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Abstract. Articular cartilage is avascular and aneural, and 
has limited capacity for self‑regeneration when injured. Tissue 
engineering has emerged as a promising approach in repairing 
cartilage defects. To improve the therapy of cartilage healing, 
the present study investigated the efficacy of the combination of 
lentivirus‑mediated bone morphogenetic protein‑2 (BMP2) in 
bone marrow‑derived stromal cells (BMSCs) and platelet‑rich 
plasma (PRP) on cartilage and bone healing in a cartilage defect 
model using the rabbit knee. The BMSCs were harvested from 
New Zealand rabbits and transduced with lentivirus carrying 
BMP‑2. Standard bone defects were introduced in the femoral 
groove of patellofemoral joints of 48 New Zealand rabbits. 
The cartilage defects were subjected to synthetic scaffold 
mosaicplasty with chitosan/silk fibroin/nanohydroxyapatite 
particles tri‑component scaffolds soaked in BMSCs and 
PRP. After 16 weeks, the tissue specimens were assessed by 
micro‑computed tomography (micro‑CT) and macroscopic 
examination. The results showed that lentivirus‑mediated 
BMP‑2 and PRP increased the cell viability of the BMSCs, 
induced the expression of associated genes and enhanced 
osteogenic differentiation in vitro. In vivo, the expression 
of BMP‑2 was observed for 16 weeks. The combination of 
BMP‑2 and PRP treatment led to optimal results, compared 
with the other groups on micro‑CT and gross observations. 
The results of the present study present a novel therapy using 
the lentivirus‑mediated BMP‑2 gene together with PRP for 
cartilage healing.

Introduction

Articular cartilage is avascular and aneural, and has limited 
capacity for self‑regeneration when injured. Early intervention 

is essential to prevent further damage from spreading to periph-
eral healthy cartilage and joint surfaces, as osteoarthritis may 
occur in the injured joint, which eventually requires invasive 
treatment, for example, knee replacement (1).

Several clinical treatments for cartilage injuries have 
been developed, including microfracture  (2), abrasion 
arthroplasty (3), autologous osteochondral  transplant (4,5), 
autologous chondrocyte implantation (5,6) and prosthetic joint 
replacement (7). Autologous osteochondral transplant (mosa-
icplasty) is a technique that involves the transplantation of 
one or more cylindric osteochondral plugs harvested from the 
non‑weight‑bearing periphery of the femoral condyles towards 
the damaged cartilage site (8). Mosaicplasty has several advan-
tages in terms of it being a single‑stage and simple procedure, 
and being cost‑effective. Mosaicplasty provides integration of 
subchondral bone into the host tissue and has been satisfied in 
numerous studies (9‑14).

Tissue engineering has emerged as a promising approach 
in repairing cartilage defects as it provides an optimal strategy 
to develop a scaffold as a native cartilage‑bone plug, which has 
similar structural and mechanical features as osteochondral 
tissue to facilitate the integration with host cartilage and under-
lying subchondral bone. The principles of tissue engineering 
involve three major components, including biocompatible 
scaffolds, the utilization of cell sources, and cell signaling 
molecules (15).

Chitosan (CS), silk fibroin (SF), and nanohydroxyapatite 
particles (nHA) are commonly used biomaterials due to their 
safety and biological compatibility (16‑18). It has been found 
that, compared with bi‑component scaffolds, the CS/SF/nHA 
tri‑component scaffold has higher compressive strength and 
efficiency for inducing cell proliferation, which makes it a 
favorable scaffold for tissue engineering and regeneration (19).

Mesenchymal stem cells (MSCs) have been widely used 
as a potential cell source in several studies and clinical 
trials (20,21). The high capacity of in vitro expansion of bone 
marrow‑derived stromal cells (BMSCs) is an attractive source 
of cells for cartilage tissue engineering (22,23). In addition, 
BMSCs are progenitor cells of osteoblasts and are essential 
for the maintenance of bone quality and quantity (24). It has 
been increasingly suggested that BMSCs contribute to rapid 
healing in a variety of reconstructive and restorative surgical 
procedures (25).

Bone morphogenetic protein (BMP) is an important 
molecule for facilitating the recovery of bone and cartilage by 
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inducing the differentiation of mesenchymal osteoprogenitors 
and promoting osteoblastic maturation and function (26,27). 
Of all BMPs, BMP‑2 is the most potent bone growth factor and 
has been widely used for inducing BMSC differentiation into 
osteoblastic cells (28‑30). BMP‑2 protein therapy is a useful 
therapy that has been used in the treatment of various animal 
bony defect models (31‑35). However, the limitation of a short 
half‑life and high cost associated with large dose requirements 
in clinical situations cannot fully satisfy clinical requirements, 
which restricts the application of these exogenous proteins (36). 
Various vectors have been established for delivering genes in 
stem cells efficiently (37‑39). Among these, lentivirus medi-
ated gene transduction has been found to be effective for the 
long‑term and stable expression of BMP‑2 (31,32,40,41).

A novel treatment, platelet‑rich plasma (PRP), is a safe 
solution for simulating a natural repair process which contains 
a high concentration of platelets and a variety of growth 
factors (42). PRP has been used on BMSCs to assist in bone 
tissue regeneration. The combination of PRP and BMSCs has 
shown promising results on cartilage bone recovery in animal 
experiments (43,44).

To optimize the treatment of cartilage defects, the 
present study investigated the effect of the combination 
of lentivirus‑mediated BMP‑2‑modified BMSCs and PRP 
on  articular  cartilage injury  of the rabbit knee following 
treatment with mosaicplasty. It was found that cartilage 
defects were successfully repaired with BMP‑2‑transduced 
BMSCs/PRP at 16 weeks post‑surgery. This combination may 
provide a promising therapy for cartilage and bone healing.

Materials and methods

Rabbit BMSC culture. The animal experiments were performed 
at The Third Military Medical University (Chongqing, China), 
and were approved by the Laboratory Animal Welfare and 
Ethics Committee of the Third Military Medical University. The 
BMSCs were purchased from Cyagen Biosciences, Inc. (Santa 
Clara, CA, USA; cat. no. RBXMX‑01001). The cells were plated 
with the initial seeding in a 100‑mm dish and cultured with 
Dulbecco's modified Eagle's medium (DMEM, Gibco, Thermo 
Fisher Scientific, Inc., Waltham, MA, USA) supplemented with 
10% fetal bovine serum (Thermo Fisher Scientific, Inc.) in 
standard culture conditions of 37˚C and 5% humidified CO2. 
The cells were maintained for 3 days prior to the first medium 
change. When the cells reached 90% confluency on days 7‑9, 
the adherent cells were trypsinized and passaged approximately 
at a 1:3 split. The identity and mulitpotent differentiation ability 
along osteogenic, chondrogenic and adipogenic lineages was 
confirmed by Cyagen Biosciences, Inc. Cells in passage three 
were used for transduction with lentivirus.

Construction of Lv‑BMP‑2 and lentiviral infection of BMSCs. 
The BMP‑2 gene was amplified from Rabbit cDNA with primers 
containing NotI and BamHI restriction sites: Bmp‑2‑NotI, 
forward 5'‑aaggaaaaaagcggccgcATG​GTG​GCC​GG​GAC​CCG​
CTG‑3', Bmp‑2‑BamHI, reverse 5'‑cgcggatcc​CTA​GCG​ACA​
CCC​ACA​ACC​CTC​CAC‑3'. Lv‑BMP‑2 was constructed by 
inserting the BMP‑2 gene fragment into the pLV5‑EF1A‑GFP 
plasmid (Western Biotechnology, Inc., Chongqing, China). The 
lentivirus was produced by co‑transfecting the pLV5‑EF1A‑GFP 

(Lv‑control or Lv‑BMP‑2) and helper plasmid PG‑P1‑VSVG, 
PG‑P2‑REV and PG‑P3‑RRE into 293T cells (Western 
Biotechnology, Inc.). The rabbit BMSCs at passage three were 
transduced with Lv‑BMP‑2 or Lv‑control virus in the presence 
of 5 µg/ml polybrene. At 24 h post‑transduction, the medium 
was replaced with fresh DMEM with 10% FBS. The BMSCs 
were cultured for 72 h. GFP‑positive cells were observed and 
infection efficiency was determined using an inverted fluores-
cence microscope.

PRP preparation (45). A 10‑ml blood sample was harvested 
from the central auricular vein of rabbits from each group. The 
blood was transferred into an ethylene diamine tetraacetic acid 
vacutainers (BD Biosciences, Franklin Lakes, NJ, USA), and 
plasma was harvested by centrifugation for 10 min at 1,000 x g 
at 22˚C. The supernatant was isolated and centrifuged for 
20 min at 1,500 x g at 22˚C. The top layer was removed and 
the platelet‑rich lower layer was collected for future use.

Construction of the osteochondral defect model. A total of 
48 female New Zealand white rabbits (Jiangsu Zhenlin Biological 
Technology Co., Ltd., Jiangsu, China) aged 2‑3 months old with 
a mean weight of 2.5 kg were housed in room at 26±3˚C with 
a 12 h light/dark cycle. The rabbits were allowed ad libitum 
access to food and water. A full‑thickness segment femoral 
cartilage defect (diameter 5 mm, thickness 4 mm) was gener-
ated through the articular cartilage and subchondral bone 
of the patellar groove (Fig. 1A) using a drill equipped with a 
5‑mm diameter drill bit. The CS/SF/nHA scaffold treated 
with or without PRP and BMSCs was then implanted to fill 
the cartilage defect on one knee (Fig. 1B). The rabbits were 
divided randomly into four groups: i) Untreated, ii) treated with 
BMSCs, iii) treated with Lv‑control‑BMSCs+PRP; iv) treated 
with Lv‑BMP‑2‑BMSCs+PRP. A total of 107 BMSCs and/or 
0.2 ml PRP were used to treat different knees according to the 
grouping. The wound was then closed in layers. The animals 
were returned to their cages and allowed to move freely without 
joint immobilization. The rabbits were sacrificed at 16 weeks. 
Each cartilage defect area was evaluated macroscopically.

Scaffold preparation. The biphysic scaffold osteochon-
dral defect repair were prepared according to our previously 
described procedures (19).

Reverse transcription‑quantitative polymerase chain reaction 
(RT‑qPCR) analysis. The cells from each group were collected 
and total RNA was extracted using TRIzol reagent (Invitrogen; 
Thermo Fisher Scientific, Inc.). The cDNA was then synthesized 
using a PrimeScript® 1st Strand cDNA Synthesis kit (Takara 
Biotechnology Co., Ltd., Dalian, China). A total of 1 mg cDNA 
was used and RT‑qPCR analysis was then performed using 
SYBR® Premix Ex Taq™ (Takara Biotechnology Co., Ltd.) 
according to the manufacturer's protocol. The PCR conditions 
were as follows: Stage 1, pre‑denaturation: 95˚C for 4 min; 
stage 2, PCR amplification: 95˚C for 10 sec, 60˚C for 20 sec, 
72˚C for 30 sec for a total of 40 cycles. Each experiment was 
performed in triplicate. The primers sequences for alkaline 
phosphatase (ALP), type I collagen and type II collagen are 
presented in Table I (46,47). Relative mRNA expression was 
calculated using the 2‑ΔΔCt method (48).
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Western blot analysis. The cells from each group were washed 
with ice‑cold phosphate‑buffered  saline (PBS) and lysed 
with lysis buffer containing 50 mM Tris‑HCL (pH 7.4), 0.1% 
sodium dodecyl sulfate (SDS), 150 mM NaCl, and protease 
inhibitor cocktail (Sigma‑Aldrich; Merck KGaA, Darmstadt, 
Germany). The protein concentration was determined using 
Pierce™ BCA Protein Assay kit (Thermo Fisher Scientific, 
Inc.) according to the manufacturer's potocol. The sample 
was suspended in SDS buffer and boiled for 6 min. A total 
of 30 µg/lane proteins were separated onto 30% SDS‑PAGE 
gels for electrophoresis and then transferred onto a nitrocel-
lulose membrane. The membranes were blocked in non‑fat 
milk in Tris‑buffered saline with Tween 20 (TBST) for 1 h, 
and incubated with primary antibodies for BMP‑2 (1:500; 
cat. no. bs‑1012R; BIOSS, Beijing, China), SRY‑box 9 (SOX9; 
1:500; cat. no. HPA001758; Sigma‑Aldrich; Merck KGaA) or 
β‑actin (1:1,000; cat. no. MA5‑15739; Thermo Fisher Scientific, 
Inc.) overnight at 4˚C. The membranes were washed with 
TBST three times and were incubated with goat anti‑rabbit 
(cat. no. ab6721) and rabbit anti‑mouse (cat. no.  ab97046) 
secondary antibodies (both 1:1,000; Abcam, Cambridge, UK) 
for 1 h at room temperature. The bands were visualized by 
enhanced chemiluminescence detection reagents (Bio‑Rad 

Laboratories, Inc., Hercules, CA, USA) according to the 
manufacturer's protocol. The bands of western blot were quan-
tified with ImageJ (ImageJ bundled with Java 1.8.0; National 
Institutes of Health, Bethesda, MD, USA) (49).

MTT assay. The cells were seeded 2x103 cells into 96‑well 
plates in triplicate. After 24 h, the cells were washed twice 
with PBS and the MTT (Sigma; EMD Millipore) assays were 
performed. A total of 20 µl MTT (5 g/l) was added to each 
well, and the cells were cultured for an additional 4 h. The 
absorbance (A) values at 490 nm were determined with a 
microplate reader to determine cell viability.

Micro‑computed tomography (CT) imaging. Specimens 
obtained at 16 weeks (three animals in each group) were exam-
ined with micro‑CT (GE micro‑CT system; GE Healthcare 
Life Sciences, Logan, UT, USA) for the analyses of bone and 
cartilage growth and regeneration.

Alizarin red staining. The cells were cultivated with osteoge-
netic induction solution (0.1 µmol/l dexamethasone, 50 mg/l 
ascorbic acid and 10 mmol/l β‑glycerophosphate) and cultured 
at 37˚C and 5% CO2. The medium was replaced every 3 days. 

Figure 1. Construction of osteochondral defect model. A total of 48 New Zealand white rabbits were used. (A) A full‑thickness segment femoral cartilage 
defect (diameter 5 mm, thickness 4 mm) was generated through the articular cartilage and subchondral bone of the patellar groove using a drill equipped with a 
5‑mm diameter drill bit. (B) A chitosan/silk fibroin/nanohydroxyapatite particle scaffold treated with or without platelet‑rich plasma and bone marrow‑derived 
stromal cells was implanted to fill the cartilage defect on one knee. 

Table I. Reverse transcription‑quantitative polymerase chain reaction primer sequences.

	 Primer (5'‑3')
	 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
Gene	 Forward	 Reverse

ALP (46)	 GCACGACAATCGGGATGAAC	 TCCAGCAGGACGGTCATCA
COL I (47)	 TGGCAAGAACGGAGATGACG	 GCACCATCCAAACCACTGAA
COL II (47)	 CCACGCTCAAGTCCCTCAAC	 AGTCACCGCTCTTCCACTCG
GAPDH	 GGGTGGTGGACCTCATGGT	 CGGTGGTTTGAGGGCTCTTA
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At 14 days post‑induction, the cells were fixed with 95% 
ethanol for 10 min, and incubated in 2% Alizarin red staining 
solution (Sigma‑Aldrich; Merck KGaA) for 5 min. The staining 
buffer was removed and the cells were washed twice with PBS. 
Calcification deposits were identified under light microscopy.

Statistical analysis. The data were processed using SPSS 
statistical processing software (ver. 21.0; IBM SPSS, Armonk, 
NY, USA). The results are expressed as the mean ± standard 
deviation. A unpaired Student's t‑test was applied for statis-
tical comparisons between two groups and one‑way analysis 
of variance was applied among multiple groups. P<0.05 was 
considered to indicate a statistically significant difference.

Results

Lentivirus mediated expression of BMP‑2 in BMSCs. 
The BMSCs were transduced with lentivirus Lv‑BMP‑2 
or Lv‑control at an MOI of 50. According to fluorescence 
microscopy observation, the infection efficiency was 90% at 
72 h post‑transduction (Fig. 2A). To confirm the expression of 
BMP‑2, RT‑qPCR and western blot analyses were applied to 
detect the mRNA and protein levels of BMP‑2 in BMSCs. As 
shown in Fig. 2B and C, the endogenous expression of BMP‑2 
in BMSCs was low, whereas the Lv‑BMP‑2 BMSCs expressed 
significantly higher BMP‑2 compared with the Lv‑control 
BMSCs and non‑infected BMSCs at the mRNA and protein 
levels. This suggested that the Lv‑BMP‑2‑modified BMSCs 
had been successfully established.

Combination of BMP‑2 and PRP enhances the cell viability 
of BMSCs. The cell viability of cells was examined using an 
MTT assay. The absorbance value at 490 nm was significantly 
increased by infection with Lv‑BMP‑2 in BMSCs with PRP, 

compared with that in other groups (Fig. 3). It was also noted 
that PRP alone enhanced the cell viability of BMSCs, although 
the enhancement was not as marked as for the combination of 
BMP‑2 and PRP.

Combination of BMP‑2 and PRP results in enhanced expres‑
sion of osteogenic‑related genes in BMSCs. The impact of 
BMP‑2 and PRP on the expression of osteogenic‑related genes 
was then examined. ALP, and type I collagen are markers 
of osteogenic differentiation. In addition, type II collagen 
is known to modulate the chondrogenesis of MSCs and is 
important in the osteogenic differentiation of BMSCs (50). To 
investigate the capacity of osteogenic differentiation of BMP‑2 
BMSCs, the cells were cultured with osteogenesis induction 
medium, and total mRNA was isolated from the BMSCs 
from each group at day 7. The expression levels of ALP, type 
I collagen and type II collagen were determined by RT‑qPCR 
analysis. The data showed that the lentivirus‑mediated expres-
sion of BMP‑2 in BMSCs upregulated the expression of ALP, 
type I collagen and type II collagen, compared with expres-
sion in the Lv‑control group. Although incubation with PRP 
marginally increased the expression of these genes, the result 
was not statistically significant (Fig. 4).

Combination of BMP‑2 and PRP induces higher osteogenic 
differentiation in BMSCs. Following 14 days of culture in 
osteogenesis induction medium, followed by Alizarin red 
staining, mineralised nodules were observed under the 
microscope. The mineralized nodules were more intense in 
the LvBMP‑2‑modified BMSCs + PRP group, compared with 
those in the other groups (Fig. 5A‑D). Although BMP‑2 or PRP 
alone marginally increased the osteogenic differentiation, 
LvBMP‑2‑modified BMSCs+PRP exerted the most marked 
enhancement of osteogenesis.

Figure 2. Lentivirus‑mediated expression of BMP‑2 in BMSCs. (A) At passage three, BMSCs were infected with Lv‑BMP‑2 at an MOI of 50. After 72 h, 
expression of GFP was examined by fluorescence microscopy. (B) mRNA expression of BMP‑2 in BMSCs (**P<0.01). (C) Protein expression of BMP‑2 in 
BMSCs. BMP‑2, bone morphogenetic protein‑2; BMSCs, bone marrow‑derived stromal cells; ctrl, control. Magnification, x200.
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Combination of BMP‑2 and PRP recovers cartilage defects 
completely. At day 0, a full‑thickness defect was created 
through the articular cartilage and subchondral bone of the 
patellar groove using a drill bit. The CS/SF/nHA scaffold 
was implanted to fill the cartilage defect. Subsequently, 107 
BMSCs and/or 0.2 ml PRP were used to treated different 
knees according to grouping. The wound was then closed in 
layers. At 16 weeks, the cartilage defects were examined by 
macroscopic observation and micro‑CT.

In the control group, the central regions of the defect 
sites were filled with a thin, rough reddish‑brown tissue 
(Fig. 6), the patellar fossa was significantly larger than that of 
other groups (Figs. 6 and 7), indicating that cartilage repair 
remained limited and incomplete at week 16. The defects in 
the Lv‑BMP‑2 BMSCs and Lv‑control BMSCs+PRP groups 
were similar on gross observation (Figs. 6 and 7). Although 
a concavity was observed in the peripheral region of defects, 
the surface of cartilage and bone was shiny and smooth. In 
the BMP‑2 BMSCs+PRP group, it was found that the surface 

region of the recovered cartilage was smooth and shiny, and 
covered with hyaline‑like cartilage tissue (Fig. 6). No signifi-
cant fossa was observed, suggesting that articular cartilage 
repair was complete. Taken together, the data showed that 
the combination of BMP‑2‑modified BMSCs with PRP had 
optimal effects on the recovery of cartilage and bone defects.

Lentivirus‑mediated expression of BMP‑2 is observed in 
BMSCs for at least 16 weeks. To confirm the expression of 
BMP‑2 in cartilage defect region in rabbits, the proteins 
were isolated from articular cartilage and subchondral bone 
regions from each group at week 16. There was an increase 
of the overall expression of BMP‑2 in tissues around the 
cartilage defect sites in the Lv‑BMP‑2+PRP group. It was also 
observed that PRP or Lv‑BMP‑2 alone enhanced the expres-
sion of BMP‑2. SRY‑box 9 (SOX9), a transcription factor that 
is important in cartilage development and formation was 
also detected. As shown in Fig. 8A and B, BMP‑2 and PRP 
increased the expression of SOX9, which contributed to the 

Figure 4. Combination of BMP‑2 and PRP results in enhanced expression of osteogenic‑related genes. Relative expression of ALP, type I collagen and type II 
collagen during the osteogenic differentiation of BMSCs. Cells were cultured with osteogenic induction medium, and total RNA was collected at 7 days. The 
mRNA expression levels of ALP, type I collagen and type II collagen were evaluated by reverse transcription‑quantitative polymerase chain reaction analysis 
(*P<0.05, **P<0.01). BMP‑2, bone morphogenetic protein‑2; BMSCs, bone marrow‑derived stromal cells; PRP, platelet‑rich plasma; ctrl, control; ALP, alkaline 
phosphatase.

Figure 3. Combination of BMP‑2 and PRP enhances the cell viability of BMSCs. An MTT assay was performed and the absorbance at 490 nm was determined 
to estimate changes in cell viability (*P<0.05, **P<0.01). BMP‑2, bone morphogenetic protein‑2; BMSCs, bone marrow‑derived stromal cells; PRP, platelet‑rich 
plasma.
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Figure 6. Gross observation of cartilage bone wounds. Representative gross data of cartilage wounds from each group at 16 weeks. BMP‑2, bone morphoge-
netic protein‑2; BMSCs, bone marrow‑derived stromal cells; PRP, platelet‑rich plasma; ctrl, control.

Figure 5. Osteogenic differentiation in BMSCs. Cells were cultured with osteogenesis induction medium for 14 days followed by Alizarin red staining. 
Mineralized nodules in the (A) BMSCs, (B) Lv‑BMP‑2 BMSCs, (C) Lv‑ctrl BMSCs+PRP, and (D) Lv‑BMP‑2 BMSCs+PRP were observed under a microscope 
(magnification, x400). White arrows show mineralized calcium deposits. BMP‑2, bone morphogenetic protein‑2; BMSCs, bone marrow‑derived stromal cells; 
PRP, platelet‑rich plasma; ctrl, control.
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recovery of the cartilage defect in vivo. The data indicated 
that lentivirus‑mediated expression of BMP‑2 was present in 
BMSCs for at least 16 weeks, and the enhanced expression of 
BMP‑2 combined with PRP treatment induced the expression 
of genes for cartilage and bone formation, which facilitated 
tissue regeneration in the rabbit knees.

Discussion

Articular cartilage has limited ability for self‑regeneration, 
therefore, early intervention is important (1). MSCs have been 
widely used for tissue regeneration, particularly cartilage repair, 

owing to their potential for osteoregeneration and osteogenic 
differentiation (20,21). There are three important components 
for successful tissue regeneration, namely, biocompatible scaf-
folds, cell sources, and cell signaling molecules (15). In the 
present study, the effect of the combination of a CS/SF/nHA 
tri‑component scaffold, BMP‑2‑modified BMSCs and PRP on 
a rabbit cartilage defect model was investigated; the results 
showed that this combination provided promising results.

CS, SF and nHA have been applied in various tissue 
engineering studies due to favourable biological compat-
ibility (16‑18). It has been found that a combination of two of 
these improved biocompatibility, enhanced mechanical strength, 

Figure 8. Lentivirus‑mediated expression of BMP‑2 in bone marrow‑derived stromal cells is observed for at least 16 weeks. (A) Protein was isolated from 
articular cartilage and subchondral bone areas from each group in week 16. Western blot analysis was performed to detect the protein expression of BMP‑2 
and SOX9. (B) Relative expression of proteins normalized by β‑actin (n=3; *P<0.05, **P<0.01). BMP‑2, bone morphogenetic protein‑2; SOX9, SRY‑box 9; PRP, 
platelet‑rich plasma.

Figure 7. Micro‑CT observation of cartilage bone wounds. Representative micro‑CT of cartilage wounds from each group at 16 weeks. Red arrows indicate the 
cartilage defect. CT, computed tomography; BMP‑2, bone morphogenetic protein‑2; BMSCs, bone marrow‑derived stromal cells; PRP, platelet‑rich plasma; 
ctrl, control.
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or reduced degradation (16,17,51,52). Qi et al (19), found that 
the CS/nHA/SF tri‑component scaffold had all of the above 
advantages, making it suitable for the aim of the present study.

BMP‑2 has been found to be important in bone forma-
tion and BMSC differentiation, compared with other BMP 
family members (28‑30). However, its limitation of a short 
half‑life and high cost prevents it from further application. 
With the assistance of lentivirus‑mediated gene transduction, 
the present study showed that the expression of BMP‑2 in 
BMSCs was sustained over at least 16 weeks, suggesting 
that it was effective for long‑term and stable expression of 
BMP‑2 (40).

PRP is another important factor for cartilage defects used 
in the present study. PRP provides various cell signaling 
molecules, which contribute to healing and growth, including 
platelet‑derived growth factor, vascular endothelial growth 
factor, and transforming growth factor‑β1  (53). By using 
PRP, BMP‑2‑modified BMSCs exerted beneficial results 
on repairing cartilage defects in rabbit knees. Previously 
Bahmanpour et al (54), found that platelet‑rich fibrin (PRF) 
had higher evaluation scores of full‑thickness lesions in rabbits 
than PRP. The use of PRF, rather than PRP, to treat the carti-
lage defect in the model used in the present study may assist in 
identifying a more effective therapy.

This combination strategy has provided beneficial 
outcomes for tissue regeneration in several studies. For 
example, Lian  et  al  (55),  found that the combination of 
BMSCs and PRP assists in diabetic wound repair and 
regeneration. BMSCs transfected with BMP‑2 also enhanced 
tendon‑bone healing and improved bone regeneration in 
canine segmental ulnar defects (56,57). The present study 
combined the advantages of several components for tissue 
regeneration and optimized the cartilage defect therapy in a 
rabbit model.

Taken together, the data obtained in the present study 
suggested that the combination of BMP‑2 and PRP enhanced 
the efficiency of cartilage and bone repair and provided a novel 
promising therapy for tissue engineering.
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