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Abstract. Dipeptidyl peptidase 4 (DPP4) and α‑glucosidase 
inhibitors have been developed as anti‑diabetic agents for 
the treatment of diabetes mellitus. In the present study, the 
anti‑diabetic effects of the lupinalbin A compound isolated 
from Apios americana was investigated by measuring its 
inhibitory activity against DPP4 and α‑glucosidase. To detect 
the inhibitory effect of lupinalbin A, DPP4 and α‑glucosidase 
assays were performed in vitro. Molecular docking analysis 
was performed using AutoDock 4.2. The IC50 values of 
lupinalbin A against DPP4 and α‑glucosidase were 45.2 
and 53.4 µM, respectively. Analysis of the enzyme kinetics 
revealed that lupinalbin A interacted with the active site of 
DPP4 in a competitive manner, with an inhibition constant (Ki) 
value of 35.1±2.0 µM, whereas the lupinalbin A interaction 
with α‑glucosidase was non‑competitive, with a Ki value of 
45.0 µM. Molecular docking analysis revealed a binding pose 
between the DPP4 enzyme and lupinalbin A. Taken together, 
these data suggest lupinalbin A is more effective against DPP4 
than α‑glucosidase, with regard to its anti‑diabetic effects.

Introduction

Diabetes mellitus is a metabolic disease characterized by 
chronic hyperglycemia due to dysfunctional insulin sensitivity. 
The incidence of diabetes mellitus is predicted to double 
worldwide by 2030 compared to 2000 (1). Type II diabetes 
mellitus (T2DM) accounts ~90% of diabetic patients and is 
well‑established to be associated with low levels of physical 
activity, increased stress and obesity (2,3). Inhibition of the 
activity of various enzymes, such as α‑glucosidase, protein 
tyrosine phosphatase 1B and dipeptidyl peptidase 4 (DPP4), 
is involved in regulating blood glucose, and analysis of 

molecular docking has been used as a potential method for 
improving treatment of T2DM (4,5). In general, α‑glucosidase 
inhibitors delay the digestion and absorption of carbohydrates 
in the small intestine, alleviating postprandial hyperglycemia.

The family of DPP proteins comprises structurally homol‑
ogous enzymes, including DPP4, DPP8, DPP9 and fibroblast 
activation protein (FAP) (6). Among these, DPP4, also known 
as CD26, was first discovered in 1966 by Hopsu‑Havu and 
Glenner (7). The DPP4 enzyme is expressed in the epithelial 
cells of the liver, lung, kidney and spleen (8). In addition to its 
role in T‑cell immune responses (9), DPP4 has been previously 
shown to be involved in incretin hormone metabolism and has 
been used as a target for the treatment of diabetes mellitus 
(10,11). Effective inhibition of DPP4 is key for the development 
of natural anti‑diabetic agents.

Apios americana (A. americana) Medik is a perennial 
vine of the Leguminosae family that is frequently 
consumed by Native Americans (12). Apios tubers 
contain isoflavonoids, such as genistein, barpisoflavone A, 
2'‑hydroxygenistein, 5‑methylgenistein and 2'‑hydroxy 
genistein‑7‑O‑gentibioside (13,14); these have been shown 
to exhibit antioxidant, soluble epoxide hydrolase inhibitory 
and tyrosinase inhibitory activities, which are beneficial for 
the treatment of hypertension and diabetes (14‑18). In our 
previous study, it was reported that lupinalbin A isolated 
from A. americana exhibits anti‑inflammatory effects 
in LPS‑induced RAW264.7 cells (19). Lupinalbin A has 
also been shown to possess an inhibitory effect against 
α‑glucosidase (20). Nonetheless, the mechanism underlying 
the inhibition of α‑glucosidase by lupinalbin A and the 
molecular interactions of lupinalbin A with DPP4 are not fully 
understood.

The aim of the present study was to propose determine 
the suitability of lupinalbin A (isolated from A. americana) 
as a potentially novel compound for management of diabetes 
mellitus, and its effects on inhibition of DPP4 and α‑glucosidase, 
by measuring the inhibitory activities and enzyme kinetics, 
as well as performing molecular docking simulation studies.

Materials and methods

General experimental procedures. Nuclear magnetic reso‑
nance experiments were performed using an ECA500 (JEOL, 
Ltd.). Mass spectra were measured using an Agilent LC‑MS 
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6100 (Agilent Technologies, Inc.). Thin‑layer chromatography 
analysis was performed using Kieselgel 60 F254 plates (Merck 
KGaA). The compound was visualized by dipping the plates 
into 10% (v/v) H2SO4 (Sigma‑Aldrich; Merck KGaA) and then 
heating at 300˚C for 30 sec using a 230‑400 mesh silica gel 
(Merck KGaA), sephadex LH‑20 (GE Healthcare) and ODS‑A 
silica gel (YMC, Co.) resins were used for open column chro‑
matography. Lupinalbin A was isolated from A. americana 
tubers, as described previously (Fig. 1) (19).

DPP4 inhibitory assay and kinetic analysis. DPP4 inhibitory 
activity was measured using a DPP(IV) inhibitor screening 
assay kit (Cayman Chemical Company) according to the 
manufacturer's protocol, with minor modifications. Briefly, 
the enzyme solution (120 µl) was dissolved in 480 µl DPP 
assay buffer [20 mM Tris‑HCI (pH 8.0), 100 mM NaCl and 
1 mM EDTA] and was used as the enzyme solution. The 
substrate, 5 mM H‑Gly‑Pro conjugated with aminometh‑
ylcoumarin (AMC), was prepared in the same buffer. The 
assay procedure was performed according to the manufac‑
turer's protocols, and is briefly described as follows: Diluted 
assay buffer (30 µl) and diluted enzyme solution (10 µl) were 
added to the 96‑well plates containing 10 µl solvent (blank) 
or solvent‑dissolved test compounds (0‑75 µM). The reac‑
tion was initiated by adding 50 µl diluted substrate solution, 
the reaction was measured using fluorometric determina‑
tion (excitation wavelength, 350 nm; emission wavelength, 
450 nm) using a plate reader (Tecan Group, Ltd.) every 
30 sec for 20 min at 37˚C. Sitagliptin, which was included 
in the kit, was used as a positive control. Various concentra‑
tions (0‑75 µM) of the enzyme inhibitor (tested compounds) 
and substrate were used in the reactions, the initial rate of 
reaction (v) based on free AMC, and the release rate were 
calculated using Lineweaver‑Burk [1/v vs. 1/(substrate)] or 
Dixon plots [1/v vs. (inhibitor)].

α‑glucosidase inhibitory assay. The α‑glucosidase inhibi‑
tory assay was performed as described previously (21), with 
minor modifications. A total of 130 µl enzyme (0.16 U/ml) in 
phosphate buffer [0.1 mM phosphate (pH 6.8)], 20 μl methanol 
(control) or ligand (0.062‑1 mM) in methanol and 50 µl 
substrate (2.5 mM p‑nitrophenyl‑α‑D‑glucopyranoside) were 
mixed in a 96‑well plate. After starting each reaction at 37˚C, 
p‑nitrophenol was quantified using a UV‑vis spectrophotom‑
eter at 405 nm. Acarbose (20 µl) provided as ready to use in 
the kit was used as a positive control.

Molecular docking. The molecular simulations for the inter‑
action between the inhibitors and enzyme were generated 
using AutoDock software version 4.2 (The Scripps Research 
Institute). The 3D structure of the ligand was built and mini‑
mized using MM2 in Chem 3D Pro (version 14.0). The flexible 
bonds of the ligand were assigned with AutoDockTools. The 
3D structure of DPP4 (PDB ID: 5T4E) was obtained from 
Research Collaboratory for Structural Bioinformatics 
Protein Data Bank after substrates were removed from the 
original enzyme. The grid for docking was formed using X, 
Y and Z axes, all of which were 180 units in length. Default 
settings were used for docking, except for the Lamarckian 
genetic algorithms (run 50) and maximum number of evalu‑

ations (long). The results of the molecular simulation were 
prepared using LigPlot and Chimera software (22).

Statistical analysis. All inhibitory assays were performed in 
triplicate. Data are presented as mean ± standard deviation, 
and were analyzed using SigmaPlot (Systat Software Inc.) 
or GraphPad Prism version 6 (GraphPad Software Inc.). 
Differences were compared using a one‑way ANOVA followed 
by a post‑hoc Dunnett's multiple comparison test. P<0.05 was 
considered to indicate a statistically significant difference.

Results

Inhibition of DPP4 and α‑glucosidase activities by lupi‑
nalbin A. To investigate the inhibitory effect of lupinalbin A, 
the inhibitory activity of lupinalbin A against DPP4 and 
α‑glucosidase were measured. Results showed that lupi‑
nalbin A inhibited DPP4 activity in a time‑ and dose‑dependent 
manner (Fig. 2A and B). The IC50 values of lupinalbin A against 
DPP4 and sitagliptin (positive control) were 45.2±0.8 µM and 
70.7±4.3 nM, respectively (Table I). Furthermore, the IC50 
values of lupinalbin A against α‑glucosidase and acarbose 
(positive control) were 53.4±1.2 and 240.5±2.1 µM, respec‑
tively.

Evaluation of enzyme kinetics. To determine whether lupi‑
nalbin A inhibits DPP4 and α‑glucosidase by interacting with 
the active site of these enzymes, the enzyme kinetics of DPP4 
and α‑glucosidase were examined. An association between 
lupinalbin A and the enzyme substrate was confirmed using 
the Lineweaver‑Burk plot, and the inhibition constant (Ki) 
was determined using a Dixon plot. The slope and X‑axis of 
lupinalbin A changed in a dose‑dependent manner, whereas 
the Y‑axis was intersected at only one point (Fig. 2C). This 
suggests that lupinalbin A competitively suppressed the 
activity of DPP4. Analysis of α‑glucosidase kinetics using 
the Lineweaver‑Burk plot showed that the slope and Y‑axis of 
lupinalbin A changed in a dose‑dependent manner, whereas 
the line only intersected the X‑axis at one point, indicating 
non‑competitive inhibition (Fig. 3A). According to the Dixon 
plot, the Ki values of lupinalbin A for DPP4 and α‑glucosidase 
were 35.1 and 45.0 µM, respectively, indicating that lupinalbin A 
was a competitive inhibitor of DPP4 and a non‑competitive 
inhibitor of α‑glucosidase (Table I; Figs. 2D and 3B).

Molecular docking simulation of lupinalbin A with DPP4. 
Molecular docking simulations are used to facilitate the devel‑
opment of enzyme inhibitors (23,24), determine the binding 

Figure 1. Structure of lupinalbin A isolated from Apios Americana.
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Table I. Inhibitory activities of lupinalbin A on DPP4 and α‑glucosidase.

 DPP4 α‑glucosidase
 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
Compound IC50, µMa Binding mode (Ki, µM)a IC50, µMa Binding mode (Ki, µM)a

Lupinalbin A 45.2±0.8 Competitive, (35.1±2.0)   53.4±1.2 Non‑competitive (45.0±4.1)
Sitagliptinb 70.7±4.3 nM  ‑
Acarbosec ‑  240.5±2.1

aData are presented as the mean ± standard deviation. bPositive control for DPP4. cPositive control for α‑glucosidase. DPP4, dipeptidyl peptidase 
4; Ki, inhibition constant.

Figure 2. Enzyme kinetic analysis of DPP4 on the lupinalbin A. (A) Progression curves of DPP4 inhibition by lupinalbin A. (B) Inhibitory activity of the 
lupinalbin A on DPP4. (C) Lineweaver‑Burk plot and (D) Dixon plot showing the inhibition of lupinalbin A. DPP4, dipeptidyl peptidase 4; RFU, relative 
fluorescence units; V, velocity; S, substrate.

Figure 3. Inhibitory activity of lupinalbin A on α‑glucosidase. (A) Lineweaver‑Burk plot and (B) Dixon plot of the inhibition of lupinalbin A. V, velocity; S, 
substrate.
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position of a ligand in an enzyme, and identify key amino 
acids that participate in ligand‑receptor binding (25,26). 
Molecular docking was performed in the present study to set 
up a grid containing the activity site based on the results of 
the enzyme kinetic study. The binding pose of a ligand with 
a receptor, as determined using AutoDock, was suggested at 
the lowest energy values. Thus, lupinalbin A (1) occupied the 
right site next to the active site and a small portion of the 
active site (Fig. 4A), with a binding energy of ‑7.32 kcal/mol. 
Lupinalbin A formed four hydrogen bonds with Tyr48 (2.81 Å), 
Asp545 (2.71 Å), Trp563 (3.28 Å) and Trp629 (2.87 Å) resi‑
dues surrounding the active site of DPP4 (Fig. 4B). A total 
of 9 amino acids of the receptor participated in hydrophobic 
interactions to maintain a stable binding pose with the 
ligand (Fig. 4C). Moreover, the B‑ring of lupinalbin A inter‑
acted two π‑π stacking (5.48 and 5.72 Å) with the indole ring 
of tryptophan (Fig. 4D).

Discussion

In the present study, the potential anti‑diabetic effects of lupi‑
nalbin A, which is isolated from A. americana, were determined 
using enzyme assays. The IC50 value of isoflavonoids isolated 
from the leaves of Smilax china L. against DPP4 is greater 

than 100 µM (4); thus, the DPP4 inhibitory activity of lupi‑
nalbin A (IC50, 45.2 µM) is stronger than these isoflavonoids. 
Moreover, Bai et al (20) reported that lignans and flavonoids 
isolated from mung beans exhibited inhibitory activity against 
α‑glucosidase, and lupinalbin A, a type of isoflavonoid was 
shown to be more potent in their study compared with the 
present study, with an IC50 value of 10.73±2.01 µM. Taken 
together, lupinalbin A isolated from A. americana inhibited 
the activity of DPP4 and α‑glucosidase.

Through enzyme kinetics analysis, the ability of lupi‑
nalbin A to inhibit the activity of different enzymes was 
determined. Fan et al (27) showed that phenolic compounds, 
including resveratrol and flavone, competitively inhibited 
DPP4 activity, which is consistent with the results of the present 
study. The binding force of flavone is stronger than that of lupi‑
nalbin A; the Ki value of flavone is 18.6 µM (23). Generally, 
the lower the Ki value, the stronger the binding of the enzyme 
and inhibitor; thus, an inhibitor with a lower Ki value is more 
effective than an inhibitor with a higher Ki value. On the basis 
of the Ki values of lupinalbin A for DPP4 and α‑glucosidase, 
lupinalbin A binds to DPP4 more strongly to α‑glucosidase. 
Thus, the DPP4 inhibitory activity of lupinalbin A is stronger 
than its α‑glucosidase inhibitory activity, which is consistent 
with the results of the enzyme inhibition assay.

Figure 4. Predicted molecular docking model of lupinalbin A with DPP4. (A) X‑ray structure of linagliptin (yellow) and docking poses of lupinalbin A (green) 
with DPP4. (B) Green text (Tyr48, 2.81 Å; Asp545, 2.71 Å; Trp563, 3.28 Å; Trp629, 2.87 Å) represent the amino acids involved in forming hydrogen bonds. 
(C) Schematic representations of hydrophobic interactions and (D) π‑π interactions between lupinalbin A and the receptor. DPP4, dipeptidyl peptidase 4.
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In conclusion Lupinalbin A, a compound isolated from 
A. americana, exhibited anti‑diabetic activity, and more 
potently inhibited DPP4 compared with α‑glucosidase. As 
a result, it is suggested that lupinalbin A may be one of the 
active components underlying the anti‑diabetic effects of 
A. americana.
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