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Abstract. Chronic antibody-mediated rejection (ABMR) is 
a major cause of the transplant renal interstitial fibrosis and 
transplanted kidney epithelial cell transdifferentiation is one 
of the main mechanisms. The transforming growth factor 
(TGF)-β1/integrin-linked kinase (ILK) signaling pathway has a 
significant role in the epithelial‑mesenchymal transition (EMT) 
of renal tubular epithelial cells; however, the molecular mecha-
nisms of this process have remained elusive. The present study 
confirmed that Akt and glycogen synthase kinase (GSK)‑3β, as 
TGF-β1 downstream signaling factors, are involved in fibrotic 
processes caused by kidney disease, which, however, has been 
rarely reported in the kidney transplant field. Based on the 
Banff 2009 standard, transplanted kidney specimens were clas-
sified according to the fibrosis level. The results showed that 
with the reduction of the interstitial fibrosis level, E‑cadherin 
expression was gradually reduced, while α-smooth muscle actin 
expression progressively increased. The expression of Akt and 
GSK‑3β in normal human kidney tissue was not obvious but 
showed a marked increase with the aggravation of the inter-
stitial fibrosis level, which confirmed the occurrence of EMT 
during the fibrosis process, and that phosphorylated (p)‑Akt 
and GSK‑3β have an important role in the EMT process in the 
transplanted kidney. A correlation analysis of p‑Akt, GSK‑3β, 
TGF-β1 and ILK suggested that overexpression of p-Akt and 

GSK‑3β may induce and mediate the transdifferentiation of 
renal tubular epithelial cells to myofibroblasts and that this 
proceeds via TGFβ1/ILK signaling pathways.

Introduction

Chronic renal allograft dysfunction (CRAD), defined as an 
irreversible decline of renal allograft function, is one of the 
main factors reducing long-term survival of renal allograft 
tissue (1-3). At present, chronic active antibody-mediated rejec-
tion (ABMR) is generally considered as an inducing factor 
contributing to CRAD. The pathological mechanism of CRAD 
can be expressed as interstitial fibrosis and tubular atrophy 
(IF/TA), which is closely related to the decline of renal allograft 
function. In addition, epithelial-mesenchymal transdifferentia-
tion (EMT) has an important role in the process of interstitial 
fibrosis (4). Studies on animal models and in vitro experiments 
have shown that the EMT participates in the progression of 
interstitial fibrosis in renal allografts with CRAD. It has been 
indicated that integrin-linked kinase (ILK) and transforming 
growth factor (TGF)-β1 are the key factors inducing EMT (5). 
Furthermore, a previous study by our group identified a positive 
correlation between the expression of ILK and the development 
of CRAD (6). However, to date, no study has assessed the roles 
of Akt (also known as protein kinase B) and glycogen synthase 
kinase (GSK)‑3β in the development of EMT in renal allografts 
with ABMR. Therefore, immunohistochemical staining and 
semi-quantitative methods were applied in the present study to 
assess the levels of phosphorylated (p)‑Akt, GSK‑3β, TGF-β1, 
ILK, E-cadherin and α‑smooth muscle actin (SMA). The results 
suggested that the Akt/GSK‑3β signaling pathway is involved in 
the development of EMT induced by TGF-β1 and ILK in human 
renal allografts with ABMR, and therefore participates in the 
pathogenesis of IF/TA inducing ABMR.

Materials and methods

Patients and samples. Samples were collected from 38 renal 
transplant recipients who were pathologically diagnosed with 
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chronic active ABMR. Renal allograft biopsy was performed 
in all of the recipients due to upward-creeping serum creati-
nine or resistant proteinuria from June 2010 to January 2012. 
The diagnosis of chronic ABMR was made according to 
the Banff 2009 classification (7,8). Among the 38 cases of 
ABMR, 22 were male (age, 44±9 years) 16 were female (age, 
40±9 years). The duration after kidney transplantation was 
1-9 years (mean, 4 years). For the immunosuppressant proto-
cols, 20 recipients received cyclosporine + mycophenolate 
mofetil + prednisone therapy, 17 received tacrolimus + myco-
phenolate mofetil + prednisone therapy and one recipient 
received sirolimus + mycophenolate mofetil + prednisone 
therapy. Prior to renal biopsy, all of the renal allografts were 
detected by color ultrasound and the blood drug concentration 
was determined to further exclude acute rejection, calcineurin 
inhibitor renal toxicity, ureteral obstruction/regurgitation and 
other renal diseases. All of the recipients had matching blood 
groups to donors and two or more loci matching with regard 
to human leukocyte antigen (HLA)-A, HLA-B and HLA-DR 
antigens. The results of the lymphocytotoxicity test were <10% 
crossmatch (negative) and panel reactive antibody scores were 
<10%. Nine specimens of renal tissue used in the present study 
came from nine normal donor kidneys from healthy donors, 
verified by pre‑transplant biopsy and clinical follow‑up of the 
recipients.

Histological examination. The paraffin-embedded kidney 
specimens were cut into 3-µm tissue sections that were 
de‑paraffinized with xylene and hydrated with a graded series 
of ethanols (100, 96, 90 and 70%) and distilled water. Staining 
was performed according to standard histology procedures, 
including hematoxylin/eosin stain, periodic-acid schiff stain, 
masson trichrome and periodic schiff-methenamine stain. 
The slides were observed under a microscope in a blinded 
manner for inflammatory-cell infiltration in renal tissue, 
increased mesangial and extracellular matrix, proliferation of 
mesangial cells, epithelium and endothelium, adhesions and 
sclerosis, thickening of glomerular basement membranes and 
double track sign, thickening of peritubular capillary basement 
membrane, interstitial fibrosis, inflammatory cell infiltration, 
tubular atrophy and intimal thickening of arteries.

Immunohistochemical staining. The EnVision method was 
used for immunohistochemical staining. Paraffin sections 
(3-µm thickness) received routine baking and were dewaxed 
with xylene and rehydrated with a series of graded ethanols. 3% 
hydrogen peroxide was adopted to clear endogenous hydrogen 
peroxidase. Prior to immunohistochemial staining, antigen 
retrieval was performed in sodium citrate buffer in a micro-
wave (550 watts) for 15 min for the analysis p‑Akt and GSK‑3β 
and for 3x3 min for all other proteins apart from α‑SMA, for 
which no antigen retrieval was required. Samples were then 
incubated with rabbit anti-human polyclonal p-Akt antibody 
(cat. no. 9611S; 1:300 dilution; Cell Signaling Technology, 
Inc., Danvers, MA, USA), rabbit anti‑human polyclonal 
GSK‑3β antibody (cat. no. BA-0906; 1:100 dilution; Wuhan 
Boshide Co., Wuhan, China), mouse anti-human monoclonal 
ILK antibody (cat. no. SC‑20019; 1:200 dilution; Santa Cruz 
Biotechnology, Inc., Dallas, TX, USA), rabbit anti‑human 
TGF-β1 antibody (cat. no. RAB‑0238; working solution; 

Fuzhou Maixin Co.), mouse anti‑human E‑cadherin antibody 
(cat. no. MAB‑0589; working solution; Fuzhou Maixin Co.) 
or mouse anti-human α‑SMA antibody (cat. no. MAB‑0003; 
working solution; Fuzhou Maixin Co.) overnight at 4˚C. After 
washing with PBS, anti‑rabbit (cat. no. KIT‑9902; Fuzhou 
Maixin Co.) was added and the sections were incubated for 
30 min at 37˚C. Subsequent to washing with PBS, antibodies 
were visualized with diaminobenzidine and counterstained 
with hematoxylin prior to microscopic observation.

Staining was considered positive when pale yellow, 
brownish yellow and yellowish-brown particles occurred 
in tissue. Immunohistochemical staining in each group was 
compared with that in a control group with PBS as a substitute 
for the primary antibody. At the same time, the deposition of 
immunoglobulin (Ig)A, IgG, IgM, C3, C4, C1q and C4d were 
routinely tested for renal biopsy.

Pathological classification. According to the Banff 2009 clas-
sification (7) the pathological manifestation of renal allografts 
with ABMR can be classified as: i) C4d positive, coexistence 
of circulating anti-donor antibodies; ii) IF/TA and thickening 
of the glomerular basement membrane. The severity grade 
of IF/TA was divided into three groups: IF/TA-I, mild IF/TA 
(<25% cortex involved); IF/TA-II, moderate IF/TA (26-50% 
cortex involved) and IF/TA-III, severe IF/TA (>50% cortex 
involved), which may include nonspecific sclerosis of blood 
vessels and glomeruli, but is certainly accompanied by tubular 
interstitial lesion.

Semiquantitative analysis. Semiquantitative analysis was 
performed with a DMR+Q550 renal color patho-image 
analysis system (Leica, Wetzlar, Germany). 10 discontinuous 
tubulointerstitial fields (magnification, x400; excluding glom-
eruli, veins and arteries) were randomly selected in different 
regions including renal cortex, cortex-medulla juncture and 
medullary interstitium. More than 60 tubules were involved 
in each part. Positive results were indicated by yellow-stained 
cells. ImagePro Plus software version 6.0.0.260 (Media 
Cybernetics, Rockville, MD, USA) was utilized to determine 
the ratio of the positive to total area (area of tubular lumens 
excluded). The relative amount of each type of protein in the 
renal tubulointerstitium was represented as the mean value.

Statistical analysis. All experimental data were expressed as 
the mean ± standard deviation. SPSS 13.0 statistical software 
(SPSS, Inc., Chicago, IL, USA) was adopted for data analysis. 
Differences in the levels of p‑AKT, GSK‑3β, ILK, TGF-β1, 
E-cadherin and α‑SMA were analyzed by single‑factor 
analysis of variance. Pearson's linear correlation analysis was 
used for two-variable correlation. P<0.05 was considered to 
indicate a statistically significant difference.

Results

Histological examination. By observation under the light 
microscope, the pathological manifestations of ABMR in 
renal allografts of the recipients were identified to include 
focal interstitial diffuse fibrosis, different degrees of tubular 
atrophy and disordered arrangements, accompanied by plasma 
cell and lymphocyte invasion (Fig. 1A).
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Grouping based on IF/TA grades. According to the Banff 
2009 classification, recipients diagnosed with ABMR were 
divided into three groups: Group IF/TA-I (12 cases), IF/TA-II 
(14 cases) and IF/TA-III (12 cases), based on the grade of 
IF/TA (I, II or III).

C4d deposition. In normal renal tissue, C4d deposition 
is present in the glomerular mesangium and segmental 
endarterium, while it is rarely shown in glomerular and peri-
tubular capillaries. However, in the renal allograft tissue with 
chronic active ABMR, diffuse and linear deposition of C4d 
was obvious in endothelial cells of peritubular capillaries 
(Fig. 1B).

GSK‑3β expression. Weak GSK‑3β expression was present 
in normal renal tissue. However, in the renal allograft tissue 
with chronic active ABMR, GSK‑3β expression was markedly 
increased. The expression was mainly located in the endochy-
lema of tubular cells and was enhanced with increasing IF/TA 
pathological grade (Fig. 2).

p‑Akt levels. Normal renal tissue was almost negative for 
p-Akt. In comparison, p-Akt was obviously increased in renal 
allograft tissue with chronic active ABMR. The expression 
was mostly located in the endochylema of tubular epithelial 
cells and interstitial cells and tended to be enhanced with 
increases in the IF/TA grade (Fig. 3).

ILK expression. ILK expression in normal renal tissue was 
low or absent; however, it was markedly increased in renal 
allograft tissue with ABMR and was mainly located in the 
endochylema of tubular epithelial cells and interstitial cells. 
Atrophic renal tubules showed the highest ILK staining. 
With the increase of the pathological grade of IF/TA, ILK  
expression became stronger and its scope became wider 
(Fig. 4).

TGF‑β1 expression. TGF-β1 expression in normal renal tissue 
was mainly located in the endochylema of tubular epithelial 
cells and was weakly positive. In renal allograft tissue, TGF-β1 
expression in tubular epithelial cells, interstitial cells and the 
interstitial matrix area was in positive. Moreover, the expres-
sion was increased in the IF/TA-I group and showed further 
increases in the IF/TA-II and IF/TA-III groups (Fig. 5).

E‑cadherin expression. In normal renal tissues, E-cadherin 
expression was mainly located in the basement membrane of 
glomeruli and tubular epithelial cells but not in the endochy-
lema of tubular cells. However, in renal allograft tissue with 
ABMR and IF/TA grade I, E-cadherin expression started to 
reduce. In addition, in the IF/TA grade II group, E-cadherin 
expression was markedly reduced and only few cells expressed 
E-cadherin in the IF/TA grade III group (Fig. 6).

α‑SMA expression. In normal renal tissue, α‑SMA was only 
expressed in the muscle layer of vascular smooth muscle and 
randomly expressed in the renal interstitium. In renal allografts 
with ABMR, the expression increased along with the increase 
of the IF/TA grade. α‑SMA expression was widely distributed 
in the renal interstitium. Furthermore, α‑SMA expression was 
also found in renal tubules with lumen damage and tubular 
atrophy (Fig. 7).

Association between the levels of p‑Akt, GSK‑3β, ILK, TGF‑β, 
α‑SMA and the IF/TA grade. Along with the increase of 
the IF/TA grade, the levels of p‑Akt, GSK‑3β, ILK, TGF-β1 
and α‑SMA in renal allografts with ABMR were obviously 
increased compared to those in normal renal tissue (P<0.001). 
By contrast, E‑cadherin was significantly reduced (P<0.001) 
(Table I).

Correlation among the expression of p‑Akt, GSK‑3β, ILK, 
TGF‑β and α‑SMA. Linear correlation analysis showed that 
the expression of p-Akt was positively correlated with ILK, 
TGF-β and α‑SMA (r=0.871, 0.912 and 0.878, respectively; 
P<0.001). The expression of GSK‑3β was also positively 
correlated with p-Akt, ILK, TGF-β1 and α‑SMA (r=0.828, 
0.793, 0.874 and 0.781 respectively; P<0.001). However, the 
expression of p‑Akt and GSK‑3β was negatively correlated 
with E‑cadherin expression (r=‑0.849 and ‑0.781; P<0.001).

Discussion

CRAD is the main factor affecting the long-term survival of 
renal allografts and its pathological manifestation is interstitial 
fibrosis and tubular atrophy. Factors leading to chronic renal 
allograft dysfunction can be divided into immune factors 
and non-immune factors, and chronic active ABMR is the 
main immune factor contributing to CRAD (8). However, the 

Figure 1. Interstitial fibrosis/tubular atrophy. (A) Histological changes of renal allograft tissue with chronic active antibody-mediated rejection (hematoxylin 
and eosin staining; original magnification, x100). (B) C4d diffuse staining in glomerular and peritubular capillaries (EnVision assay; original magnification, 
x200).
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pathogenesis of tubular EMT caused by ABMR has remained 
to be fully elucidated. Consequently, it is of great significance 
to investigate the pathogenesis of EMT in renal allograft 
recipients undergoing ABMR.

EMT is a key factor leading to interstitial fibrosis. It refers 
to a process by which epithelial cells lose their phenotype 
under pathogenesis and transdifferentiate into the phenotype 
of mesenchymal cells. E-cadherin has an important role in 
maintaining epithelial cell polarity and function. The loss of its 
expression and the damage of epithelial integrity are the early 
events in the EMT process of tubular epithelial cells. α‑SMA is 
a marker protein of myofibroblasts. It is not expressed in normal 

renal tissue but in renal allografts with CRAD. The EMT can 
be stimulated by various inflammatory factors and cell factors, 
leading to the transformation of epithelial cells into myofibro-
blasts and expression of α‑SMA. Therefore, α‑SMA is a marker 
of the EMT, which occurs once α‑SMA is expressed (9). The 
EMT is involved in the pathogenesis ABMR and associated 
mechanisms may offer approaches for preventing CRAD.

In the present study, p‑Akt and GSK‑3β were present at 
low levels in normal renal tissue and were markedly increased 
along with the aggravation of IF/TA, the major pathological 
manifestation of ABMR. The present study also showed that 
p‑Akt, GSK‑3β, TGF and ILK were positively correlated with 

Figure 3. Levels of phosphorylated Akt in renal tubules and interstitium. (A) Normal control; (B) group IF/TA-I; (C) group IF/TA-II; (D) group IF/TA-III 
(EnVision assay; original magnification, x200). IF/TA‑I‑III, interstitial fibrosis/tubular atrophy grade I-III according to Banff 2009 criteria.

Figure 2. Expression of glycogen synthase kinase-3β in renal tubules and interstitium. (A) Normal control; (B) group IF/TA-I; (C) group IF/TA-II; (D) group 
IF/TA‑III (EnVision assay; original magnification, x200). IF/TA‑I‑III, interstitial fibrosis/tubular atrophy grade I-III according to Banff 2009 criteria.
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α‑SMA expression but negatively correlated with E‑cadherin 
expression, suggesting that all of these factors participate in the 
EMT process associated with ABMR leading to the develop-
ment of CRAD.

TGF-β1, as the most important factor causing renal 
interstitial fibrosis, is the only cell factor that induces and 
maintains the EMT process in renal tubules. It has been 
suggested that the effect of TGF-β1 to induce renal inter-
stitial fibrosis may be accomplished by inducing EMT (10). 
Furthermore, ILK has been suggested to be an important 
downstream factor of TGF-β1. Through interacting with inte-
grin b1 and b3, ILK can participate in various transduction 
pathways of cell signals, including Akt and GSK‑3β, and has 

a significant role in adjusting cellular adhesion, apoptosis, 
growth and removal as well as extracellular matrix accumula-
tion, and is closely associated with renal disease progression. 
Furthermore, TGF-β1 expression in tubular epithelial cells 
is induced by ILK and the expression of these two factors 
is inter-dependent with regard to time and dosage (11). A 
study using a rat kidney transplantation model showed that 
ILK is correlated with tubular interstitial fibrosis and mono-
nuclear cell invasion (12). Li et al (5) suggested the existence 
of the TGF-β1/Smad/ILK/EMT axis, in which TGF-β1 
induces ILK to be expressed in tubular epithelial cells by 
means of Smad signaling, and if transduction pathways were 
restrained, ILK expression and the EMT process induced by  

Figure 4. Expression of integrin-linked kinase in renal tubules and interstitium. (A) Normal control; (B) group IF/TA-I; (C) group IF/TA-II; (D) group 
IF/TA‑III (EnVision assay; original magnification, x200). IF/TA‑I‑III, interstitial fibrosis/tubular atrophy grade I-III according to Banff 2009 criteria.

Figure 5. Expression of transforming growth factor-β1 in renal tubules and interstitium. (A) Normal control; (B) group IF/TA-I; (C) group IF/TA-II; (D) group 
IF/TA‑III (EnVision assay; original magnification, x200). IF/TA‑I‑III, interstitial fibrosis/tubular atrophy grade I-III according to Banff 2009 criteria.
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TGF-β1 were effectively prevented. However, by restraining 
other transduction pathways downstream of TGF-β1, ILK 
expression and the EMT process were not completely 
inhibited. Therefore, ILK markedly influences the EMT 
process (13).

The results of a previous study by our group suggested 
the trend that the expression of TGF-β1 and ILK in allograft 
recipients with ABMR was markedly increased along with 
the aggravation of the pathological grade of IF/TA (6). In 
the present study, the expression of ILK in the ABMR group 
was found to be positively correlated with that of TGF-β1 
and α‑SMA, while being negatively correlated with that 
of E-cadherin, which indicates that ILK affects the EMT 

process of renal allograft tissue and furthermore triggers 
tubular interstitial fibrosis.

Akt is a serine/threonine kinase with a relative molecular 
weight of 57 kDa and participates in important cellular signal 
transduction pathways. Numerous growth factors and mouse 
eotaxins have been found to take effect through the Akt 
signaling pathway. Akt can be activated by the phosphoryla-
tion of its ser473 residue and take part in cellular growth, 
differentiation and apoptotic processes. Subsequent to Akt 
activation, TGF-β1 and ILK are activated and have a role in 
stimulating cellular growth and reducing apoptosis (14,15). 
p-Akt is also a key factor in the EMT process (16). A study 
on EMT in type II diabetes-associated renal disease in rats 

Figure 6. Expression of E-cadherin in renal tubules and interstitium. (A) Normal control; (B) group IF/TA-I; (C) group IF/TA-II; (D) group IF/TA-III (EnVision 
assay; original magnification, x200). IF/TA‑I‑III, interstitial fibrosis/tubular atrophy grade I-III according to Banff 2009 criteria.

Figure 7. Expression of α-smooth muscle actin in renal tubules and interstitium. (A) Normal control; (B) group IF/TA-I; (C) group IF/TA-II; (D) group 
IF/TA‑III (EnVision assay; original magnification, x200). IF/TA‑I‑III, interstitial fibrosis/tubular atrophy grade I-III according to Banff 2009 criteria.
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showed that TGF-β1 was able to activate Akt and that the 
activation level of Akt was positively correlated with TGF-β1 
expression (14). In the kidney under chronic hypoxia caused 
by biliverdin, the EMT process can also be induced though 
the Akt signaling pathway (17). A study on tumor progression 
found that ILK stimulates the EMT process of tumor cells 
via Akt (18). Subsequent to activation, Akt stimulates nuclear 
factor Snail and inhibits the expression of cell adhesion 
molecule E-cadherin. Thus, the activation of Akt lays a solid 
foundation for the EMT process (19).

The present study showed that in renal allograft tissues, 
the expression of Akt increased along with the aggravation of 
the pathological grade of IF/TA and that there was a positive 
correlation between the levels of p-Akt and the individual 
expression of TGF-β1, ILK and α‑SMA, while there was a 
negative correlation between p-Akt and E-cadherin, indi-
cating that Akt takes part in the EMT process associated with 
ABMR resulting in CRAD. The results of the present study 
suggested that Akt signal transduction is necessary in the 
EMT process induced by TGF-β1 and ILK in human renal 
allografts with ABMR, and that the induction of the EMT 
process by Akt may proceed via the TGF-β1/ILK signaling 
pathway.

In studies on diseases rather than kidney transplants, 
p-Akt was shown to influence the downstream signaling 
molecule GSK‑3β. GSK‑3β is a serine/threonine kinase, 
which is commonly expressed in eukaryotic organisms. 
GSK‑3β is mainly expressed in the nucleus and affects the 
activation status of downstream molecules via phosphoryla-
tion. Besides, GSK‑3β is an important substrate of p-Akt. 
Phosphorylation of Akt deactivates GSK‑3β and studies 
have shown that GSK‑3β, as a major component of the Akt 
pathway, has a role in the EMT process (14).

Gong et al (20,21) have verified that GSK‑3β controls 
the inflammatory reaction in allografts undergoing CRAD 
and showed that GSK‑3β was highly expressed in damaged 
renal tubules. Increased levels of deactivated p‑GSK‑3β were 
negatively correlated with interstitial fibrosis and tubular 
atrophy. Akt and ILK can trigger the activation of nuclear 
transcription factor β-catenin and activator protein (AP)-1 
by GSK‑3β, which makes them enter the nucleus, activate 
nuclear transcription processes, causes the reduction of 
epithelial cell adhesion, increases the synthesis of matrix 
metalloproteinase (MMP)-9 and α‑SMA and finally affects 
the induction and progression of the EMT process (22,23). In 

a rat model of diabetes-associated renal disease, it was found 
that the inhibition of the GSK‑3β signaling pathway promotes 
the EMT process induced by high glucose and delays the 
pathological change of interstitial fibrosis (24). In addition, 
ILK can also lead to the enhancement of AP-1 and β-catenin 
activation and the multiplication of cells by phosphorylating 
and thereby deactivating GSK‑3β (25,26). Enhancement of 
AP-1 leads to increased expression and secretion of MMP-2, 
breaks the integrity of the glomerular basement membrane, 
increases the invasion of cells and stimulates the transforma-
tion of epithelial cells in the basement membrane to cause 
interstitial fibrosis (27). Through the nuclear factor (NF)‑κB 
signaling pathway, GSK‑3β can also influence the emergence 
of inflammatory factors and take part in the inflammation 
reaction, as the EMT process is triggered in renal tubules 
after NF-κB activates mononuclear cells (28). Studies on 
tubular epithelial cells have found found that inhibition 
of GSK‑3β phosphorylation may restrain the activation 
of NF-κB p65 and consequently prevent the expression of 
inflammatory factors and the emergence of the inflammatory 
reaction (20,21).

In a previous study by our group, it was demonstrated that 
in renal allograft tissue, the expression of GSK‑3β increases 
with the aggravation of the pathological grade of IF/TA (29). 
Furthermore, in the present study, the expression of GSK‑3β 
was found to be positively correlated with the individual 
levels of ILK, p-Akt and α‑SMA in renal allografts with 
ABMR, which indicated that GSK‑3β participates in the 
EMT process induced by ILK. However, the necessity of Akt 
to induce ABMR also indicates the possible connection point 
between ILK and GSK‑3β. Based on the results of the present 
study, it is suggested that tubular fibrosis may be blocked by 
interference with Akt/GSK‑3β signaling.

TGF-β1 stimulates the phosphorylation of Akt and helps 
LY294002, an inhibitor of the phosphoinositide-3 kinase/Akt 
pathway, to effectively reduce the expression of collagen I 
induced by TGF-β1 (30). The GSK‑3β inhibitor lithium 
oxide improved the restoration of renal tissue and damaged 
epithelial cells through Wnt signaling (31). Troglitazone may 
improve tubular EMT caused by high glucose in experi-
mental models (22).

Based on the results of previous studies by our and other 
groups as well as the present study, it is summarized that in 
renal allograft tissue undergoing ABMR resulting in CRAD, 
ILK, together with the downstream signaling molecules 

Table I. Positive area ratio of p‑Akt, GSK‑3β, ILK, TGF-β1, E-cadherin and α‑SMA in the renal tubules and tubulointerstitium 
of normal controls and renal transplant recipients with antibody-mediated rejection.

Group N p‑Akt GSK‑3β ILK TGF-β1   E-cadherin α‑SMA

Normal control 9 2.99±1.18 11.12±6.56 1.67±0.80 4.01±1.16 30.71±7.36 0.34±0.33
IF/TA‑I 12 27.21±7.80a 31.60±6.85a 14.20±5.93a 23.44±4.18a 12.04±3.47a 12.09±4.39a

IF/TA‑II 14 45.72±7.18a,b 42.08±10.63a,b 23.94±5.90a,b 41.14±6.21a,b 7.49±1.83a,b 26.25±5.39a,b

IF/TA‑III 12 61.97±9.28a-c 57.42±11.43a-c 37.92±8.12a-c 64.82±8.56a-c 3.27±1.36a-c 32.16±5.06a,b,d

aP<0.01, compared to normal controls; bP<0.01, compared to IF/TA-I group; cP<0.01, compared to IF/TA-II group; dP<0.05, compared to 
IF/TA‑III group. ILK, integrin‑linked kinase; p‑Akt, phosphorylated Akt; GSK, glycogen synthase kinase; TGF, transforming growth factor; 
SMA, smooth muscle actin; IF/TA‑I‑III, interstitial fibrosis/tubular atrophy grade I-III according to Banff 2009 criteria.
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Akt and GSK‑3β, may take part in EMT and interstitial 
fibrotic processes induced by TGF‑β1. As a key mediator, 
ILK connects the upstream TGF-β1 with the downstream 
factors Akt and GSK‑3β. It is suggested that early detection 
of ILK, Akt and GSK‑3β expression in renal allograft tissues 
provides a basis for clinical intervention by means of inhib-
iting the expression or activity of the above factors, which 
may represent a novel strategy to extend the survival of renal 
allograft tissues.
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