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Abstract. Skeletal muscle atrophy is often caused by catabolic 
conditions including fasting, disuse, aging and chronic diseases, 
such as chronic obstructive pulmonary disease. Atrophy 
occurs when the protein degradation rate exceeds the rate of 
protein synthesis. Therefore, maintaining a balance between 
the synthesis and degradation of protein in muscle cells is a 
major way to prevent skeletal muscle atrophy. Ginsenoside Rg1 
(Rg1) is a primary active ingredient in Panax ginseng, which 
is considered to be one of the most valuable herbs in traditional 
Chinese medicine. In the current study, Rg1 was observed to 
inhibit the expression of MuRF‑1 and atrogin‑1 in C2C12 
muscle cells in a starvation model. Rg1 also activated the 
phosphorylation of mammalian target of rapamycin (mTOR), 
protein kinase B (AKT), and forkhead transcription factor 
O, subtypes 1 and 3a. This phosphorylation was inhibited by 
LY294002, a phosphatidylinositol 3‑kinase inhibitor. These 
data suggest that Rg1 may participate in the regulation of the 
balance between protein synthesis and degradation, and that 
the function of Rg1 is associated with the AKT/mTOR/FoxO 
signaling pathway.

Introduction

Muscle atrophy is characterized by an increase in protein 
degradation and reduction in protein synthesis. It is associated 
with a number of human diseases and catabolic conditions, 
including fasting, disuse, aging, cancer, neuromuscular 
diseases, stroke, chronic obstructive pulmonary disease, 
chronic heart failure, HIV‑acquired immunodeficiency 
syndrome and sepsis  (1‑5). Muscle volume shrinking and 
muscle weakness induced by muscular dystrophy typically 
disrupt and adversely affect the life of patients (3,6‑8). There-
fore, it is essential to understand the mechanism by which 
skeletal muscle atrophy is regulated.

A large amount of protein hydrolysis has previously 
been identified to occur during muscle atrophy and the ubiq-
uitin‑proteasome system (UPS) has been demonstrated to be 
involved in this process (9‑14). In this system, the proteins are 
first conjugated into multiple molecules of ubiquitin. The 26S 
proteasome then recognizes and degrades the ubiquitinated 
proteins (15,16). Multiple enzymes regulate the protein ubiq-
uitination; these include E1, the ubiquitin‑activating enzyme, 
E2, the ubiquitin conjugating enzyme and E3 ubiquitin 
ligases (17,18). E3 ubiquitin ligases serve a major role in the 
specificity of protein degradation, because the specific binding 
between the protein substrate and E3 occurs prior to the reac-
tion with ubiquitin (18,19).

It has been demonstrated that the insulin‑signaling pathway 
is involved in the inhibition of UPS (20). In this pathway, the 
phosphorylation of insulin receptor substrate is stimulated 
when insulin binds its receptor. Phosphatidylinositol 3‑kinase 
(PI3K), an intracellular intermediate, is recruited to phos-
phorylate a serine/threonine kinase, protein kinase B (AKT) 
during this process. AKT then phosphorylates the forkhead 
box class O transcription factors, subtype 1 and 3a (FoxO1 and 
FoxO3a), which prevents the translocation of these factors into 
the nucleus from the cytoplasm. Subsequently, the expression 
of two muscle‑specific E3 ubiquitin ligases, muscle atrophy 
F‑box (atrogin‑1/MAFbx) and muscle ring finger protein 
(MuRF‑1) is inhibited (21‑23).

Accumulating evidence suggests that the PI3K/AKT‑depe
ndent signaling pathway of mammalian target of rapamycin 
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(mTOR) serves a key role in protein synthesis (24‑26). Activa-
tion of mTOR enhances the activity of eukaryotic initiation 
factor 4E‑binding protein 1 and ribosomal protein S6 kinase 
and, ultimately, increases protein synthesis (11,26‑28).

One of the most valuable herbs in traditional Chinese 
medicine is Panax ginseng. The main bioactive components 
in P. ginseng are considered to be ginsenosides, a class of 
steroidal glycosides. The ginsenoside ingredients in P. 
ginseng vary, depending on the seasons, extraction methods 
and cultivating soils (29,30). Ginsenoside Rg1 is one of the 
main ingredients in P. ginseng. It has been demonstrated 
that ginsenoside Rg1 has an anti‑inflammatory effect on 
human skeletal muscle during exercise (31). Yu et al (32) 
have also demonstrated that the antioxidant defense system 
against exercise‑induced oxidative stress is strengthened by 
oral supplements of Rg1 in rat skeletal muscle. However, the 
function of Rg1 in the resistance to muscle atrophy remains 
unclear (33‑38).

In the present study, Rg1 was observed to increase the 
viability of C2C12 muscle cells following starvation by inhib-
iting the expression of MuRF‑1 and atrogin‑1. PI3K dependent 
phosphorylation of AKT/FoxO and mTOR was involved in 
this process, indicating that Rg1 may resist muscle atrophy 
by balancing the protein degradation and protein synthesis 
pathways.

Materials and methods

Cell culture. C2C12 mouse myoblast cells (American Type 
Culture Collection, Manassas, VA, USA) were maintained in 
Dulbecco's modified Eagle's medium (DMEM) supplemented 
with 10% (v/v) fetal bovine serum (FBS), 100 µg streptomycin 
and 100 units penicillin (all Gibco; Thermo Fisher Scientific, 
Inc. Waltham, MA, USA). The cells were maintained in the 
growing medium at 37˚C in a humidified 5% CO2 atmosphere. 
At confluence, myoblasts were induced to fuse by changing 
the medium to medium supplemented with 2% horse serum 
(NQBB International Biological Corp., Hong Kong, China). 
The cells were maintained in 2% horse serum before the 
experiments. In starvation studies, the medium of the differ-
entiated myotubes was replaced with serum‑free medium for 
48 h of incubation.

MTT cell activity assay. C2C12 cells were cultured in 
96‑well plates (5x104 cells/plate) and were incubated for 24 h 
in DMEM containing 0.1% FBS. After differentiation of the 
C2C12 cell line to form myotubes, control group cells did not 
receive any further treatment in addition to the incubation in 
medium supplemented with horse serum medium for 48 h. 
Following treatment with Rg1 (10‑4, 10‑3, 10‑2 and 10‑1 mM; 
Shanghai Yuanye Biotechnology Co., Ltd., Shanghai, China) 
for 48 h, the starvation model was induced by incubation of 
the cells with serum‑free basal medium for 48 h. Myotubes 
were incubated with MTT solution (Invitrogen; Thermo 
Fisher Scientific, Inc.) for 4 h at 37˚C. Non‑reduced MTT 
was removed by aspiration and the formazan crystals were 
dissolved in dimethyl sulfoxide (150 µl/well) for 30 min at 
37˚C. The formazan was quantified using spectroscopy using 
a microplate reader (Bio‑Rad Laboratories, Inc., Hercules, 
CA, USA) at a wavelength of 490 nm.

Western blot analysis. To assess the expression and phos-
phorylation levels of AKT, mTOR, FoxO1 and Fox3a, and the 
expression of atrogin‑1 and MuRF‑1, C2C12 cells were cultured 
in 6‑well plates (1x106 cells/plate) after the differentiation 
of the C2C12 cell line to form myotubes. For the specific 
inhibitor experiments, following pretreatment with the PI3K 
inhibitor, LY294002 (Merck KGaA, Darmstadt, Germany), at 
25 µM for 30 min, the myotubes were cultured in serum‑free 
medium in the absence or presence of Rg1 (10‑4, 10‑3, 10‑2 and 
10‑1 mM) for 5, 10, 30, 60 min and 24 h at 37˚C in a humidified 
5% CO2 atmosphere. For immunoblotting, cells were washed 
with ice‑cold phosphate‑buffered saline twice. Subsequently, 
the cells were immersed in 1 ml precooled RIPA solution and 
PMSF (both Beijing Solarbio Science & Technology Co., Ltd., 
Beijing, China) was added into the RIPA solution, at a final 
concentration of 1 mM, for protein extraction. The pyrolysis 
liquid was transferred to an EP tube that was precooled on ice 
for 30 min. Following centrifugation at 13,000 x g for 10 min 
(4˚C), the quantity of protein in the supernatants was detected 
using a bicinchoninic acid protein assay kit (Beijing Solarbio 
Science & Technology Co., Ltd., Beijing, China). The lysates 
were collected 60 min later for western blot analysis.

The protein samples were separated by SDS‑PAGE (6‑8%) 
and were transferred onto polyvinylidene fluoride membranes 
(EMD Millipore, Billerica, MA, USA). The amount of protein 
used per lane was 20 µg. Following blocking with 5% non‑fat 
milk for 1  h at room temperature, the membranes were 
incubated with primary antibodies specific for AKT (9272), 
mTOR (2972), FoxO1 (2880), FoxO3a (2497), phospho‑AKT 
Ser473 (p ‑AKT; 4051),  phospho‑mTOR Ser2448 
(p‑mTOR; 2971), phospho‑FoxO1 thr24 (p‑FoxO1; 9464), 
phospho‑FoxO3a thr32 (p‑FoxO3a; 9464; all Cell Signaling 
Technology, Inc., Danvers, MA, USA), atrogin‑1 (ab74023), 
MuRF‑1 (ab172479; both Abcam, Shanghai, China) and 
β‑actin (141205; ZSGB‑BIO Technology Co. Ltd. Beijing 
China) overnight at 4˚C. All primary antibodies were used at 
a dilution of 1:1,000. Blots underwent a total of three 8‑min 
washes with Tris‑buffered saline with 0.1% Tween‑20 and 
were then incubated with a secondary, immunoglobulin G 
antibody (1:8,000; 14708; Cell Signaling Technology, Inc.) at 
room temperature for 1 h. The membranes were washed as 
described above and the bands were scanned using the Tanon 
5500 fully automatic digital gel image analysis system (Tanon 
Science & Technology Co., Ltd., Shanghai, China).

Statistical analysis. All data are expressed as the mean ± stan-
dard deviation. Statistical analyses were performed using 
analysis of variance and Tukey's post hoc tests using Sigma-
Plot version 10.0 software (Systat Software, Inc., San Jose, CA, 
USA) and P<0.05 was considered to represent a statistically 
significant difference.

Results

Ginsenoside Rg1 increases the viability of mouse C2C12 
myoblast cells in the starvation model. The viability of 
myoblast C2C12 cells decreases when they are cultured during 
starvation (39). The results of the present study are consistent 
with this, as a reduction in the viability of the cells cultured in 
serum‑free medium was observed compared with that in the 
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control group (Fig. 1). However, treatment with Rg1 increased 
the viability of the starved C2C12 cells in a dose‑dependent 
manner. Treatment with 10‑1 mM Rg1 restored the viability of 
cells to that of the cells in the normal medium. The results of 
the present study suggest that ginsenoside Rg1 promoted the 
viability of mouse myoblast cells in the starvation model.

Rg1 inhibits the expression of atrogin‑1 and MuRF‑1 in 
C2C12 cells in the starvation model. In order to assess how 
Rg1 increased the viability of C2C12 cells in the starvation 
model, the present study examined its effects on the expres-
sion of MuRF1 and atrogin‑1 (Fig. 2). The results indicated 
that treatment with 10‑2 mM Rg1 had the largest significant 
inhibitory effect on atrogin‑1 and MuRF1 expression in 
C2C12 cells (P<0.05). However, significantly reduced expres-
sion was also observed in the 10‑4 and 10‑3 mM Rg1 treatment 
groups (P<0.05). The expression of atrogin‑1 and MuRF1 
was less strongly inhibited by treatment with 10‑1 mM Rg1. 
Therefore, 10‑2 mM was considered to be the optimal dose of 
Rg1 for inhibiting the expression of atrogin‑1 and MuRF1 and 
increasing the viability of C2C12 cells in the starvation model.

Rg1 stimulates PI3K‑dependent phosphorylation of AKT and 
FoxO in C2C12 cells in the starvation model. The inhibition 
of atrogin‑1 and MuRF1 expression is primarily caused by 
the phosphorylation of the transcription factors, AKT and 
FoxO (40). The present study therefore assessed whether Rg1 
is able to change the phosphorylation levels of AKT and FoxO. 
The cells were treated with Rg1 at various time points (0, 5, 10, 
30, and 60 min and 24 h) for western blot analysis of targeted 
protein phosphorylations. Changes in cellular AKT phosphory-
lation appeared as early as 5 min and reached a peak at 60 min 

Figure 2. Effect of an increasing dose of Rg1 on the protein expression level 
of (A) MuRF1 and (B) atrogin‑1 in serum‑starved C2C12 cells. A significant 
dose‑dependent suppressive effect on the expression of atrogin‑1 and MuRF1 
was observed following treatment with 10‑4, 10‑3 and 10‑2 mM Rg1. When 
10‑1 mM Rg1 was used, no significant effect on the expression of atrogin‑1 
observed. Results are presented as means ± standard deviation, (n=6 for each 
group). #P<0.05 vs. the Con group; *P<0.05 vs. the SF group by analysis of 
variance and Tukey's post hoc tests. Rg1, ginsenoside Rg1; MuRF1, muscle 
ring finger protein; atrogin‑1, muscle atrophy F‑box; Con, control; SF, serum 
free; Actin, β‑actin.

Figure 1. Effect of Rg1 on cell viability. On day 4, differentiated C2C12 
myotubes were incubated for 48 h in serum‑free Dulbecco's modified Eagle 
medium. Differences in their viability, following a MTT assay were measured 
vs. an untreated control. Treatment with 10‑4, 10‑3, 10‑2 and 10‑1 mM Rg1 for 
48 h resulted in a dose‑dependent enhancement of cell viability. Results are 
presented as mean ± standard deviation (n=5). #P<0.05 vs. the Con group; 
*P<0.05 vs. the SF group. Rg1, ginsenoside Rg1; OD, optical density; Con, 
control; SF, serum free.

Figure 3. Rg1‑induced phosphorylation of AKT in C2C12 cells over 24 h. 
Differentiated C2C12 cells were cultured with serum‑free basal medium 
for 12 h prior to treatment with 10‑4 mM Rg1 in the presence or absence 
of LY294002, a PI3K inhibitor. Cells were collected 5, 10, 30 and 60 min 
and 24 h later for western blot analysis of AKT phosphorylation at Ser473. 
The western blot analysis results are presented using representative images 
and the ratio of p‑AKT to t‑AKT levels at different time points is indicated 
using combined quantitative data. Results are presented as means ± standard 
deviation, (n=4 for each group). *P<0.01 vs. 0 min by analysis of variance and 
Tukey post hoc tests. AKT, protein kinase B; p‑, phosphorylated; t‑, total; 
Rg1, ginsenoside Rg1; PI3K, phosphatidylinositol 3‑kinase; Ser, Serine; 
Actin, β‑actin.
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after the intervention before decreasing. PI3K inhibition by 
LY294002 completely abolished this Rg1‑induced phosphory-
lation at the indicated time points. The results demonstrated 
that the phosphorylation levels of AKT, FoxO1 and FoxO3a 
were all increased following the treatment of C2C12 cells in 
serum‑free medium with 10‑2 mM Rg1, whereas the expression 
levels of AKT, FoxO1 and FoxO3a were not changed by treat-
ment with Rg1 (Figs. 3 and 4).

The phosphorylation of AKT and FoxO is known to be regu-
lated by PI3K (4,41). Therefore, the present study investigated 
the effects of LY294002, an inhibitor of PI3K. C2C12 cells 
in serum‑free medium were treated with Rg1 and LY294002 

individually and together. The Rg1‑induced phosphorylation 
levels of AKT, FoxO1 and FoxO3a were significantly impaired 
by treatment with LY294002 (P<0.05; Figs. 3 and 4). These 
results indicate that Rg1 promoted the phosphorylation of 
AKT, FoxO1 and FoxO3a and was dependent on PI3K activity.

Rg1 activates the PI3K‑dependent phosphorylation of 
mTOR in C2C12 cells of the starvation model. As a down-
stream molecule of AKT, mTOR serves a key role in protein 
synthesis (42‑44). The results of the present study demon-
strated that Rg1 upregulated the phosphorylation of mTOR 
in C2C12 cells in the starvation model. The PI3K inhibitor, 

Figure 5. Effect of Rg1 on the phosphorylation of AKT and mTOR in C2C12 cells. Phosphorylation of (A) AKT and (B) mTOR following 12 h culture in 
serum‑free basal medium. Cells were incubated in the presence of 10‑2 mM Rg1 and/or the PI3K inhibitor LY294002. LY294002 was added 30 min prior to 
treatment with Rg1. The lysates were collected 60 min later for western blot analysis. Western blot analysis results are presented using representative images 
and the p‑Akt:t‑Akt and the p‑mTOR:t‑mTOR ratios are demonstrated using combined quantitative data. Results are presented as mean ± standard deviation 
(n=4 for each group). *P<0.05 vs. Rg1 group by analysis of variance and Tukey's post hoc tests. Rg1, ginsenoside Rg1; AKT, protein kinase B; mTOR, mamma-
lian target of rapamycin; PI3K, phosphatidylinositol 3‑kinase; LY294002, inhibitor of PI3K; p‑, phosphorylated; t‑, total; Actin, β‑actin.

Figure 4. Phosphorylation of FoxO1 and FoxO3a in C2C12 cells following Rg1 treatment. Levels of (A) FoxO1 and (B) FoxO3a phosphorylation in cultured 
C2C12 cells, incubated in the presence of 10‑2 mM Rg1 and/or the PI3K inhibitor LY294002. LY294002 was added 30 min prior to the addition of 10‑2 mM 
Rg1. Western blot analysis results are presented using representative images and the p‑FoxO1:t‑FoxO1 and p‑FoxO3a:t‑FoxO3a ratios are demonstrated using 
combined quantitative data. Results are presented as the mean ± standard deviation of four experiments. *P<0.05 vs. Rg1 group by analysis of variance and 
Tukey's post hoc tests. FoxO1, forkhead transcription factor O, subtype 1; FoxO3a, forkhead transcription factor O, subtype 3a; Rg1, ginsenoside Rg1; PI3K, 
phosphatidylinositol 3‑kinase; LY294002, inhibitor of PI3K; p‑, phosphorylated; t‑, total; Actin, β‑actin.
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LY294002 was observed to inhibit the mTOR phosphorylation 
induced by Rg1 (Fig. 5). This indicates that Rg1 promoted the 
PI3K‑dependent phosphorylation of mTOR in C2C12 cells in 
the starvation model.

Discussion

Rg1 has been indicated to have an effect on the function of 
human diseases via anti‑inflammatory and antioxidant defense 
systems (45‑55). The present study demonstrated that Rg1 
increased the viability of muscle cells within a starvation 
model, by inhibiting protein degradation via the AKT/FoxO 
pathway and promoting protein synthesis by the mTOR 
pathway.

The viability of muscle cells is a key factor for resistance to 
muscle atrophy. When the rate of protein degradation exceeds 
the rate of protein synthesis in adult tissues, muscle atrophy 
occurs. The ubiquitin‑proteasome pathway is one of most 
important protein degradation pathways, which is activated 
during muscle atrophy and contributes to the loss of muscle 
mass. The ubiquitin proteasome system is controlled by the 
modulation of rate‑limiting enzyme expression in proteolytic 
systems, including atrogin‑1/MAFbx and MuRF‑1 (21,56‑60).

Atrogin‑1/MAFbx and MuRF‑1 knockout mice have 
been demonstrated to be resistant to muscle atrophy induced 
by denervation (61). MuRF‑1 knockout mice are also resis-
tant to dexamethasone‑induced muscle atrophy (62), while 
knockdown of atrogin‑1 spares muscle mass in fasting animal 
models (63). Furthermore, MuRF1 ubiquitinates a number of 
structural proteins in the muscle including actin (64), myosin 
heavy chains (65,66), troponin I (67), myosin binding protein 
C and myosin light chains 1 and 2 (68). Atrogin‑1 promotes 
degradation of MyoD, a key muscle transcription factor and 
eukaryotic translation initiation factor 3, subunit F, an impor-
tant activator of protein synthesis  (69,70). Therefore, high 
expression of atrogin‑1/MAFbx and MuRF‑1 may be crucial 
factors in muscle atrophy.

The insulin‑AKT pathway negatively regulates FoxO 
transcription factors, which. were the first to be identi-
fied as critical for the process of atrophy (9). It has been 
indicated that hypertrophy may be induced in myotubes by 
the activation of protein synthesis through the AKT/mTOR 
pathway (21).

Cell apoptosis is closely related to muscle protein 
degradation in cells, and previous reports have indicated 
that apoptosis signaling is essential, and precedes protein 
degradation, in wasting skeletal muscle during catabolic 
conditions  (40,71). These previous reports highlight that 
an apoptotic signal is necessary for the activation of skel-
etal muscle protein degradation. Activation of muscle 
protein hydrolysis resulting in muscle atrophy is a complex 
process, and it has been demonstrated that there are various 
mechanisms involved, including mechanisms related to 
cell apoptosis signaling molecules  (40). A review article 
by Argilés et al (40) also demonstrated that the inhibition 
of apoptosis is able to inhibit protein degradation. In the 
condition of health, skeletal muscle protein metabolism, 
protein synthesis and protein decomposition does not require 
caspase‑3 activated protein hydrolysis. In fact, an in vitro 
experiment demonstrated that using the specific compound, 

Ac‑DEVD‑CHO (a caspase‑3 inhibitor), did not inhibit the 
degradation of proteins of the basement membrane  (71). 
However, in the case of catabolism, muscle fibers in excess 
protein degradation may use the above inhibitors to block the 
degradation of protein (71). This conclusion is also supported 
by experimental acute induced diabetes (71). In view of the 
above, under the condition of catabolism, excessive protein 
degradation is related to the activation of apoptotic protease 
caspase‑3 (40). As previously demonstrated, the inhibition of 
apoptosis may provide a potential target for a drug for the 
treatment of muscular dystrophy (71). This will be the focus 
of future research.

In conclusion, the current study observed that Rg1 treat-
ment has an inhibitory effect on Atrogin‑1/MAFbx and 
MuRF1 translation via the activation of Akt, mTOR and FoxO 
phosphorylation, which prevents starvation‑induced muscle 
cell death. The present study therefore provides a theoretical 
basis for the use of Rg1 to treat muscle atrophy in a clinical 
setting.
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