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Abstract. Infertility is a significant problem for human 
reproduction, with males and females equally affected. 
However, the molecular mechanisms underlying male infer-
tility remain unclear. Spermatogenesis is a highly complex 
process involving mitotic cell division, meiosis cell division 
and spermiogenesis; during this period, unique and extensive 
chromatin and epigenetic modifications occur to bring about 
specific epigenetic profiles in spermatozoa. It has recently 
been suggested that the dysregulation of epigenetic modifica-
tions, in particular the methylation of sperm genomic DNA, 
may serve an important role in the development of numerous 
diseases. The present study is a comprehensive review on the 
topic of male infertility, aiming to elucidate the association 
between sperm genomic DNA methylation and poor semen 
quality in male infertility. In addition, the current status of 
the genetic and epigenetic determinants of spermatogenesis in 
humans is discussed.
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1. Introduction

Epigenetics is the study of genomic structural modifications 
that affect gene expression without altering the underlying 
nucleotide sequence (1‑3). Epigenetic mechanisms involved 
in the regulation of gene expression include the regulation of 
non‑coding RNA, chromatin remodeling, DNA methylation and 
histone modifications (4,5). Of these mechanisms, DNA meth-
ylation has been implicated in numerous biological functions, 
such as the development of spermatozoa and early embryos, 
and the repression of endogenous retrotransposons, while it 
also has a wide range of effects in gene expression (2,3,6). The 
dysregulation of DNA methylation has previously been asso-
ciated with various human disorders, and has been shown to 
increase the risk of fertilization failure, dysfunction in embryo-
genesis, perinatal mortality, congenital abnormalities, preterm 
birth and low birth weight (7‑11). The present review assesses 
the significance of DNA methylation in spermatogenesis in 
order to elucidate the association between the dysregulation of 
DNA methylation and male infertility. This may provide a basis 
for the prevention and treatment of male infertility, as well as 
permit the evaluation of the epigenetic quality of sperm in order 
to reduce the risk of epigenetic diseases in cases where concep-
tion is performed by assisted reproductive technology (ART).

2. DNA methylation

Epigenetic mechanisms are critical regulators of gene 
expression during spermatogenesis that may influence male 
fertility (12‑14). Cytosine, a key DNA base, is methylated at 
the position, typically in the context of CpG dinucleotides. 
The methylation of constitutive heterochromatic and promoter 
regions is generally associated with reduced gene transcrip-
tion (Fig. 1A) (15‑18). Therefore, DNA methylation is a type 
of epigenetic modification that can effectively promote gene 
silencing (Fig. 1B). The methyl group for this chemical modi-
fication of the DNA is donated by S‑adenosyl‑L‑methionine 
(SAM) (17‑22), and the methylation reaction is catalyzed by 
members of the DNA methyltransferases (DNMT) family, 
which are classified into the following three types in mammals: 
DNMT1, DNMT2 and DNMT3. It was demonstrated that 
DNMT1, DNMT3a and DNMT3b are robustly expressed in 
the early embryonic stage; however, the biological functions of 
DNMT2 remain elusive (23‑25).
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DNMT1, which is the most abundant DNMT in mammalian 
cells (26‑30), predominantly methylates hemimethylated CpG 
dinucleotides in the genome, and is considered to be the key 
maintenance methyltransferase during cell division (29‑33). 
The DNMT2 gene is the most highly conserved of the 
methyltransferases in eukaryotes, and has been identified 
in organisms that exhibit DNA methylation, as well as in 
those that do not (26‑30). DNMT3a and DNMT3b primarily 
perform de novo methyl transfer reactions via interactions 
with transcriptional repressors. They are considered to differ 
mechanistically due to inherent differences in their cata-
lytic domains, and it has been suggested that DNMT3a is 
distributive while DNMT3b is processive (31‑36). The third 
significant member in the DNMT3 family is DNMT3L, which 
is considered to be required for the establishment of maternal 
imprints in oocytes (37‑41), and has also been shown to be 
expressed during spermatogenesis (37,42‑44). SAM, as the 
methyl donor for DNMTs, is formed through the addition 
of adenosine triphosphate to methionine, which is catalyzed 
by the methionine adenosyltransferase enzyme. Subsequent 
to the methyl transfer reaction, SAM is converted into 
S‑adenosyl‑L‑homocysteine, which acts as a potent inhibitor 
of DNMTs and histone methyltransferases (45‑49).

3. DNA methylation and spermatogenesis

Germ cell development is a highly ordered process initiated 
during the growth of a fetus and is completed in adults. The 
epigenetic modifications occurring in germ cells are crucial 
for the function of germ cells and for embryonic development 
after fertilization (50,51). Previous studies have demonstrated 
that male germ cells in adult mice have a highly distinct 
epigenetic pattern, characterized by a unique genome‑wide 
pattern of DNA methylation (42,52-55). The methylation status 
of testicular DNA is highly distinct, displaying an eight times 
higher number of hypomethylated loci, as compared with 
somatic tissues (51,56‑58). Alterations in DNA methylation 
serve a crucial role in establishing an epigenetic state during 

the early stages in the development of germ cells, allowing for 
transcription to occur at the later stages (Fig. 2) (59-61).

Genome‑wide methylation studies have demonstrated that 
the epigenomes of sperm cells and of somatic cells are signifi-
cantly different; however, the sperm epigenome is very similar 
to that of embryonic stem cells (61-65). Using restriction land-
mark genomic scanning technology, DNA methylation was 
detected for chromosomes 6, 20 and 22 in spermatozoa, with 
numerous sites in sperm and somatic cells exhibiting varying 
degrees of methylation (66‑68). The extent of methylation in 
sperm cells was significantly increased, as compared with 
fibroblasts (>20%), liver cells (10%), and CD4+ and CD8+ 
lymphocytes (5%) (68,69). DNA hypermethylation is associ-
ated with gene silencing. By contrast, hypomethylation is 
associated with gene expression. In sperm cells, promoters of 
developmental genes are highly hypomethylated. A previous 
gene ontology analysis demonstrated that hypomethylation in 
mature sperm cells promoted developmental transcription and 
signaling, which is bound by self-renewal mesh transcription 
factor of human embryonic stem cells, including OCT4, SOX2, 
NANOG, KLF4 and FOXD3 protein. Furthermore, recurrent 
regions of the sperm genome reportedly demonstrate high 
degrees of methylation, while transposons manifest weaker 
methylation. Whether other mechanisms exist requires further 
analysis (65,69,70).

The paternally expressed human gene, MEST/PEG1, is 
demethylated in the fetus and remains unmethylated throughout 
all stages of sperm development in the adult life (37,71). By 
contrast, in male germ cells, the H19 gene is methylated prior 
to meiosis at the spermatogonial stage of development (37,72). 
Reinitiation of mitotic division of male germ cells during 
puberty coincides with an upregulation of DNMT1 within 
the spermatocytes. During the early stage of meiosis, 
DNMT1 levels in spermatocytes are increased; however, the 
level of the DNMT1 enzyme is reduced in pachytene stage 
spermatocytes (37,73). In previous studies, the knockout of 
DNMT1 resulted in a lack of DNA methylation in the fetus, 
which, due to a lack of genomic imprinting, led to apoptosis 

Figure 1. Characteristics of DNA methylation (Nasu,2011). (A) Cytosine is converted to 5'‑methylcytosine by the action of DNMTs. (B) Cytosine is typically 
methylated in the context of CpG dinucleotides, and the methylation of constitutive heterochromatic and promoter regions is generally associated with gene 
silencing. SAM, S‑adenosylmethionine; SAH, S‑adenosylhomocysteine; DNMT, DNA methyltransferase.

  A

  B



EXPERIMENTAL AND THERAPEUTIC MEDICINE  12:  1973-1979,  2016 1975

of spermatagonial cells  (65,67,70,74). However, DNMT1 
heterozygous mice had a normal reproductive ability, thus 
suggesting that DNMT1 in the heterozygous state is sufficient 
to maintain the required DNA methylation pattern (30,75,76). 
DNMT3a expression in the testis is upregulated prior to birth 
and during early postnatal life, whereas DNMT3b expression 
is downregulated during embryonic development and upregu-
lated postnatally (15‑20). Notably, mice lacking DNMT3L 
have smaller testes, and a negligible number of spermatozoa 
by adulthood, resulting in sterile animals. In a previous study, 
DNMT3L was expressed only in germ cells, and the expres-
sion pattern was observed in males and females (77). However, 
in males, DNMT3L was initially detected at 12.5 days after 
fertilization of the egg, and the levels peaked at 15.5 days and 
remained upregulated until birth (77‑79). However, the expres-
sion of DNMT3L was significantly 79 following birth and was 
found to be low in mature germ cells (36-38), suggesting an 
association between DNMT3L and DNA methylation. In addi-
tion, the inactivation of DNMT3L was shown to cause mitotic 
delays, chromosome synapsis errors and the ceasing of sper-
matogenesis at the zygotene stage of mitosis, thus inhibiting 
the maturation of germ cells (46-48).

In certain individuals with deletion mutations in DNMT 
genes, a proportion of the paternal differentially methylated 
regions (DMRs) were normal, which suggested that DNMTs 
have some functional duplication (77‑79). Notably, oocytes 
lacking DNMT3L were able to undergo normal meiosis and 
exhibited methylation of repeat sequences; however, a signifi-
cant lack of methylation‑mediated imprinting existed only in 
the female imprinting positions (48-52). This difference in the 
effects of gene knockout between males and females raises 
the question of the divergent regulatory mechanisms between 
genders (65,69).

4. DNA methylation and genomic imprinting

Genomic imprinting is an epigenetic mechanism resulting in 
parental expression of certain genes resulting in the altera-
tion of gene transcription, while the actual gene sequence 
remains unchanged (56,80,81). DNA methylation regulates 
genomic imprinting, thus resulting in only one inherited copy 
of the relevant imprinted gene being expressed in an embryo. 
The majority of imprinted genes contain DMRs, in which 

methylation differs between the paternal and maternal alleles. 
DNA methylation‑mediated genomic imprinting is established 
during gametogenesis, prior to fertilization (59,60).

By the time the primitive streak has formed during embry-
onic development [embryonic day 7.5 (E7.5)], the primordial 
germ cells (PGCs) carry the paternally and maternally 
inherited imprinting patterns  (82). This DNA methylation 
pattern is maintained in PGCs, but is rapidly lost around E8, 
when PGCs begin to migrate towards the developing gonad. 
Upon their arrival at the genital ridge (between E10.5 and 
E11.5), global demethylation of mouse PGCs begins in order 
to remove their inherited imprinting pattern (61,62). At this 
time, PGCs continue to proliferate and undergo differentia-
tion into distinct male and female germlines (at ~E12.5), while 
the DNA methylation pattern of somatic cells is maintained. 
By E13‑14, demethylation of the DNA is completed and male 
gametes are arrested at the prophase stage of mitosis (59,60). 
It has previously been suggested that mitosis arrest may be 
required following demethylation, since the replication of 
unmethylated DNA has been associated with an increased 
risk of unrepressed retrotransposon transposition, which may 
lead to mutations. Therefore, in sperm cells, DNA methyla-
tion‑mediated genomic imprinting is initiated prenatally, 
prior to meiosis, and is completed by the pachytene phase of 
postnatal spermatogenesis (61,62,65,69,70,74).

5. DNA methylation and male infertility

Infertility is a major public health concern that has a signifi-
cant social, psychological and economic impact, with an equal 
proportion of males and females affected (83‑85). Male infer-
tility is associated with genetic, environmental and numerous 
other factors (86,87). The underlying mechanisms are unknown 
in 70% of male infertility cases, even in cases where the causes 
of male infertility are clear. Therefore, further studies are 
required in order to elucidate the mechanisms underlying male 
infertility. In male factor infertility, epigenetic modifications 
may serve a pivotal role by regulating male germ cell develop-
ment and maintenance (88-92). Thus, abnormal imprinting as 
a result of DNA methylation dysregulation may be associated 
with male infertility.

Previous studies have demonstrated that disturbed sper-
matogenesis is associated with incorrect imprinting  (74). 

Figure 2. Methylation reprogramming in male germ cells (Dean, 2005). PGCs in mice become demethylated early in development. Re‑methylation is initi-
ated in pro‑spermatogonia in male germ cells, and fertilization signals the second stage of methylation reprogramming. Thereafter, the paternal genome is 
demethylated by an active mechanism immediately following fertilization. PCGs, primordial germ cells.
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An analysis of semen from infertile men has shown that 
14.4% of anomalous patriarchal methylation occurred in H19 
and gene trap locus 2 gene  (93-95). In spermatozoa from 
oligozoospermic men, the occurrence of hypermethylation 
at several maternal DMRs or hypomethylation of H19 and 
intergenic‑DMR was increased, particularly in patients with 
ejaculation volumes of <10x106/ml (96-99). In men with oligo-
asthenoteratozoospermia, methylation was markedly reduced 
at all CpGs, reaching statistical significance in subgroups 
with a sperm concentration of <10x106/ml. These findings 
suggest that abnormal DNA methylation‑mediated genomic 
imprinting is associated with oligoasthenoteratozoospermia 
and oligozoospermia (100-107).

In patients with male infertility, paternally and maternally 
imprinted gene methylation abnormalities have previously 
been reported. In oligospermic patients, a low methylation 
or unmethylation pattern at the H19 imprinted gene has been 
associated with hypermethylation at the MEST imprinted 
gene, as well as a reduced sperm quality and decreased 
DNA methylation‑mediated imprinting, as compared with 
fertile men (108,109).

DNA methylation markers have been detected in the sper-
matogonia stage; therefore, the abnormal DNA methylation 
patterns observed in infertile men may be due to the failure 
of re‑methylation in spermatogonia or alterations to methyla-
tion maintenance in spermatocytes, sperm cells or the mature 
sperm cell. In addition, abnormal DNA methylation may be 
associated with the abnormal activation of DNMTs (110-114).

Alterations in DNA methylation‑mediated genomic 
imprinting have been observed more frequently in men with 
oligoasthenoteratozoospermia and oligozoospermia  (115). 
However, whether methylation defects in imprinted genes will 
affect the development and growth processes of ART offspring 
remains to be elucidated. If epigenetic modifications are a 
key factor in the maturation of sperm cells, alterations in the 
epigenetic patterns of infertile men may provide a reasonable 
explanation for complications associated with ART, including 
low birth weight, premature births, congenital abnormali-
ties, an increased perinatal mortality rate and pregnancy 
complications (116,117). Embryos obtained from patients with 
hypospermatogenesis and almost complete hypomethylation 
at the H19 DMR following ART all exhibited developmental 
arrest (117,118). However, patients with oligoasthenoterato-
zoospermia with a partial hypomethylation of H19 presented 
a reduced fertilization rate following intracytoplasmic sperm 
injection (ICSI). A previous analysis of the methylation status 
of ICSI infants with a low birth weight revealed hypermethyl-
ation at the MEST gene in one of the infants included in the 
study (119,120).

6. Conclusion

In conclusion, DNA methylation has been closely associated 
with male infertility (66,121). Understanding the mechanisms 
underlying DNA methylation is particularly important in 
order to develop therapeutic strategies for male genital system 
diseases caused by abnormal sperm DNA methylation. Studies 
on the mechanisms underlying the regulation of DNA meth-
ylation during spermatogenesis are still in their initial stages. 
Numerous issues remain, such as transgenerational inheritance 

of human epigenetic genes and the association between DNA 
methylation and other epigenetic factors, while it is unclear 
whether the risk of abnormal methylation‑induced embryonic 
diseases has a threshold or is continuously increasing process.
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