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Abstract. A number of studies indicated that apoptosis, a 
specific type of programmed cell death, contributed to the loss 
of dopaminergic neurons during progression of Parkinson's 
disease (PD). Previously, the authors of the present study 
demonstrated that apoptosis of dopaminergic neurons was 
mainly achieved via the mitochondria‑mediated apoptosis 
pathway, however, the precise molecular mechanisms remain 
to be elucidated. The present study aimed to determine whether 
mitofusin‑2 (MFN2), a mitochondrial protein, participated in 
the apoptosis of dopaminergic neurons in a cellular model of 
PD induced by rotenone. The present study demonstrated that 
the expression of MFN2 was relatively stable following treat-
ment with rotenone. Lentiviral knockdown and overexpression 
experiments for the first time, to the best of the authors knowl-
edge, revealed that MFN2 prevented rotenone‑induced cell 
death by amelioration of apoptosis. These results revealed a 
protective role of MFN2 against apoptosis in an in vitro model 
of PD and may be used to establish MFN2 as a potential 
therapeutic target for the treatment of this disease.

Introduction

As the second most common type of neurodegenerative 
disorder, Parkinson's disease (PD) is characterized by evident 
motor symptoms including rigidity, bradykinesia, resting 
tremor and postural instability  (1). These symptoms are 
mainly due to the selective dopaminergic neuron loss within 
basal ganglia structures (2).

Previous studies indicated that apoptosis, a specific type 
of programmed cell death, contributed to the loss of dopami-
nergic neurons during PD progression (3,4). In mammalian 
cells, apoptosis is closely modulated by two different signaling 
pathways including the receptor‑dependent apoptotic pathway 
and the mitochondria‑mediated apoptotic pathway  (5). 
Previously, the authors of the present study demonstrated that 
apoptosis of dopaminergic neurons was primarily achieved via 
the mitochondria‑mediated apoptotic pathway (6), however, 
the precise molecular mechanisms remain to be elucidated.

A member of the family of GTPases, mitofusin‑2 (MFN2), 
is widely distributed in numerous tissues including heart, 
kidney, liver and brain (7). At the subcellular level, MFN2 
is located predominantly in the outer membrane of the mito-
chondria, and is required for mitochondrial fusion, integrity 
and metabolism (8,9). Previous reports suggested that MFN2 
was involved in the process of mitochondria‑mediated apop-
tosis and, therefore, contributed to the pathogenesis of several 
neurological disorders including Charcot‑Marie‑Tooth disease 
(CMT), ischemic stroke and Alzheimer's disease  (10‑12). 
However, the role of MFN2 in the apoptosis of dopaminergic 
neurons during the progression of PD remains unclear.

The present study therefore aimed to assess whether 
MFN2 participates in dopaminergic neuronal apoptosis using 
a cellular model of PD induced by rotenone (13).

Materials and methods

Cell culture. A human neuroblastoma cell line SH‑SY5Y was 
purchased from American Type Culture Collection (Manassas, 
VA, USA; stock no. CRL‑2266). Cells were cultured in RPMI 
1640 medium (Thermo Fisher Scientific, Inc., Waltham, MA, 
USA) supplemented with 10% fetal calf serum (Thermo Fisher 
Scientific, Inc.) containing 2 mM glutamine, 100 U/ml peni-
cillin and 100 µg/ml streptomycin in a humidified atmosphere 
of 5% CO2 at 37˚C, as previously described (13).

Lentiviral particles and cell transduction. For MFN2 knock-
down and overexpression, lentiviral particles containing MFN2 
short hairpin (sh) RNA (cat. no. sc‑43928‑V), lentiviral particles 
encoding human wild‑type MFN2 cDNA (sc‑400536‑LAC) 
and their control lentiviral particles (cat. nos. sc‑108080 and 
sc‑437282, respectively) were purchased from Santa Cruz 
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Biotechnology, Inc. (Dallas, TX, USA). The cell transduction 
was performed as previously described (14). The efficiency of 
transduction was determined by western blotting 72 h later as 
described below.

Rotenone treatment. SH‑SY5Y cells were treated with vehicle 
(0.01% DMSO) and rotenone (Sigma‑Aldrich; Merck KGaA, 
Darmstadt, Germany; 20, 100 or 500 nM dissolved in 0.01% 
DMSO) for 12 h, as previously described (15). Subsequently, 
the cells were collected and used for the experiments described 
below.

Cell viability assay. The viability of SH‑SY5Y cells was 
assessed by the MTT method, as previously described (4). The 
SH‑SY5Y cells were seeded at a density of 1.5x105 cells/cm2 
and received the indicated treatment. Subsequently, MTT was 
added to the culture medium to reach a final concentration of 
0.5 mg/ml. After incubation at 37˚ for 4 h, the culture medium 
containing MTT was removed. DMSO was added into each 
well and the absorbance was measured at a wavelength of 
490 nm using a microplate reader.

Colorimetric assay for caspase‑3 activity. A colorimetric assay 
was carried out as previously described (3). The SH‑SY5Y cells 
were seeded at a density of 1.5x105 cells/cm2. After receiving 
the indicated treatment, the cells were harvested and lysed in 
an extraction buffer (included in the caspase‑3 colorimetric 
assay kit mentioned below). The activity of caspase‑3 was 
detected by a colorimetric assay kit (cat. no. ab39401; Abcam, 
Cambridge, UK) according to the manufacturer's protocol.

Western blotting. Western blotting was carried out as previ-
ously described  (16). The SH‑SY5Y cells were seeded at 
a density of 1.5x105  cells/cm2 and received the indicated 
treatment. Subsequently, the cells were harvested and 
lysed in an extraction buffer containing complete protease 
inhibitor cocktail. Samples with equal amounts of protein 
were separated via SDS‑PAGE on a 10% gel, transferred to 
nitrocellulose membranes and blocked with 5% bovine serum 
albumin (Thermo Fisher Scientific, Inc.). Following washing, 
membranes were incubated with a primary antibody against 
MFN2 (cat. no. ab101055; 1:500; Abcam) at 4˚C overnight, 
washed again and incubated with a horseradish peroxidase 
(HRP)‑conjugated secondary antibody (cat.  no.  A0208; 
1:1,500; Beyotime Institute of Biotechnology, Haimen, China) 
for 2  h. Following washing, protein bands were detected 
with a chemiluminescent HRP substrate and exposed to an 
X‑ray film. The signal intensity of primary antibody binding 
was analyzed using Quantity One software 4.6.2 (Bio‑Rad 
Laboratories, Inc., Hercules, CA, USA) and normalized to 
a loading control GAPDH (cat. no. sc‑47724; 1:1,000; Santa 
Cruz Biotechnology, Inc.).

Reverse transcription‑quantitative polymerase chain reaction 
(RT‑qPCR). The SH‑SY5Y cells were seeded at a density 
of 1.5x105  cells/cm2 and received the indicated treatment. 
Subsequently, total RNA was extracted from SH‑SY5Y cells 
using TRIzol reagent (Invitrogen; Thermo Fisher Scientific, 
Inc.). Equal amounts of total RNA were reverse transcribed in 
a final volume of 10 µl with random primers under standard 

conditions (described in the manufacturer's protocol) using the 
PrimeScript® RT Master Mix (Takara Biotechnology Co., Ltd., 
Dalian, China). Reverse transcription reaction was carried 
out as previously described (17). Subsequently, qPCR reac-
tions were performed with SYBR® Premix Ex Taq™ (Takara 
Biotechnology Co., Ltd.) and a specific primer (forward: 
5'‑TGG​CTC​AAG​ACT​ATA​AGC​TGC​G‑3', reverse: 5'‑GAG​
GAC​TAC​TGG​AGA​AGG​GTG​G‑3') to detect MFN2 mRNA 
expression levels. The thermo cycling conditions were the 
same as previously described (17). GAPDH (forward: 5'‑AAG​
GTG​AAG​GTC​GGA​GTC​AAC‑3', reverse: 5'‑GGG​GTC​ATT​
GAT​GGC​AAC​AAT​A‑3') was used as an internal control. 
Relative levels were determined using the 2‑ΔΔCq method (18).

Statistical analysis. Data are presented as the mean ± standard 
deviation of at least four independent experiments. Statistical 
significance was detected by one‑way analysis of variance 
followed by Turkey's post hoc test using SPSS software 18.0 
(SPSS, Inc., Chicago, IL, USA). P<0.05 was considered to 
indicate a statistically significant difference.

Results

Apoptosis contributes to the decrease in viability of SH‑SY5Y 
cells induced by rotenone. The effects of rotenone on the 
viability of SH‑SY5Y cells were assessed in the present study. 
Cells were incubated with different doses of rotenone (20, 
100 and 500 nM), and MTT assay was used to evaluate cell 
viability after 12 h. Rotenone (100 and 500 nM) significantly 
reduced the viability of SH‑SY5Y cells by 38.3% (P<0.05) 
and 45.6% (P<0.05), respectively (Fig.  1A). This result 
implied that rotenone induced cell death in a dose‑dependent 
manner. To investigate whether apoptosis contributed to the 
rotenone‑induced cell death, activity of caspase‑3, a crucial 
executioner of apoptosis, was detected using a colorimetric 
assay kit. Rotenone (100 and 500 nM) significantly increased 
caspase‑3 activity 2.91‑fold (P<0.05) and 3.47‑fold (P<0.05), 
respectively (Fig.  1B). These observations indicated that 
apoptosis contributed to the death of SH‑SY5Y cells induced 
by rotenone.

Expression of MFN2 in SH‑SY5Y cells is stable following 
treatment with rotenone. The effect of rotenone on the expres-
sion of MFN2 was detected in SH‑SY5Y cells. Treatment with 
rotenone (20, 100 and 500 nM) did not significantly affect the 
mRNA and protein expression levels of MFN2 compared with 
the vehicle control (Fig. 2A‑C). 

Knockdown of MFN2 exacerbates apoptosis induced by 
rotenone in SH‑SY5Y cells. To further investigate the role of 
MFN2 in rotenone‑induced apoptosis, a lentiviral transduc-
tion strategy was used to knock down MFN2 expression in 
SH‑SY5Y cells. The alterations in MFN2 protein expression 
levels were confirmed by western blotting (Fig. 3A and B). 
Subsequently, cells were incubated with 100 nM rotenone for 
12 h. Knockdown of MFN2 further increased the activity of 
caspase‑3 1.72‑fold (P<0.05) in SH‑SY5Y cells following treat-
ment with rotenone, compared with the control shRNA group 
(Fig. 3C). Furthermore, MFN2 knockdown further reduced 
the viability of SH‑SY5Y cells by 52% (P<0.05) following 
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treatment with rotenone, compared with the control shRNA 
group (Fig. 3D). Knockdown of MFN2 did not significantly 
affect the viability of SH‑SY5Y cells untreated with rotenone 
(data not shown). Taken together, the above results indicated 
that MFN2 knockdown exacerbated cell apoptosis caused by 
rotenone, suggesting that MFN2 may serve a protective role 
against rotenone‑induced cell apoptosis.

Overexpression of MFN2 ameliorates apoptosis induced by 
rotenone in SH‑SY5Y cells. To validate the protective role of 
MFN2 against rotenone‑induced cell apoptosis, MFN2 was 
overexpressed in SH‑SY5Y cells using a lentiviral strategy. 
The alterations in MFN2 protein levels were confirmed by 
western blotting (Fig. 4A and B). Subsequently, cells were 
incubated with 100 nM rotenone for 12 h. The increase in 
caspase‑3 activity induced by rotenone was attenuated by 
MFN2 overexpression (P<0.05; Fig. 4C). Furthermore, overex-
pression of MFN2 ameliorated the rotenone‑induced reduction 

in cell viability (P<0.05; Fig. 4D). MFN2 overexpression did 
not significantly affect the viability of SH‑SY5Y cells without 
rotenone treatment (data not shown).

Discussion

Rotenone, a mitochondrial complex I inhibitor, was reported 
to reproduce a number of neuropathological features of PD, 
including loss of dopaminergic neurons (19). In the present 
study, rotenone resulted in decreased viability of human 
neuroblastoma SH‑SY5Y cells, in a dose‑dependent manner. 
Furthermore, expression levels of caspase‑3, a crucial execu-
tioner of apoptosis, were markedly increased following 
treatment with rotenone, suggesting that apoptosis contributed 
to the loss of SH‑SY5Y cells. These results are in agreement with 
previous reports by the authors of the present study, where rote-
none induced apoptosis in human and mouse dopaminergic cell 
lines (13,15). It has been previously demonstrated that apoptosis 

Figure 2. Expression of MFN2 in SH‑SY5Y cells is stable following treatment with rotenone. SH‑SY5Y cells were incubated with different doses of rotenone 
(20, 100 and 500 nM) for 12 h. (A) mRNA expression levels of MFN2 were detected by reverse transcription‑quantitative polymerase chain reaction. Data were 
expressed as a fold change relative to vehicle control group. GAPDH was used as an internal control. Protein expression levels of MFN2 were (B) detected by 
western blotting and (C) quantified. Data are presented as a fold change relative to the vehicle control group. GAPDH was used as a loading control. All data 
were analyzed by one‑way analysis of variance followed by Tukey's post hoc test. Values are presented as the mean ± standard deviation. MFN2, mitofusin‑2; 
veh, vehicle control.

Figure 1. Apoptosis contributes to the death of SH‑SY5Y cells induced by rotenone. SH‑SY5Y cells were incubated with different doses of rotenone (20, 100 
and 500 nM) for 12 h. (A) MTT assay was used to evaluate the viability of SH‑SY5Y cells. Data are presented as a percentage of the vehicle control group. 
(B) A colorimetric assay was used to detect the activity of caspase‑3 in SH‑SY5Y cells. Data are presented as a fold change relative to the vehicle control group. 
All figures are representative of at least four independent experiments. All data were analyzed by one‑way analysis of variance followed by Tukey's post hoc 
test. Values are presented as the mean ± standard deviation. *P<0.05 vs. the vehicle control group. Veh, vehicle control.
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is closely modulated by two pathways: The receptor‑dependent 
apoptotic pathway and the mitochondria‑mediated apoptotic 
pathway (5). Recently, the authors of the present study suggested 
that apoptosis of dopaminergic neurons was primarily achieved 
via the mitochondria‑mediated apoptotic pathway, since cyto-
chrome c, a mitochondrial pro‑apoptotic factor, was observed 
in the cytoplasm of dopaminergic neurons (6). However, the 
underlying molecular mechanisms remain unclear. 

MFN2, a mitochondrial protein that belongs to the family 
of GTPases, is widely distributed in numerous tissues and 
organs including heart, kidney, liver, and brain (7). At the 
subcellular level, MFN2 is located predominantly in the outer 
membrane of the mitochondria  (8). A previous study has 
indicated that MFN2 was required for several physiological 
processes of mitochondria including fusion and metabolism (9). 
Furthermore, several lines of evidence indicated that MFN2 
may be involved in the process of mitochondria‑mediated 
apoptosis and participated in the pathogenesis of several 
neurological disorders (10‑12). Loss‑of‑function mutations of 
MFN2 gene led to the onset of CMT type 2A, a neurological 
disease characterized by the degeneration of axons in the 

peripheral nervous system (20). In an in vitro model of ischemic 
stroke, decreased MFN2 expression was closely associated 
with increased neuronal apoptosis (21). In addition, reduced 
MFN2 level was associated with increased oxidative stress 
and apoptosis of neurons during neurodegeneration (22,23). In 
the present study, knockdown of MFN2 in a cellular model of 
PD induced by rotenone aggravated cell apoptosis. The above 
results implied a protective role of MFN2 against apoptosis. 
To further validate the antiapoptotic effect of MFN2 in the 
in vitro model of PD, MFN2 was overexpressed in SH‑SY5Y 
cells prior to treatment with rotenone. For the first time to the 
best of the authors' knowledge, it was demonstrated that MFN2 
ameliorated apoptosis induced by rotenone. This observation 
was supported by previous reports that MFN2 overexpres-
sion attenuated neuronal apoptosis under the conditions of 
ischemic stroke or neurodegeneration (21‑23), indicating the 
antiapoptotic effect of MFN2. 

The present study has certain limitations. The antiapop-
totic effect of MFN2 was evaluated in a cellular model of PD. 
Therefore, the results require further confirmation in vivo 
using animal models of PD. Additionally, the precise signaling 

Figure 3. Knockdown of MFN2 exacerbates apoptosis induced by rotenone in SH‑SY5Y cells. A lentiviral strategy was used to knock down the expression of 
MFN2 in SH‑SY5Y cells. (A) The alterations in MFN2 protein levels were confirmed by western blotting. (B) The protein expression levels were quantified. 
Subsequently, the SH‑SY5Y cells were incubated with 100 nM rotenone for 12 h. (C) A colorimetric assay was used to detect the activity of caspase‑3 in 
SH‑SY5Y cells. Data are presented as a fold change relative to untransfected cells. (D) MTT assay was used to evaluate the viability of SH‑SY5Y cells. Data 
are presented as a percentage of the untransfected group. All data were analyzed by one‑way analysis of variance followed by Tukey's post hoc test. Values are 
presented as the mean ± standard deviation. *P<0.05 vs. the control shRNA group. shRNA, short hairpin RNA; MFN2, mitofusin‑2.
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underlying the antiapoptotic effect of MFN2 was not identified 
in the present study and this should be investigated in the future.

In conclusion, the present study indicated that the expres-
sion of MFN2 was stable following treatment with rotenone 
in a cellular model of PD. Using a lentiviral knockdown and 
overexpression strategy, it was demonstrated that MFN2 
prevented rotenone‑induced cell death by amelioration of 
apoptosis. These results revealed a protective role of MFN2 
against apoptosis in an in vitro model of PD and may be used 
to establish MFN2 as a potential therapeutic target for the 
treatment of this disease.
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