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Abstract. Heterogeneous nuclear ribonucleoprotein  K 
(hnRNP K) is a member of the hnRNP family, which exists 
in the nucleus and the cytoplasm simultaneously. It is a 
multifunctional protein that can participate in a variety of 
regulatory progressions of gene expression and signal trans-
duction, such as chromatin remodeling, transcription, RNA 
alternative splicing and translation. hnRNP K not only directly 
binds to the kinases, but also recruits the associated factors 
regarding transcription, splicing and translation to control 
gene expression, and therefore, it serves as a docking platform 
for integrating transduction pathways to nucleic acid‑directed 
processes. Numerous studies also show that abnormal expres-
sion of hnRNP K is closely associated with the tumor formation. 
This protein is overexpressed in numerous types of cancer and 
its aberrant cytoplasmic localization is also associated with a 
worse prognosis for patients. These results consistently indi-
cate that hnRNP K has a key role in cancer progression. To 
understand the hnRNP K pathophysiological process in tumor 
disease, the previous research results regarding the association 
between hnRNP K and tumors were reviewed.
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1. Introduction

RNA‑binding proteins are the proteins that have similar 
characteristics and intracellular distribution, and are termed 
heterogeneous nuclear ribonucleoproteins (hnRNPs)  (1). 
Their role is in sharp contrast with the roles of small nuclear 
ribonucleoproteins (snRNPs) and mRNA proteins (mRNPs). 
Thus far, ~20 types of hnRNPs have been identified, ranging 
from A1 to U. A large number of studies have shown that these 
proteins have a significant role in the progression of gene regu-
lation, including DNA repairing, telomerase extending, signal 
transduction, and transcriptional and translational levels (2). 
Of which, hnRNP K is one type of DNA and RNA‑binding 
protein involved in various regulatory progressions by means 
of protein‑protein interaction (3).

The relative molecular weight of hnRNP K is ~66 kDa, 
which is comprised of three DNA‑RNA binding homology 
domains (KH1, KH2 and KH3), a K‑protein‑interactive region 
(KI) and a C‑terminal protein kinase‑binding domain  (4). 
Each of these three KH domains contains 65‑70 amino acids, 
two of them located at the N‑terminus, and the remaining one 
at the C‑terminus. KH domains have evolutionarily conserved 
features making the KH domain with the same number of 
amino acids or the same amino acid sequence exhibit similar 
functions in different tissues. The typical function of KH 
domains is to recognize and bind to RNA and single‑stranded 
DNA. The KI domain lies between KH2 and KH3, which 
specifically exists in hnRNP K. This domain is responsible 
for regulating the interaction between hnRNP K and other 
proteins in the nucleus and cytoplasm. The KI region contains 
the proline‑rich docking sites, such as RXXPXXP and 
PXXPXR, which interact particularly with SH3 domains of 
the Src‑family signals. Furthermore, hnRNP K contains a 
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nuclear‑localization signal with the function of mediating its 
transport from the cytoplasm to the nucleus (5,6). Therefore, 
it acts as a nucleocytoplasmic shuttling protein to regulate 
gene expression by the nuclear pore complex with the help of a 
nuclear shuttling domain (7) (Fig. 1).

According to previous results, there is a close association 
between tumors and hnRNP K; it often shows a high expres-
sion state in a variety of tumors, such as prostate cancer, colon 
cancer, nasopharyngeal cancer, oral squamous cell carcinoma, 
leukemia and breast cancer. hnRNP K is able to interact with 
multiple molecular partners and is involved in a number of 
gene regulation steps (7‑9) (Table I). hnRNP K is specific for 
hnRNP family members, and compared with other hnRNP 
proteins, has different structural characteristics (KH domain 
and DNA binding sites), so that it can participate in numerous 
cellular processes in the nucleus and cytoplasm. Of note, in 
addition to having the same functions with other hnRNPs, 
such as mRNA splicing and the cytoplasmic transport of 
mRNA, it can regulate DNA transcription, RNA processing 
and RNA translation, particularly with regards to the process 
of oncogene expression (2). All these features make it exhibit 
multiple roles in the cell cycle, inhibition of apoptosis and 
tumor metastasis. The present review assessed certain studies 
from the perspective of the role and molecular mechanisms of 
hnRNP K in promoting tumors, providing a more in‑depth and 
comprehensive understanding of the function of hnRNP K, 
and information for future investigations to further explore its 
role in the tumor progression.

2. hnRNP K as a transcription factor to promote tumors

hnRNP  K can be a transcription factor to promote the 
expression of certain oncogenes (10,11), which combines the 
upstream pyrimidine‑rich regions of promoters. In vivo it is 
able to interact directly with transcription machinery‑related 
factors, such as the TATA box‑binding protein (TBP), a 
subunit of the eukaryotic transcription factor TFIID, the RNA 
polymerase and others (12). These factors act synergistically to 
promote the transcription process by the way of protein‑protein 
interaction.

There are CT repetitive sequences in the promoter region 
of c‑myc, known as the CT element (13). It is comprised of 
four consecutive repeated CCCTCCCCA sequences and 
a fifth repeat sequence, which is separated by a 9‑base pair 
long sequence located downstream of the first four sequences. 
Pioneer studies have shown that the N‑terminus of hnRNP K 
contains 35‑amino acid residues that are necessary for trans-
activating the CT element. When hnRNP K recognizes the CT 
element of the c‑Myc promoter region in a specific‑binding 
manner, it can recruit and interact with TBP and RNA poly-
merases to upregulate the expression of c‑Myc. For example, it 
was found that c‑myc and hnRNP K simultaneously increased 
in breast cancer  (14). Following further exploration of 
hnRNP K, hnRNP K promoted transcription of c‑myc in a CT 
element‑dependent manner in these tumors, and subsequently 
c‑Myc stimulated cell proliferation and inhibited apoptosis 
during the progression of malignant transformation.

Activation or overexpression of c‑Src, a non‑receptor 
tyrosine kinase of numerous signal pathways, has been 
associated with a host of malignant cancers  (15,16). c‑Src 

expression is regulated by the housekeeping‑like SRC1A 
promoter in numerous tissues (17). There are three substan-
tial polypurine/polypyrimidine (TC1, TC2 and TC3) tracts 
within this promoter that have a role in enhancing transcrip-
tional activity. In addition, hnRNP K was shown to regulate 
the SRC1A promoter cooperatively with the transcription 
factor Sp1 (18,19). The study by Ritchie et al (20) proposed 
that hnRNP K recognizes and binds to TC1 and TC2 of the 
promoter region at first, which facilitates double strands to 
separate and become a single strand, leading to the affinity of 
hnRNP K with the increase in single‑stranded DNA, followed 
by hnRNP K recruiting the basal transcriptional machinery, 
TBP and TFIID. The intact TC3 tract is capable of binding the 
single‑stranded form with a high affinity to retain promoter 
activity. This series of processes promotes the transcription 
complex formation, so as to upregulate the expression of src.

3. hnRNP K interaction with nuclear matrix proteins to 
promote tumors

Nuclear matrix (NM) is a fibrin protein‑based grid system 
present in the eukaryotic nucleus, excluding the nuclear 
membrane, laminin, chromatin and nucleolus. This dynamic 
complex mainly contains a variety of proteins and a small 
amount of RNA and DNA. NM has an important role in 
gene regulation process, such as chromatin remodeling, 
DNA replication and transcription and RNA processing (21). 
hnRNP  K activates at the chromatin level, exhibiting a 
transient recruitment to multiple sites within each of the 
inducible gene loci, including the promoter and transcribed 
regions (22). hnRNP K is abundant in the NM, which has a 
role in stabilizing the NM network. Furthermore, hnRNP K 
as one type of NM protein can bind to the NM attachment 
region (MAR) sequences, and is located in interchromatin 
granule clusters  (23). MAR is a class of DNA sequence, 
which exists in eukaryotic cellular chromatins and specifi-
cally recognizes the NM (24,25). When MAR binds to NM, 
it creates a position segmentation effect and maintains each 
transcription unit relatively independent from each other to 
be free of interaction with the surrounding chromatins. As 
a consequence of the anchoring of MAR sequences to NM, 
chromatin fibers are organized into topologically isolated 
loops to regulate the progression of gene transcription and 
translation, and removal of gene silencing resulted from the 
position effect. It is the position of a gene within the loop that 
determines its activity (26). As hnRNP K is the constituent 
of NM, chromatin remodeling and the transcription process 
of gene expression will be affected accordingly if the NM 
internal structure is altered or the interaction between NM and 
MAR sequences is repressed, with the original normal regu-
latory process affected as well. In prostate cancer cells (27), 
phosphorylated AKT can promote the phosphorylation of 
hnRNP K. The effect of hnRNP K stabilizing AR will be 
weakened in succession, which is co‑located with the AR in 
the NM at first. In turn, phosphorylated hnRNP K inhibits the 
expression of AR after it recognizes DNA‑MAR sequences 
in the nucleus, which makes the androgen‑sensitive prostate 
cancer cells convert to androgen‑insensitive cancer cells and 
increases the risk of a poor prognosis in patients who have 
received androgen‑deprivation therapy.
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4. Involvement of hnRNP  K in RNA alternative splicing 
(AS) to promote tumors

AS is an essential mechanism in post‑transcriptional regula-
tion, which is a crucial step of the gene expression process in 
eukaryotes (28). It is a major cause for protein diversity and 
has critical roles in differentiation, development and disease. 
Thus, a gene may encode a variety of proteins. Therefore, its 
regulation is associated with cancer. It has been confirmed that 
hnRNP K is involved in certain important splicing process by 
interacting with Sam68, TAF15, YB1, 9G8 and SRp20 (12). Of 
note, it participates in the expression of apoptosis‑related genes 
by AS to promote the tumor formation. The mammalian B‑cell 
lymphoma 2 (Bcl‑2) family can be classified into the multi‑motif 
Bcl‑2 proteins that bear multiple BH motifs with pro‑survival 
(Bcl‑2, Bcl‑xL, Bcl‑w, myeloid leukemia‑1, A1 and Bcl‑B) and 
pro‑apoptotic (Bcl‑xS, Bcl‑2‑associated X protein and Bcl‑2 

homologous antagonist/killer) activity  (29). hnRNP K can 
regulate the Bcl‑2 AS process and inhibit Bcl‑xS generation, 
which results in a reduction of apoptosis in tumor cells (30). In 
the event of AS, U1 snRNA identify the pre‑mRNA 5' splicing 
site in a nucleotide complementary manner while U2AF 
recognizes and combines the upstream pyrimidine‑rich region 
of the 3' splicing site and promotes U2 snRNP and the U4, 
U5 and U6 snRNP trimer to bind together to form a 60S spli-
ceosome where a transesterification reaction occurs, leading 
to the generation of different isoforms at different sites (31,32). 
Furthermore, there is a B1 splicing‑regulatory region existing 
in the 5' splicing site of Bcl‑xS. hnRNP K can bind to the 
pyrimidine‑rich region of B1 to inhibit the production of the 
Bcl‑xS isoform. Simultaneously, hnRNP K is able to interact 
with Sam68, which has a role in upregulating Bcl‑xS expression 
to weaken its upregulation capacity. As a result, the apoptosis 
pathway is blocked, so that cancer cells survive to escape from 

Table I. hnRNP K interacts with diverse groups of molecular partners to regulate gene expression and signal transduction.

Process	 Protein partner	 Regulated gene

Transcription	 General factors: TBP and HMGB1	 c-Myc, c-Src, thymidine kinase
	 Activators: Pura, Sox10 and C/EBPb	 eIF4E, CHRNA4 and CD43
	 Repressors: Zik1, Kid1 and MZF-1	
Chromatin remodeling	 Eed, DNA-methyltransferase, scaffold	 AR
	 attachment factor B and MARs	
RNA processing	 hnRNP E2, I, K, L and U 9G8, SRp20, YB-1 and Sam68	 β-tropomyosin, renin
Translation	 EF-1α	 c-Myc, 15-lipoxygenase, human
		  papilloma virus type 16, eIF4E and p21
Signal transduction	 Src, Lyn, Fyn, Lck, Itk, PKCα, PKCδ,	
	 PKCε, ERK1/2, JNK, Vav and PRMT1	

hnRNP K, heterogeneous nuclear ribonucleoprotein K.

Figure 1. Diagrammatic illustration of the K protein. The rectangles represent K homology domains (KH), K interactive region (KI), nuclear localization signal 
(NLS), nuclear shuttling domain (KNS) and domains that recruit protein and RNA partners. The numbers indicate the positions of amino acid (aa) residues. 
NLS in aa 1‑40; KH 1 in aa 46‑98; KH 2 in aa 149‑197; KH 3 in aa 391‑439; KI domain in aa 240‑337; and KNS in aa 338‑361.
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the apoptotic signals. Due to this advantage condition, tumor 
cells can be maintained in a safe environment and proliferate 
rapidly.

5. Involvement of hnRNP K in RNA translation to promote 
tumors

The translation mechanisms of hnRNP K action are the most 
intensively studied. It has been confirmed that hnRNP K 
can affect the tumor growth and development at the transla-
tional level as well. Bomsztyk et al (7) found that hnRNP K 
have a direct interaction with the translation elongation 
factor 1α, confirming its role in translational regulation. 
Following this, it was also found that hnRNP K could bind 
to the polypyrimidine sequence of translation initiation 
factor eIF4E (4EBE) to upregulate oncoprotein expression 
and promote certain malignant phenotype formations (33). 
In addition, hnRNP K can interact with the CU‑rich region 
of p21 mRNA 3' untranslated region (UTR) to inhibit p21 
translation and promote cell proliferation (34). When chronic 
myelogenous leukemia converts from the chronic phase to 
the acute phase (35), the expression product of B‑cell surface 
receptor (BCR)/ABL, p210, can activates the tyrosine kinase 
activity of mitogen‑activated protein kinase (MAPK)Erk1/2 in 
a dose‑dependent manner in the bone marrow and lympho-
cytes cells with the BCR/ABL gene. Subsequently, activated 
MAPKErk1/2 induces hnRNP  K expression and stability 
increased. Stable hnRNP K binds to the myc mRNA internal 
ribosome entry site to stimulate translational activation and 
expression upregulation (3). The increased myc protein will 
facilitate leukocyte cell proliferation, colony formation and 
stimulate the occurrence of leukemia.

6. hnRNP K interacts with signaling molecules to promote 
tumors

hnRNP K can cooperate with the Src tyrosine kinases family, 
tryptophan/threonine kinase PKCδ, Erk1/2, Vav and other 
molecules to regulate its interaction with the target proteins 
or gene sequences. As combination factors vary, the effect 
of the production of different signaling molecules is also 
significantly different (36). For example, Jeon et al (37) have 
demonstrated that hnRNP K can bind to the signal transducer 

Figure 2. Signaling pathways of hnRNP K. The summary of the principal pathways regulated by hnRNP K, in which hnRNP K can drive cancer development 
and progression. hnRNP K, heterogeneous nuclear ribonucleoprotein K.

Table II. Heterogeneous nuclear ribonucleoprotein K expres-
sion in individual types of cancer and its association with 
prognosis in different types of cancer.

	 Expression in	 Prognostic
Type of cancer	 tumor tissuea	 significance

Colorectal	 Increased	 Survival
Esophageal squamous cell	 Increased	 Poor prognosis
Hepatocellular	 Increased	 ND
Lung	 Increased	 ND
Melanoma	 Increased	 ND
Nasopharyngeal	 Increased	 Poor prognosis
Oral squamous cell	 Increased	 Poor prognosis
Prostate	 Increased	 Poor prognosis

aExpression was compared to normal or non-tumor tissue. ND, not 
determined.
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protein Vav to become involved in the BCR signaling pathway. 
Interaction of the Vav proto‑oncogene product with hnRNP K 
regulates and promotes the process of cell transformation by 
the SH3 domain (38,39). In hepatocellular carcinoma (40), 
it can increase the expression of the protein kinase inhibitor 
CFLP (cellular FLICE-like inhibitory protein) that prevents 
pro-caspase-8 activation and X‑linked inhibitor of apop-
tosis protein and maintain them at a high level to inhibit 
the classic caspase apoptosis pathway activation. In breast 
cancer (41), the epidermal growth factor receptor family can 
increase the expression of hnRNP K following activation by 
exogenous growth signals, and subsequently, the upregulated 
hnRNP K binds to and activates the c‑myc promoter region 
to improve the expression of c‑myc to accelerate the tumor 
formation process. In prostate cancer, hnRNP K participates 
in the AKT/hnRNP K/AR/β‑catenin signaling pathway (42), 
which has a crucial impact on converting prostate cancer 
into a hormone‑insensitive neuroendocrine (NE) differen-
tiation phenotype. The presence of this phenotype indicates 
a poor prognosis for patient. Phosphorylated AKT is present 
at prostate cancer cells in three pathways mainly; following 
promotion of GSK3β phosphorylation, the phosphorylated 
GSK3β will be transported from the cytoplasm into the 
nucleus; the second pathway promotes the intracytoplasm 
AR to be phosphorylated and subsequently degraded by the 
proteasome pathway; the last promotes hnRNP K phosphory-
lation and enters into the nucleus. GSK3β and phosphorylated 
hnRNP K of common positioning within the nucleus bind 
to the AR sequence and repress AR expression, while 
increasing the expression of NE differentiation phenotype 
markers, neuron‑specific enolase (NSE), simultaneously, 
which causes hormone‑sensitive prostate cancer to become 
hormone‑insensitive and NSE‑independent prostate cancer 
phenotype, ultimately resulting in ineffective androgen‑with-
drawal therapy. In the cytoplasm of tumor cells, the activation 
of Ras and MEK can also make hnRNP K stably exist in the 
cytoplasm (43). Stabilized hnRNP K is able to activate ERK to 
promote upregulation of matrix metalloproteinase 3 (MMP3) 
and MMP10. These factors have an important role in promoting 
tumor metastasis. A succession of studies are now providing a 
mechanistic basis, highlighting and reinforcing that specific 
MMPs are key in tumor invasion and metastasis through their 
catalytic and non‑catalytic roles, including modulating tumor 
cell motility, promoting invadopodia formation, interactions 
of MMPs with pro‑invasive pathways, sensing matrix stiffness 
and induction and maintenance of epithelial‑mesenchymal 
transition (44). Therefore, hnRNP K simultaneously provided 
favorable conditions for tumor invasion and metastasis when 
upregulating MMPs expression.

7. hnRNP K interacts with non‑coding RNAs (ncRNAs) to 
promote tumors

In the human genome, ~90% is transcribed into ncRNAs. 
ncRNAs are diverse RNA transcripts that are not transcribed 
into proteins but have been shown to regulate the transcription, 
stability or translation of protein‑coding genes  (45,46). 
According to their size, they can be divided into long 
ncRNAs and short ncRNAs (microRNAs). ncRNAs are 
associated with numerous diseases, including a variety of 

tumors (47). In addition, there is a close association between 
hnRNP K and ncRNAs, which may indicate that there is 
contact between hnRNPK and ncRNAs in tumors. Recently, 
Gumireddy et al (48) identified that a translational regulatory 
ncRNA (treRNA) was highly expressed in metastatic breast 
cancer and primary colon cancer through genome‑wide 
computational analysis. It interacted with hnRNP K to promote 
tumor invasion and metastasis. treRNA can combine with 
hnRNP K, FXR1, puf60, SF3B3 and other factors to facilitate 
the formation of the treRNA‑associated protein complex. 
This complex is able to directly or indirectly bind to the 
E‑cadherin mRNA 3'UTR, and reduce translation efficiency 
of E‑cadherin mRNA, and therefore E‑cadherin expression 
decreased. Downregulated E‑cadherin leads to a direct result 
of adhesion activity decrease between tumor cells. As a 
consequence, tumor cells shed from the primary tumor into 
the circulation system, and position in the new site. In addition, 
Qin et al (49) showed that hnRNP K is a target of miR‑205. 
miR‑205 has a complex regulatory role in tumor initiation and 
growth processes. It can inhibit or promote tumor formation 
depending on its binding targets and microenvironment. 
Furthermore, it was found that miR‑205 can bind to the 3'UTR 
of hnRNP K to reduce hnRNP K expression (50). However, 
miR‑205 is downregulated in prostate cancer, so its inhibition 
for hnRNP K is derepressed, which leads to promoting the 
state of tumors (51).

8. Conclusion

hnRNP K is an RNA/DNA‑binding protein that is a target 
of multiple kinases or recruits factors involved in signal 
transduction and gene expression. Its abnormal expression 
can make the tumor formation risk increase significantly. In 
several tumors, the hnRNP K expression level progressively 
increases from normal to hyperplasia to carcinoma tissue, and 
it is often associated with tumor stage, indicating an asociation 
between hnRNP K expression and tumors progression (52,53). 
Inoue et al (54) have proved that hnRNP K has an important 
role in tumor invasion. They identified that hnRNP  K 
is involved in tumor cell metastasis, and its cytoplasmic 
localization is essential for cell invasion and metastasis. 
Recently, it was also proved that if hnRNP K is overexpressed, 
cell malignancy and metastatic ability would be improved 
in  vitro  and  in  vivo. Furthermore, Hope and Murray  (55) 
demonstrated in colon cancer that hnRNP K in addition to 
the high expression appeared with an abnormal cytoplasmic 
localization, and it correlated with lymph node metastasis, 
suggesting that it is a poor prognostic markers. Gao et al (43) 
have demonstrated that hnRNP K could induce the expression 
of certain genes involved in the cell extracellular matrix, 
cell motility and angiogenesis by cDNA microarray analysis 
and signaling pathway analysis. Therefore, regardless of the 
tumor type, the abnormal increase or cytoplasmic localization 
of hnRNP  K may be regarded as a valid marker of poor 
prognosis (Table II). In summary, hnRNP K is involved in 
multiple cellular functions relevant to cancer development and 
progression (Fig. 2). The overexpressed hnRNP K in numerous 
tumors, as a multifunctional protein, may hopefully become 
a therapeutic target due to its role in promoting malignant 
transformation and tumor metastasis. If this hypothesis is true, 
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reasonable drugs and therapies can be designed to intervene 
with tumor growth according to the regulatory characteristics 
of hnRNP K. Further investigations are required.
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