) inhibits the 
production of type II collagen in rabbit articular chondrocytes 
at the transcriptional level. IL-6, sIL-6R or a combination can 
reduce the Sp1/Sp3 ratio, as well as DNA-binding activities, 
thus inhibiting COL2A1 transcription.

5. Chondrocyte necrosis

Several reasons were considered to be responsible for chon-
drocyte necrosis. One is the pullout force of ACL insertion. 
Previously, it was reported that ~42% of chondrocyte apoptosis 
and degenerative histological changes have been observed in 
human ACL tibial insertion cartilage from days 19 to 206 after 
ACL rupture (40). Due to an imbalance between cell death and 
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cell proliferation in the ACL insertions following ACL rupture, 
the decrease of chondrocytes may lead to histological changes 
of the cartilage layer in the insertions (41). Another reason is 
the large external force that results in bone marrow edema 
lesions (BMELs) (42). Bone marrow necrosis and fibrosis 
appeared in the BMELs (43). The cartilage overlying BMELs 
sustains irreversible injury and cartilage degeneration lasts 
with increasing chondrocyte necrosis even subsequent to ACL 
reconstruction (44). Furthermore, the abnormal biomechanics 
of the injured knee also influenced cartilage morphology, and 
posttraumatic and new bone marrow lesions (45). Articular 
cartilage overlying the bone bruise lesions showed chondro-
cytes necrosis and PGs loss (46-48).

6. Biomarkers of cartilage degeneration

ACL injury is believed to accelerate the development of knee 
OA. As mentioned previously, inflammatory factors continue 
to influence and damage the knee cartilage matrix, although 
the biomechanical stability recovers following ACL recon-
struction. In order to effectively prevent and abrogate the 
degenerative alteration of knee cartilage, there is an increasing 
interest to improve the understanding of the early biological 
changes subsequent to ACL injury and at the follow-up visit 
for reconstructive surgery by investigating specific biomarkers 
in synovial fluid, serum or urine. Catterall et al (28) examined 
21 biomarkers in serum and synovial fluid samples (including 
20 in synovial fluid and 13 in serum, with 12 biomarkers 
measured in the two fluids). These biomarkers can be divided 
into PG, collagen and synovial fluid biomarkers. With the 
significant release of GAGs into the synovial fluid, there would 
be a large amount of GAGs detected in the synovial fluid (28). 
GAGs in synovial fluid can be one specific biomarker providing 
effective diagnostic information for cartilage PG turnover in 
the ACL-injured knee (49,50).

Within the early time following ACL injury, the 
collagen‑related biomarkers can be detected in synovial fluid. 
The progression of knee OA is associated with alterations 
in the systemic levels of the type II collagen metabolism 
biological markers (51). In general, collagen biomarkers 
contain C-terminal cross-linked telopeptide type II collagen 
(CTX-II), C-terminal cross-linked telopeptide type I collagen 
and N-terminal telopeptides of type I collagen. Presently, 
there is an increasing interest in monitoring the CTX-II level 
for OA progression, as high levels of the cartilage turnover 
biomarker CTX-II predict an increased risk of radiological 
progression (52-54). Lohmander et al (52) reported the release 
of CTX‑II in synovial fluid from patients with ACL injury. The 
concentrations of CTX‑II in synovial fluid were much higher 
in patients with ACL injury compared to the healthy control 
group, and the mean levels of CTX‑II in synovial fluid were 
higher compared to the healthy levels at all time intervals 
following joint injury.

In synovial fluid, lubricin is believed to be one specific 
biomarker. Lubricin is expressed by the proteoglycan 4 gene 
and synthesized in a number of tissues, including cartilage, 
meniscus and tendon (55-57). As a disease-regulating cyto-
protective glycoprotein, it plays an important role in the 
protection of articular cartilage structure, maintenance of 
articular low-friction and prevention of joint OA (58-61). A 

clear loss of lubricin fails to present an efficient lubricating 
surface for the articular cartilage contact and subsequently 
predisposes articular cartilage surfaces to wear-induced 
damage. Biomechanical stimulation can modulate lubricin 
expression (62,63). In the ACL-injured knee, expression 
of lubricin becomes abnormal with the abnormal articular 
cartilage contact and pressure distribution (64,65), which 
may influence integrative cartilage repair (66). Additionally, 
a number of cytokines and growth factors are involved in the 
regulation of lubricin expression in the ACL-injured knee. 
As an anabolic factor, TGF-β1 upregulates the synthesis and 
surface localization of lubricin (67,68), whereas IL-1 or TNF 
downregulate the production of lubricin (69,70). In an animal 
model of posttraumatic arthritis, it has been demonstrated that 
blocking TNF increases lubricin production on the surface 
of articular cartilage (71). As stated, a severe inflammatory 
reaction will occur in the ACL-injured knee joint, followed by 
infiltration of various inflammatory cytokines, such as IL‑1 
and TNF. Consequently, the normal synthesis of lubricin is 
affected and lubricin production is significantly reduced with 
the degenerative processing of cartilage. Therefore, lubricin 
can be one specific biomarker in synovial fluid.

7. Conclusions and perspectives

Biomechanical instability does not appear to be the only cause 
for the OA changes of the knee joint following the ACL rupture 
and an alternative etiology by various biochemical factors are 
postulated to play an important role in the development of 
posttraumatic OA following ACL injury. In the present study, 
several important biological factors have been summarized, 
which participate in the process of articular cartilage damage. 
Among these factors, inflammatory cytokines were reported 
to play a significant role in the production of MMPs, which 
contribute to cartilage PG degradation and collagen destruc-
tion. A detailed understanding of these biochemical mediators 
involved in the matrix degrading process will aid the potential 
use of specific inhibitors to slow the cartilage degenerative 
progression and treat the damaged cartilage. Furthermore, 
several specific biomarkers, including GAGs, CTX-II and 
lubricin were reviewed. These specific biomarkers can provide 
effective diagnostic and prognostic tools for identifying 
subjects with a high risk of progression. Collectively, these 
results may prompt further studies on the biological prognosis 
and management of knee joint cartilage damage following 
ACL rupture.
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