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Abstract. The present study aimed to visualize human motor 
neuronal activation in the brain using fluorine-18 fluorode-
oxyglucose positron emission tomography (FDG‑PET), and to 
develop an FDG‑PET procedure for imaging neuronal activa-
tion. A male volunteer underwent 20 min periods of rest and 
motor activation, whilst being assessed using FDG‑PET on 
two consecutive days. The motor task, which involved repeti-
tively grasping and releasing the right hand, was performed 
during the initial 5 min of the activation period. Subtraction 
of the rest period signal from the activation PET images was 
performed using the subtraction ictal single‑photon emission 
computed tomography co‑registered to magnetic resonance 
imaging method. The subtracted image detected activation of 
the contralateral (left) primary motor cortex, supplementary 
motor area, and ipsilateral (right) cerebellum. In the present 
study, FDG-PET detected significantly increased motor‑asso-
ciated activation of the brain in a subject performing a motor 
task.

Introduction

The performance of voluntary motor tasks is associated with 
the primary motor cortex of the brain (1). Furthermore, cerebral 
blood flow and glucose metabolism have been demonstrated to 
positively correlate with neuronal processes during neuronal 
transmission in a healthy brain (2).

Numerous methods, including computed tomography (CT), 
magnetic resonance imaging (MRI), and functional MRI have 
previously been used to image the motor cortex; however, limi-

tations of these approaches are associated with their inability 
to fully capture a functional view of the motor cortex, instead 
only capturing the anatomical structure or blood flow (3,4).

Fluorine‑18 fluorodeoxyglucose positron emission tomog-
raphy (FDG PET) detects FDG accumulation in tissue that 
is proportional to the amount of glucose metabolism, and 
has been in use for >35 years (5) in the study of neurology, 
oncology and cardiology  (6). FDG‑PET is regarded as an 
effective imaging method for visualizing glucose metabolism 
during cerebral blood flow (7) and is currently the most accu-
rate method for the evaluation of human brain metabolism (8); 
however, studies that have investigated the use of FDG‑PET 
for imaging motor cortex activation are limited. 

The present study aimed to demonstrate human motor‑asso-
ciated activation of the brain using FDG‑PET, and to develop 
an FDG‑PET protocol for imaging neuronal activation.

Materials and methods

Patient. A healthy 30‑year‑old right‑handed male volunteered 
to participate in the present study at Korea University Anam 
Hospital (Seoul, Republic of Korea). Written informed consent 
was obtained from the patient. This study was approval by the 
ethics committee of the Korea University Anam Hospital.

Imaging time and motor task. On day 1, following a 20‑min 
preparatory rest period, the patient underwent FDG‑PET anal-
ysis. On day 2, after performing 20 min of motor activation, 
a second session of FDG‑PET was conducted (Fig. 1). The 
motor task, which involved repetitively grasping and releasing 
the right hand, was performed during the initial 5 min of the 
motor activation period.

Image acquisition. Images were obtained using a PET‑CT 
scanner (Gemini TF; Philips Healthcare, Cleveland, OH, USA). 
The volunteer fasted for ≥6 h, and serum glucose levels were 
<180 mg/dl, prior to scanning. Image acquisition (20 min) was 
initiated 20 min following intravenous injection of 341 MBq 
fluorine‑18 FDG. CT scans were obtained followed by PET 
emission scans for 1 min per scan. The PET unit had an axial 
field of view of 18 cm and a spatial resolution of 4.4 mm. A 
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low‑dose CT scan was obtained for attenuation correction and 
localization, with a 16‑slice multidetector helical CT unit, using 
the following parameters: 120 kVp; 50 mA; 0.75 sec rotation 
time; 0.75 mm slice collimation; 2 mm scan reconstruction 
with a reconstruction index of 2 mm; 60 cm field of view; and 
a 512x512 matrix. PET data were reconstructed iteratively 
using the 3 dimensional Row Action Maximum Likelihood 
Algorithm (9), with low‑dose CT data‑sets for attenuation 

correction. Maximum intensity projection, cross sectional 
views, and fusion images were generated and reviewed.

Image processing. Images were transformed and quantified 
using statistical probabilistic anatomical mapping, which 
is a well‑established method for displaying functional brain 
images (10‑12). Images were spatially normalized using the 
Statistical Parametric Mapping (SPM) 2 software (http://

Figure 1. Schematic description of the 2‑day F‑18 FDG‑positron emission tomography procedure. F‑18 FDG, fluorine‑18 fluorodeoxyglucose. 

Figure 2. Subtraction positron emission tomography image: Axial view. Enhanced uptake of fluorine‑18 fluorodeoxyglucose was observed in the supplemen-
tary motor area and ipsilateral cerebellum.
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Figure 3. Subtraction positron emission tomography image: Coronal view. Enhanced uptake of fluorine‑18 fluorodeoxyglucose was observed in the supple-
mentary motor area and ipsilateral cerebellum.

Figure 4. Subtraction positron emission tomography image: Sagittal view. Enhanced uptake of fluorine‑18 fluorodeoxyglucose was observed in the supple-
mentary motor area and ipsilateral cerebellum.
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www.fil.ion.ucl.ac.uk/spm/), according to the Korean stan-
dard templates provided by the Korean Structural Statistical 
Probabilistic Anatomical Map, implemented in Matlab 
6.5 (13), which is based on the Korean standard brain atlas (13). 
Normalized images were smoothed by convolution using a 
Gaussian filter with a 16 mm full width at half maximum. The 
pixel count of PET images was normalized to the mean pixel 
count of grey matter in each PET image (rest and activation), 
which was measured using a gray matter probability map 
(provided by SPM), according to the following equation:

∑i,j,kIi,j,k x Gi,j,k/∑i,j,kGi,j,k

Where Ii,j,k and Gi,j,k are the pixel counts of the PET images 
and the probability map of gray matter at the (Ii,j,k)th pixel, 
respectively. The Digital Imaging and Communications in 
Medicine (.dcm) format was used for all of the data files in the 
present study, and was converted to the Analyze format using 
MRIcro software (www.mricro.com; Chris Rorden, Columbia, 
SC, USA). 

Image analysis. The subtraction method was used to analyze 
the images  (11,14). Subtraction of the rest period signal 
from the activation PET images was performed using the 
Subtraction ictal single‑photon emission computed tomog-
raphy co‑registered to MRI method (14). A metabolic change 
map was calculated using the following equation:

(Iic‑Iin)/Iin x 100(%)

Where Iic and Iin are the normalized rest and activated PET 
images, respectively. Metabolic changes >20% were consid-
ered significant. Changes in the metabolic map containing 
significant pixels were superimposed onto the T1 MRI 
template (15,16). 

Results and Discussion

A significantly increased uptake of F‑18 FDG was observed 
in the contralateral (left) primary motor cortex (M1), 
supplementary motor area (SMA), and ipsilateral (right) 
cerebellum (Figs. 2‑4). Increased glucose uptake (metabolic 
connectivity) indicates increased neuronal activity  (17). 
Therefore, the results shown in Figs. 2‑4 indicated increased 
neuronal activity in the contralateral (left) primary motor 
cortex (M1), supplementary motor area (SMA) and ipsilateral 
(right) cerebellum. An increased number of regional blood 
flow connections between the M1, SMA and cerebellum 
during motor tasks has previously been demonstrated using 
MRI (18,19). 

The results of the present study align with results from 
previous MRI studies  (18,19), and demonstrated increased 
glucose metabolism in the contralateral M1, SMA, and 
ipsilateral cerebellum, using FDG‑PET. In the process of 
neuronal activation, regional metabolic connections precede 
regional blood flow connections, which are typically measured 
by fMRI (20). The present results show that it is possible to 
detect metabolic connectivity using FDG‑PET. Furthermore, 
the present study established a simple imaging procedure for 

FDG‑PET, thus suggesting that FDG‑PET may be considered 
a reliable neuronal imaging method for analyzing glucose 
metabolism in the brain. 

In summary, the present study used PET to demonstrate 
increased human motor‑associated activation of the brain 
following administration of FDG, in a subject performing 
a motor task. In addition, a two‑day protocol was estab-
lished for acquiring detailed images of neuronal activation. 
FDG‑PET‑based metabolic connectivity studies may be useful 
for investigating brain neuronal activation, particularly in 
motor neuronal activation.
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