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Abstract. Cholangiocarcinoma is a lethal biliary cancer, 
with an unclear molecular pathogenesis. Alternative splicing 
is a post‑transcriptional modification that generates mature 
mRNAs, which are subsequently translated into proteins. 
Aberrant alternative splicing has been reported to serve a role 
in tumor initiation, maintenance and metastasis in several 
types of human cancer, including cholangiocarcinoma. In this 
review, the aberrant splicing of genes and the functional contri-
butions of the spliced genes, in the carcinogenesis, progression 
and aggressiveness of cholangiocarcinoma are summarized. 
In addition, factors that influence this aberrant splicing that 
may be relevant as therapeutic targets or prognosis markers for 
cholangiocarcinoma are discussed.
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1. Introduction

Cholangiocarcinoma (CCA), is a malignant tumor that arises 
from the biliary epithelial tissue and is highly aggressive, 
with no effective pharmacological treatment available. This 
cancer has a poor prognosis and a high mortality rate (1). The 
highest worldwide incidence of CCA is found in the North and 
Northeast of Thailand, at ~85 cases per 100,000 individuals 
per year (2). The major predisposing factors for CCA in Asia 
are infection by the liver fluke, Opisthorchis viverrini (3,4) 
and exposure to groups of food‑borne carcinogens, especially 
N‑nitrosodimethylamine compounds identified in grilled 
or fermented foods (5). The only effective treatment for the 
disease is surgery. For patients who are not eligible for surgical 
therapy, gemcitabine‑ or 5‑fluoro‑uracil (FU)‑based treatments 
are given. These are largely ineffective, since the response rate 
is only 20‑30%.

The molecular pathology of bile duct cancer has been 
a topic of intense study. The molecular pathogenesis of 
CCA usually involves abnormal signal transduction and 
pro‑inflammatory secretion, facilitated by gene mutations 
and epigenetic dysregulations (on a set of oncogenes and 
tumor suppressor genes) (6). Several lines of evidence also 
indicate that the abnormal expression of growth factors and 
receptors, the RAS/RAF/ dual specificity mitogen‑activated 
protein kinase kinase 1 pathway, and the phosphatidylinositol 
3 kinase (PI3K)/protein kinase B (AKT)/mammalian target 
of rapamycin pathway may be involved with CCA initiation, 
maintenance, and metastasis (7). Several studies reported that 
specific‑target drugs or inhibitors, including epithelial growth 
factor receptor (EGFR; Lapatinib or Erlotinib), fibroblast (F)
GFR and PI3K inhibitor, (8) may be applicable to CCA. A 
number of novel therapeutics are under evaluation in a phase 
2 study (9).

Alternative splicing (AS) is a post‑transcription modulation 
process that can generate a variety of gene isoforms. Spliced 
mRNA is able to be translated to differential amino acids 
with various biological functions (10). Pre‑mRNA is spliced 
through the spliceosome; a large macromolecule comprising 5 
small nuclear ribonucleoproteins (snRNPs U1, U2, U4/U6 and 
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U5). The AS generates 5 common splicing patterns, including 
alternative 5' splice site, alternative 3' splice site, exon skip-
ping, intron retention and mutually exclusive exons. Previous 
data demonstrates that aberrant alternative splicing also 
includes exonic regulatory element mutation, splice site 
mutation and altered splice isoform ratios. The differential 
expression of splicing factors is implicated in various diseases 
and linked to hallmarks of cancer (11‑15). A number of reports 
demonstrated a correlation between aberrant AS and tumor 
initiation/progression (16‑20). The truncated oncogenic forms 
of the proteins, resulted from aberrant AS involved in cancer 
cell growth, apoptosis, drug resistance and angiogenesis.

Aberrant splicing of macrophage‑stimulating protein 
receptor (RON) (21) and Racl  (22) promoted angiogenesis 
and epithelial mesenchymal transition (EMT) phenotypes. 
In addition, a BRAF (V600E) spliced isoform, lacking exon 
4‑8 induced vemurafenib drug resistance in melanoma (23). In 
the present review, evidence is presented that supports impor-
tant roles for aberrant splicing and the spliced isoforms of the 
genes, in CCA carcinogenesis and cancer aggressiveness.

2. Relevance of aberrant AS in cholangiocarcinoma 
development, progression and aggressiveness of phenotypes 

A number of articles have summarized the interconnection 
between AS and cancer progression, including 17 genes in lung 
cancer (16), 2 reports in breast cancer in which 7 genes (17) and 
9 genes (18), respectively were demonstrated, and 9 genes in 
hepatocellular carcinoma (19,20). The global cancer‑specific 
transcript variants of five cancers demonstrated protein 
metabolism and modification are the most prevalent functional 
processes in cancer (24). As mentioned previously, aberrant 
AS has been discovered and proven to have functional involve-
ment in the initiation and progression of cancer. In CCA, 623 
genes presented with alternative splicing in CCA samples 
when compared with healthy bile duct tissue samples (25). In 
this review, atypical splicing of nine genes, which have been 
investigated at the in vitro, in vivo and clinical levels, and 
their relevance to CCA pathogenicity are summarized. The 
structure of nine pre‑mRNAs that undergo alternative mRNA 
splicing to generate wild‑type mRNA or variant transcripts 
are presented in Fig. 1. The derived‑spliced transcripts or 
protein isoforms are summarized by how they can facilitate 
various characteristics of a cancer cell, as presented in Fig. 2 
and Table I.

Cluster of differentiation (CD)44v6 and CD44v8‑10. CD44 is 
a transmembrane glycoprotein receptor that specifically binds 
to extracellular hyaluronan and other extracellular matrix 
(ECM) proteins to activate signal transduction, and serves 
important roles in tumor proliferation, migration, and inva-
sion (26,27). CD44 pre‑mRNA encodes transmembrane and 
cytoplasmic‑tail regions. The AS of CD44 can generate up to 
12 isoforms of proteins with different biological functions. The 
CD44v isoforms participate in cancer progression: CD44v6 
promotes EMT and activates the transforming growth factor‑β 
pathway (28,29), and CD44v8‑10 is involved in poor cancer 
prognosis (30,31). Expression of CD44v6 can be linked to 
CCA proliferation. CD44v6 is a CCA‑specific isoform that has 
never been detected in normal bile ducts (32). Furthermore, 

the CD44v8‑10 transcript was overexpressed in CCA and was 
demonstrated to stabilize the xCT system, a cysteine/glutamate 
transporter, to elevate glutathione synthesis and inhibit reac-
tive oxygen species (ROS) accumulation in CCA cells. This 
function of CD44v8‑10 was demonstrated to facilitate cancer 
cell survival in cases caused by liver fluke‑induced inflam-
mation. In addition, upregulation of CD44v8‑10 suppressed 
p38 mitogen‑activated protein kinase 1 (MAPK), which is a 
signaling protein involved in ROS suppression. Although the 
mechanism by which the CD44 spliced isoform may suppress 
p38 is still unclear, this observation appeared to be clinically 
relevant, since patients with CD44v overexpression and nega-
tive‑phosphorylated (phospho)‑p38MAPK have significantly 
shorter survival times compared with low CD44v expression 
and positive‑phospho‑p38(MAPK) (33).

WISP1v. Wnt‑inducible secreted protein 1 [(WISP1) also known 
as CNN4] is a member of the cysteine‑rich CCN family of 
proteins, which are highly expressed in skeletal tissues and has 
a role in bone formation and maintenance. Functions of this 
protein involve cell proliferation, osteoblastic differentiation 
and migration (34,35). WISP1 comprises 4 domains, including 
insulin‑like growth factor‑binding protein (IGFBP), VWC, 
thrombospondin‑1 (TSP‑1) and CT domains and is known to 
have variants with biological functions. A WISP1 variant lacking 
exon 3 (WISP1v) loses its VWC domain, which is thought to 
participate in protein complex formation. Ectopic expression 
demonstrated that the WISP1v is a secreted oncoprotein, which 
drives cellular transformation and rapid cumulative growth. 
WISP1v overexpression enhanced the invasive phenotype in 
gastric carcinoma cells, while wild‑type WISP1 exhibited no 
such potential. These findings suggested that the CCN protein 
WISP1v was involved in the aggressive progression of scir-
rhous gastric carcinoma (36). In CCA, the aberrant isoform 
WISP1v was demonstrated to be overexpressed in patient CCA 
tissues (37). Furthermore, upregulation of WISP1v was associ-
ated with shorter overall survival time among patients following 
surgical treatment (38). In addition, WISP1v was demonstrated 
to promote cell invasion in vitro and this process was demon-
strated to be mediated by p38 MAPK (37).

Nek2A and Nek2B. Nek2, or NIMA‑related kinase 2, is a serine/
threonine kinase that regulates cell division through centro-
some separation (39). The spliced isoform of Nek consists of 
three forms, Nek2A, Nek2B and Nek2A‑T (40). Isoforms of 
NEK are demonstrated to be functionally involved with cancer 
formation. In patients, overexpression of Nek2a was associ-
ated with Ki‑67 expression, a cell proliferation marker (41). 
In addition, NEK2A cytoplasmic expression was positively 
associated with cancer grade and tumor size in breast invasive 
ductal carcinoma and metastatic potential (42). Cancer cells 
overexpressing the NEK2A isoform demonstrated a significant 
increase in colony formation compared with control cells and 
small interfering (si)RNA‑based depletion of NEK2a resulted 
in the halting of cancer cell proliferation (43). Nek2A/Nek2A‑T 
were demonstrated to be highly upregulated in CCA cell lines, 
with the predominant isoform being Nek2A/Nek2A‑T and 
Nek2B being the lesser expressed isoform (44). Furthermore, 
the expression of Nek2B was demonstrated to positively corre-
late with proliferation potential in breast cancer cells (45).
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ΔEX2TFF2. Trefoil factor 2 (TFF2) is a secreted protein that 
serves important roles in gastrointestinal restitution (46), chronic 

kidney disease and pulmonary inflammation, through the induc-
tion of cell migration and proliferation. Overexpression of TFF2 

Figure 1. Schematic representation of the alternative splicing events implicated in cholangiocarcinoma development and progression. Exons are represented by 
boxes and introns by lines. Continuous lines represent the exon inclusion for wild‑type mRNA, whereas dotted lines represent the exon inclusion for spliced 
transcripts. Skipped or included exons from alternative splicing, that differ from wild‑type mRNA, are presented in gray.

Figure 2. Spliced mRNA transcripts and their functions in cholangiocarcinoma.
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is commonly identified in several types of cancer, implicating it 
in carcinogenesis. TFF2 was reported to exert its pro‑prolifer-
ative activity through the EGFR‑MAPK pathway in CCA (47). 
Previously, ΔEX2TFF2, an exon 2‑ skipping isoform of TFF2 
with a stop codon (TAG) at exon 1, was uncovered as a spliced 
isoform of TFF2 (48). Although, the roles of this transcript have 
not been clarified, the present study demonstrated that a high 
expression ratio of ΔEX2TFF2/wtTFF2 in patients was signifi-
cantly associated with a longer survival time (48). Therefore, the 
spliced isoform may act as a dominant‑negative form of TFF2 
that counteracts the cancer promoting wtTFF2 activity in CCA.

Forkhead box protein 3 (FOXP3Δ3). FOXP3 is a transcription 
factor in the forkhead protein family that is involved in CD25+ 
regulatory T cell (Treg) development. Not only does FOXP3 
control Treg development, it is also expressed in colorectal 

cancer cells, which is associated with poor prognosis in 
patients (49). Exon 3 skipping of FOXP3, resulting in an amino 
acid frameshift, has been reported in CCA (50). In addition, a 
FOXP3 splice isoform was also observed in melanoma cells, 
suggesting it has a role in suppressing immune activity (51).

∆133p53. Tumor protein 53 (TP53 or p53) is one of the most 
important tumor suppressors, indicated by its high mutation 
rate across all types of cancer. p53 responds to various stress 
signals and orchestrates processes including cell cycle arrest, 
DNA repair, cellular senescence and apoptosis in response 
to specific stress signals (52). AS generates 12 p53 isoforms, 
including Tap53, Δ40p53, Δ133p53 and Δ160p53 among 
others  (53,54). The differential regulation of p53 isoforms 
promotes the aggressiveness of several types of cancer. A 
study demonstrated that Δ133p53b enhanced breast cancer 

Table I. Spliced mRNA transcripts and their functions in cholangiocarcinoma.

		  Spliced transcript/	 Splicing
Author, year	 Gene	 isoform	 variants	 Function	 (Refs.)

Yun et al, 2002	 CD44	 CD44v6	 Retained exon v6	 Proliferation	 (32)

Thanee et al, 2016	 CD44v8‑10	 Retained exon	 Anti‑apoptosis		  (33)
		  v8‑10

Tanaka et al, 2003	 Wnt‑inducible secreted 	 WISP1v	 Skipping	 Neural and	 (37)
	 Protein 		  exon 3	 lymphatic
				    invasion

Kokuryo et al, 2007	 Serine/threonine‑	 Nek2B	 Skipping	 Function 	 (44)
	 protein kinase Nek2		  exon 8	 unknown

Kamlua et al, 2012	 Trefoil factor 2	 ΔEX2TFF2	 Skipping	 Independent	 (48)
			   exon 2	 prognostic marker

Harada et al, 2012	 Forkhead box protein 3	 Foxp3Δ3	 Skipping exon 3	 Function unknown	 (50)

Nutthasirikul et al, 	 Tumor protein 53	 Δ133p53	 Exon 1‑4 skipping	 Independent	 (60)
2013				    prognostic marker

Nutthasirikul et al, 				    5‑Fluorouracil	 (61)
2015				    resistance

Yu et al, 2015	 Pyruvate kinase	 PKM2	 Mutually 	 Neural	 (67)
			   exclusive exons;	 invasion
			   exon 9 skipping and
			   exon 10 retention

Du et al, 2015	 E prostanoid receptor 3	 EP3‑4	 Exon 2b, 3, 4, 6 	 Proliferation	 (71)
			   and 8 skipping	 migration 
				    and invasion

Yosudjai et al, 2018	 Anterior Gradient‑2	 AGR2vH	 Alternative 3' and 5'	 Migration,	 (74)
			   splice site and exon 	 invasion and
			   4‑7 skipping	 adhesion
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stemness (55) and protected colorectal cells from camptoth-
ecin‑induced apoptosis (56).

p53 has been identified as a gene that frequently mutates 
in a large number of CCA cases (57‑59), suggesting that a 
perturbed p53 pathway facilitates CCA carcinogenesis. A 
study demonstrated that a high Δ133p53/p53 mRNA expres-
sion ratio correlates with a poor overall survival (60). Notably, 
Δ133p53 is also associated with resistance to certain cancer 
drugs; an association between Δ133p53 and 5‑FU‑resistance 
in CCA cells was demonstrated, and Δ133p53 was upregu-
lated in 5‑FU‑resistant tumor tissues and CCA cell lines in a 
dose‑dependent manner (61). Given that 5‑FU is a cytotoxic 
drug that interferes with DNA synthesis, the Δ133p53 isoform 
may act as a dominant‑negative p53 that interferes with the 
activity of wtp53 in the ternary complex (62). Accordingly, 
suppression of Δ133p53 promoted apoptosis, which correlated 
with an upregulation of pro‑apoptotic Bax and a downregula-
tion of anti‑apoptotic Bcl‑2 (61).

Pyruvate kinase (PKM2). PKM is a rate‑limiting enzyme that 
catalyzes the conversion of phosphoenolpyruvate to pyruvate 
during glycolysis. PKM can be generated in 4 isoforms, which 
are expressed differently in various tissues. One of the isoforms 
is PKM2, which lacks exon 9 and is a major isoform highly 
expressed in a number of types of cancer (63). Previously 
data demonstrate that overexpression of PKM2 is linked to 
tumor growth, metastasis capability and a poor prognosis in 
hepatocellular carcinoma, pancreatic ductal adenocarcinoma 
and gallbladder cancer (64‑66). In hilar cholangiocarcinoma, 
immunohistochemical staining specific to the PKM2 isoform 
demonstrated a great number of positive‑staining cells in the 
tumor tissue. Patients with high‑PKM2‑expressing tumors 
exhibited a higher rate of tumor recurrence and a shorter 
overall survival time, when compared with patients with 
low PKM2 expression. However, there is still no conclusive 
evidence that indicates PKM2 is a cancer driver for CCA. In 
addition, PKM2 elevation was associated with CCA develop-
ment and neural invasion (67).

EP3‑4. E prostanoid receptor 3 (EP3), or prostaglandin E2 
receptor 3 (PTGER3), is a member of a G protein‑coupled 
receptor family, that specifically binds to prostaglandin E2 
(PGE2) to activate various responses. EP3 receptor can generate 
up to 11 spliced isoforms. Previous data demonstrate that EP3‑5 
and EP3‑6 isoforms were associated with cell proliferation in 
the myometrium in humans (68). Furthermore, overexpression 
of the EP3‑4 receptor promoted cell growth through upregu-
lating FUSE‑binding protein 1 in liver cancer (69). In CCA, the 
truncated EP3‑4 isoform, which includes exon 1, 2a, 5 and 10, 
was detected (70). This EP3‑4 isoform is activated through the 
Src/EGFR/PI3K/AKT/glycogen synthase kinase‑3β pathway 
and promotes cell proliferation, migration, and invasion. This 
results in enhanced expression of the downstream proteins 
c‑Myc and snail. Therefore, it is believed to serve a regulatory 
role in CCA cell growth and metastasis (71).

Anterior Gradient‑2 (AGR2)vH. The expression profiling of 
metastasis‑associated genes in CCA demonstrated that AGR2 
is one of the most‑upregulated genes, specific to the metastatic 
CCA cell line, when compared with the parental cell line (72). 

The AGR2 gene encodes for a disulfide isomerase enzyme, 
which is commonly expressed in mucus‑secreting tissues. The 
mRNA splicing of AGR2 was first characterized in prostate 
cancer (PCa). Spliced isoforms include AGR2vC, AGR2vE, 
AGR2vF, AGR2vG and AGR2vH. Among the 5 spliced 
isoforms and the wild‑type, AGR2vG and AGR2vH were 
demonstrated to be significantly upregulated in the exosome 
from patient's urine sample analysis. These two exhibited 
high diagnostic value, with higher sensitivity and specificity 
when compared with the prostate‑specific antigen used as a 
standard clinical biomarker for PCa diagnosis (73). In CCA 
cell lines, AGR2 RNA isoforms, namely AGR2vE, AGR2vF 
and AGR2vH, were recently reported that are specific to meta-
static CCA cells (74). It was demonstrated that the AGR2vH 
isoform enables various metastatic‑associated phenotypes in 
CCA cells. Suppression of AGR2vH by the AGR2vH‑specific 
siRNA significantly reduced CCA cell migration and inva-
sion. Concordantly, AGR2vH overexpression promoted cell 
proliferation, migration, invasion and adhesion potential. In 
addition, it was demonstrated that the expression of AGR2vH 
influences metastasis‑associated phenotypes through the 
upregulation of vimentin. Therefore, the results indicated that 
the metastasis‑specific isoform AGR2vH serves an important 
role in cancer severity (74).

3. Targeting aberrant splicing as a novel concept for cancer 
treatment

The prominent role of the aberrant AS in carcinogenesis has 
been demonstrated, indicating that AS may be a good target 
for cancer therapy. Aberrant AS can be manipulated in several 
steps: For example, Pre‑Trans‑Splicing Molecule (PTM) is 
the artificial sequence that can reprogram mRNA through 
replacement of the 3'exon, 5'exon and internal exon (75,76). 
The results demonstrated that the trans‑splicing molecule 
reduced the number of mutant p53 transcripts in the trans-
fected cells, which resulted in cell cycle arrest, apoptosis and 
tumor xenograft suppression with colorectal cancer and hepa-
tocellular carcinoma cells (77,78). However, the use of PTM 
for targeting oncogenic AS events is not yet well studied and 
the PTM modification has limitations for cancer treatment. 
Therefore, this review discussed the methodologies that may 
apply to cancer therapy, including small molecule splicing 
modulators and SSOs, each of which are currently under study 
in clinical trials.

Small molecules splicing modulators. Splicing factors 
are key molecules that influence AS regulation and are 
associated with cancer aggressiveness and pathological 
phenotypes  (79). A previous report demonstrated that an 
overexpression of serine/arginine‑rich splicing factor 1 
(SRSF1) can facilitate abnormal splicing of tumor suppressors 
and proto‑oncogenes  (80). The results demonstrated that 
SRSF1 promotes 12A inclusion of an isoform of BIN1, 
which interferes with the tumor‑suppressing activity of this 
protein. In the same study, the researchers demonstrated 
an increase in S6K1 isoform  2 expression resulting from 
SRSF1 overexpression that was associated with colony 
formation activity (80). An Ov‑infected hamster model was 
used to identify the differentially expressed genes to study 



YOSUDJAI et al:  ABERRANTLY SPLICED mRNA CONTRIBUTES TO CHOLANGIOCARCINOMA PROGRESSION152

the molecular mechanism of CCA carcinogenesis. The 
results demonstrated that SRSF9 is one of the genes that are 
overexpressed in Ov‑infected hamsters and may be associated 
with CCA initiation (81).

Aberrant spliceosomal proteins are important factors associ‑
ated with carcinogenesis. The data revealed that mutations 
in splicing factor 3B subunit 1A (SF3B1), which encodes the 
core component of U2 snRNP, is linked to erroneous 3' splice 
site selection (82‑84). The results demonstrated that the SF3B1 
K700E mutation led to differential splicing in uveal melanoma 
and breast cancer (85,86). In addition, luminal B and proges-
terone receptor‑negative breast cancer patients with additional 
SF3B1 mutations have significantly shorter survival times (87).

It is possible to modulate aberrant AS based on small 
molecule inhibitors of splicing factors or mutated spliceosomal 
proteins: For example, it has been demonstrated that a natural 
product ‘Borrelidin’ can bind to a splicing protein, FBP21, 
leading to a decrease of the vascular endothelial growth factor 
(VEGF) pro‑angiogenic isoform and an increase of the VEGF 
anti‑angiogenic isoform, in RPE cells (88). Previous studies 
demonstrated that a natural product, FR901464 and its methyl-
ated derivative, spliceostatin A, as well as E7107, specifically 
inhibit spliceosome assembly through SF3B1 and lead to 
halted splicing reactions (89‑91). The results demonstrated that 
treatment of these small molecules inhibits cell cycle progres-
sion and inhibits the tumor angiogenesis through decreasing 
the levels of VEGF transcripts (92,93).

Not only does the altered expression of splicing regulators 
affect AS, but the alteration of the phosphorylation status of 
the splicing factor/modulator was also implicated in cancer 
progression. In head and neck squamous cell carcinoma, 
hyperphosphorylation of SRPK2, a serine/arginine‑rich 
protein‑specific kinase that phosphorylates SRSF1/2, was 
detected in cancer cells; the phosphorylation promotes cell 
proliferation, migration and invasion (94). Alteration to the 
kinase alters the AS pattern. A previous study demonstrated 
that CLKs and SRSF protein kinases (SRPKs) are targets for 
kinase inhibitors to modulate AS; treatment with Cpd‑1, Cpd‑2, 
and Cpd‑3 significantly reduced the levels of phosphorylated 
SR proteins, therefore affecting the splicing pattern of multiple 
genes and inducing cell apoptosis (95). Furthermore, the other 
kinase inhibitors, including ceramide, affect splice site selec-
tion of Bcl‑x and increases pro‑apoptotic isoforms through the 
dephosphorylation of the SR protein (96).

SSOs technology. SSOs are single‑stranded nucleic acids, 
usually 15‑25 bases, that are complementary to the mRNA 
target transcripts or the recognition sequence of the splice 
sites, that leads to modulated splicing. A number of studies 
demonstrated that SSO can inhibit aberrant RNA translation: 
I.e., MDM4 is the protein that contributes to embryonic devel-
opment and is undetectable in adult tissues. An MDM4 isoform 
with exon 6 is frequently upregulated in cancer cells, impairing 
p53 tumor‑suppressor function. The SSO‑mediated skipping 
of exon 6 results in decreased MDM4 levels and reduced mela-
noma growth (97). Similarly, SSO targeting exon 26 of HER4 
mRNA, named as SSOe26, demonstrated its capacity on 
HER4 isoform switching from CYT1 to CYP2. This treatment 
resulted in the depletion of the proliferation of breast cancer 

cells and tumor growth in mice xenografts (98). Furthermore, 
SSO targeted B‑cell lymphoma (Bcl)‑x pre‑mRNA, which 
increased the Bcl‑xS isoform, gaining pro‑apoptotic activity, 
which was verified in the models of murine melanoma and in 
human glioma cell lines (99,100).

Drug development based on targeting aberrant AS, 
namely small molecule splicing modulators, is an inter-
esting approach for cancer treatment. Splicing regulators 
are upstream molecules that control the splicing events of 
multiple genes. Insight into novel target genes of the splicing 
regulators, can be used to manipulate the effective inhibitor(s) 
of these upstream molecules to suppress various downstream 
oncogenic spliced isoforms. However, the off‑target effect, 
toxicity (101,102) and the effects of small splicing factors 
interfering with the normal splicing patterns of global genes, 
should be considered. On the other hand, the specificity of 
SSO technology overcomes more than small splicing modula-
tors by modulating AS through inhibiting only its oncogenic 
target which leads to effective treatment. The major problems 
of oligonucleotides include toxicity, instability against nucle-
ases and delivery limitations.

4. Conclusion

The present review summarized the experimental evidence for 
and clinical relevance of the verification of significant effects 
of aberrant mRNA splicing of well‑characterized genes with 
respect to CCA initiation and aggressiveness. The nine genes 
discussed underwent AS and revealed an intercorrelation with 
cholangiocarcinogenesis and progression. This information 
will serve as an opportunity to develop novel strategies for 
CCA detection and intervention. Interestingly, certain of 
the cancer‑specific variants may serve as potential targets 
for CCA prognosis including ∆2TFF2 and ∆133p53, which 
demonstrate their clinical impact on patient survival. These 
oncogenic isoforms may be used as targets for cancer 
treatment, using specific antibodies, or the construction of 
SSOs which can modulate aberrant splicing. The regulatory 
machinery, including splicing factors and regulators, 
represents alternative targets of precision strategies, 
regarding the depletion of oncogenic isoforms. Finally, this 
summarization provides new ideas for the improvement of 
CCA diagnosis and treatment. Further studies should aim 
to investigate the unclear linkages between AS and CCA to 
unlock the molecular mechanisms governing AS regulation 
in CCA development and progression.
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