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Abstract. Abnormal expression of microRNA (miR)‑219‑3p 
has been widely identified in different tumors. However, 
whether miR‑219‑3p is involved in the progression of hepatic 
fibrosis (HF) has never been explored. The present study 
showed that compared with healthy controls, the levels of 
miR‑291‑3p in peripheral blood were decreased in patients 
with HF. Furthermore, much lower levels of miR‑291‑3p 
were identified in fibrotic liver tissues compared with that 
of normal liver tissues. Receiver operating characteristic 
curve analysis showed that the levels of miR‑291‑3p in 
peripheral blood may screen patients with HF from healthy 
controls. Reverse transcription quantitative polymerase chain 
reaction analysis showed that overexpression of miR‑291‑3p 
significantly suppressed the mRNA levels of Snai1, vascular 
endothelial‑specific cadherin (VE‑cadherin), Vimentin, 
transforming growth factor (TGF)‑β1, and glial fibrillary acidic 
protein (GFAP). The protein levels of Snai1, VE‑cadherin, 
Vimentin, TGF‑β1, and GFAP were also decreased in 
hepatic stellate cells transfected with miR‑291‑3p mimics. 
Further study indicated that mothers against decapentaplegic 
homolog 2 (Smad2) was a target gene of miR‑291‑3p. More 
importantly, silencing of Smad2 could abolish miR‑291‑3p 
inhibition‑induced TGF‑β1 signaling activation. In summary, 
reduced peripheral blood miR‑291‑3p may be involved in the 
progression of HF via targeting Smad2.

Introduction

Hepatic fibrosis (HF) is a chronic liver disease, and a major 
cause of morbidity and mortality worldwide (1). HF can be 
induced by viral hepatitis, alcohol/nonalcoholic steatohepatitis 

and several other etiologies, which then cause persistent 
damage and stimulation (2). In the development of HF, an 
enhanced fibrotic matrix is identified, which is due to the 
disturbance of extracellular matrix (ECM) synthesis and 
degradation (3). With the progression of HF, it may further 
result in liver cirrhosis and hepatocellular carcinoma, inducing 
a major public health concern (4). Hence, it is particularly 
important to explore an effective therapy method for patients 
with HF.

Hepatic fibrosis is a pathological process in which a large 
number of activated fibroblasts are produced in the liver, 
resulting in excessive precipitation of diffuse extracellular 
matrix in the liver (5). In recent years, it has been identified 
that hepatocytes and bile duct epithelial cells can be trans-
formed into fibroblasts through the Epithelial‑Mesenchymal 
Transition (EMT) process and participate in the development 
of liver fibrosis (6). Lim et al  (7) reported that the hepatic 
stellate cell (HSC) may be an epithelial cell in resting state. 
After HSC was activated, E‑cadherin was transformed into 
N‑cadherin, a marker of interstitial cells (8). These results 
suggest that HSC can form fibroblasts through EMT activation 
and participate in the occurrence of liver fibrosis (8). Hence, 
the present study aimed to examine the changes of EMT 
markers that are closely associated with liver fibrosis.

Transforming growth factor (TGF)‑β is a key regulator in 
chronic liver disease where it promotes the process of fibro-
genesis through inflammation (9). Within the liver, TGF‑β is 
secreted by platelets and Kupffer cells upon stimulation of 
the inflammatory response (10). A significant enhancement in 
TGF‑β expression is identified in the activated hepatic stellate 
cells, which is accompanied by the accelerated accumulation 
of ECM (11). In general, TGF‑β exerts its biological func-
tion via activating downstream regulators, mothers against 
decapentaplegic homolog (SMAD) 2 and 3 (12). Subsequently, 
SMADs interact with other signaling pathways, including the 
mitogen‑activated protein kinase (MAPK) and nuclear factor 
(NF)‑κB signaling pathways, thereby driving the process of 
hepatic fibrosis (12).

Currently, increasing evidence has indicated that 
microRNAs (miRs) are widely involved in TGF‑β‑mediated 
liver fibrosis (13,14). For instance, miR‑130a‑3p is demonstrated 
to be negatively regulating HSC activation and proliferation in 
the development of nonalcoholic steatohepatitis by suppressing 
the expression TGFBR1 and TGFBR2 via the TGF‑β/SMAD 
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signaling pathway (15). Additionally, miR‑9‑5p was shown to 
inhibit TGF‑β1‑induced HSC activation via targeting TGFBR1 
and TGFBR2 (16). Abnormal expression of miR‑291‑3p has 
been widely identified in different tumors, including malignant 
melanoma and colorectal carcinoma (17,18). A previous study 
has indicated that miR‑291‑3p induces liver cell apoptosis 
via targeting RNA binding protein HuR (19). Additionally, 
increased miR‑291‑3p expression levels led to abnormal 
glucose and lipid metabolism in liver cells (20,21). These data 
suggested that abnormal miR‑291‑3p level in liver cells could 
result in liver cell damage. However, whether miR‑291‑3p is 
involved in the progression of HF has never been explored. 
In the present study, the expression and functional role of 
miR‑291‑3p in the development of liver fibrosis was evaluated 
for the first time, to the best of our knowledge.

Patients and methods

Human specimens. Peripheral blood or liver tissue were 
collected from a total of 40 patients diagnosed with 
posthepatitic cirrhosis and admitted into First People's Hospital 
of Kunshan Affiliated with Jiangsu University from February 
to October in 2017. These included 22 males and 18 females 
with an average age of 52.5±13.4 years. Two of them were 
diagnosed at stage I, three were at stage II, 10 were at stage 
III, and 25 were at stage IV. Another 40 healthy volunteers 
from the physical examination center of the hospital were 
enrolled as the normal control group, including 24 males and 
16 females with an average age of 43.6±14.5 years. The normal 
liver samples were obtained from residual liver tissues because 
of technical reasons (the fibrotic tissues were harvested from 
an improper location). Normal liver tissues were determined 
using immunohistochemical analysis. Liver cirrhosis was 
diagnosed by liver biopsy and/or a typical appearance of the 
liver on abdominal ultrasound and/or computed tomography 
scan. Informed consent for use of liver samples was obtained 
from all participants. Peripheral blood (10 ml) was collected 
from 40 healthy control and 40 patients with liver cirrhosis. 
The present study was approved by the Ethics Committee 
of the First People's Hospital of Kunshan Affiliated with 
Jiangsu University (KSAJSU‑20160819) and was performed in 
compliance with the Declaration of Helsinki. All the patients 
have provided written informed consent for this study. The 
details for the control and patients with liver cirrhosis were 
included in Table I.

Isolation and culture of rat hepatic stellate cells (HSCs). 
Adult male Sprague‑Dawley rats (body weight, 400‑500 g; 
age, 6‑8  weeks) were purchased from Shanghai Silaike 
Exper imental Animal Limited Liabi l ity Company 
(Shanghai, China) and were used for HSC isolation, 
as previously described  (22). Rats were maintained in 
the animal experimental center of Wenzhou Medical 
University and four animals were housed per cage with a 
12 h light/dark cycle. Room temperature was maintained 
at 23±1˚C, humidity was maintained at ~60% and all rats 
had free access to food and water. The present study was 
approved by the Animal Ethics Committee of the First 
People's Hospital of Kunshan Affiliated with Jiangsu 
University (KSAJSU‑20160819). Cells were cultured in 

Dulbecco's modified Eagle's medium (DMEM; Hyclone; 
GE Healthcare Life Sciences, Logan, UT, USA) supple-
mented with 10% fetal bovine serum (Invitrogen; Thermo 
Fisher Scientific, Inc., Waltham, MA, USA), 100 U/ml peni-
cillin and 100 U/ml streptomycin. The harvested primary 
HSCs were studied at day 0 after isolation throughout all 
the studies. Primary HSCs at a density of 106 cells/well 
were transfected with miR‑291‑3p mimics/inhibitors or the 
negative control for miR‑291‑3p mimic (NC)/miR‑291‑3p 
inhibitors (NCi; both Shanghai GeneChem, Co., Ltd., 
Shanghai, China) at 37˚C for 48 h using Lipofectamine 
RNAiMAX (Invitrogen, Thermo Fisher Scientific, Inc. 
Waltham, MA, USA) at a final concentration of 10 nM. 
Following 48 h of transfection, cells were collected for 
subsequent experimentation.

Transfection of siRNA targeting Smad2. Primary HSCs at the 
density 106 cells/well were transfected with siRNA targeting 
Smad2 or an NC (both Shanghai GeneChem Co., Ltd.) at 
37˚C for 48 h using Lipofectamine RNAiMAX (Invitrogen; 
Thermo Fisher Scientific, Inc.) at a final concentration of 
10 nM. Following 48 h of transfection, cells were collected for 
subsequent experimentation.

Cell culture. 293T cells were purchased from the Chinese 
Academy of Medical Sciences (Beijing, China). Cells were 
cultured in DMEM/F12 (GE Healthcare Life Sciences) supple-
mented with 10% fetal bovine serum, 100 U/ml penicillin and 
100 U/ml streptomycin in 25 cm3 culture flasks at 37˚C in a 
humidified atmosphere containing 5% CO2.

Transwell migration assay. Cells were placed in the top 
chamber of Transwell migration chambers (8 µm; Millipore, 
Billerica, MA, USA) at a density of 105 cells/well in 1 ml 
DMEM culture. After 48 h, cells which had not migrated to 
the lower chamber were removed from the upper surface of the 
Transwell membrane with a cotton swab. Migrating cells on 
the surface of the lower membrane were fixed with methanol 
for 15 min at room temperature. Methanol was then discarded 
and washed using PBS. The cells were further stained with 
0.5% crystal violet for 20 min at room temperature. Cells were 
subsequently imaged and counted using a light microscope 
(XDS‑500D; Shanghai Caikon Optical Instrument Co., Ltd., 
Shanghai, China) with 100x magnification. Experiments were 
assayed in triplicates, and ≥5  fields were counted in each 
experiment.

Proliferation assay. Cell proliferation was evaluated using 
the cell counting kit‑8 (CCK‑8; Dojindo, Kumamoto, Japan), 
according to the manufacturer's protocol. Cells were seeded in 
96‑well plates at a density of 1x103 cells per well and cultured 
for 24 h at 37˚C. Subsequently, cells were transfected with 
miR‑291‑3p mimics. After 48 h, CCK‑8 solution was added 
to each well in the 96‑well plates. Then, cells were incubated 
for an additional 2 h at 37˚C. Absorbance was determined at 
450 nm on a microplate reader (Molecular Devices, Sunnyvale, 
CA, USA).

Reverse transcription‑quantitative polymerase chain 
reaction (RT‑qPCR). RNA was isolated from liver tissues, 
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peripheral blood or primary HSCs using RNA TRIzol reagent 
(Life Sciences; Thermo Fisher Scientific, Inc.) following 
the manufacturer's protocol. Total RNA was subsequently 
reverse transcribed to cDNA using SuperScript™ III Reverse 
Transcriptase (Invitrogen; Thermo Fisher Scientific, Inc.) 
following the manufacturer's protocol. qPCR was performed 
using SYBR‑Green PCR Master Mix (Roche Diagnostics, 
Basel, Switzerland) on an Applied Biosystems ViiA 7 real‑time 
PCR system (Thermo Fisher Scientific, Inc.). The final reac-
tion volume was 10 µl and contained 5 µl SYBR‑Green PCR 
Master Mix (2X), 0.5 µl forward and 0.5 µl reverse primers 
(10 mM), 2 ml cDNA and 2 µl double‑distilled water. The ther-
mocycling conditions of qPCR were: Denaturation at 95˚C for 
10 min, followed by 40 cycles of 95˚C for 10 sec and 60˚C for 
60 sec. The results were normalized to U6 expression to obtain 
∆Cq values and fold changes in expression were calculated 
using the 2‑∆∆Cq method (23).

The primers used in the current study were listed as 
follows: Snai1 forward,  5'‑GCA​GAG​TTG​TCT​ACC​GAC​
CT‑3' and reverse,  5'‑AGG​TGA​ACT​CCA​CAC​ACG​C‑3'; 
VE‑cadherin forward,  5'‑CCA​GAA​TTT​GCC​CAG​CCC​
TA‑3' and reverse 5'‑GTC​CTC​GTT​CTT​CAG​GGC​AA‑3'; 
Vimentin forward,  5'‑TCC​TTC​GAA​GCC​ATG​TCC​AC‑3' 
and reverse, 5'‑GTG​GTC​ACA​TAG​CTC​CGG​TT‑3'; TGF‑β1 
forward, 5'‑GAC​TCT​CCA​CCT​GCA​AGA​CC‑3' and reverse, 
5'‑GGA​CTG​GCG​AGC​CTT​AGT​TT‑3'; glial fibrillary acidic 
protein (GFAP) forward,  5'‑TTG​ACC​TGC​GAC​CTT​GAG​
TC‑3' and reverse, 5'‑GAG​TGC​CTC​CTG​GTA​ACT​CG‑3'.

Dual luciferase reporter assay. MiRNAs targets were 
predicted using the TargetScan website (www.targetscan.org). 
Wild‑type (WT) and mutant seed regions of miR‑291‑3p in 
the 3'‑untranslated region (UTR) of the Smad2 gene were 

chemically synthesized in vitro, XhoI and NdeI restriction sites 
were added, and then cloned into pmirGLO luciferase reporter 
vector (Promega Corporation, Madison, WI, USA).

Prior to conducting the dual reporter assay, 5x104 293T 
cells/well were seeded in 24‑well plates with 500 µl DMEM 
and cultured for 18 h at 37˚C. The cells were transfected with 
the modified firefly luciferase reporter vector (500 ng/µl) 
mixed with Vigofect transfection reagent (Vigorous, Beijing, 
China), according to the manufacturer's protocol. After contin-
uous exposure of miR‑291‑3p/pmirGLO‑Smad2‑3'UTR or 
NC/pmirGLO blank vector for 48 h, the luciferase activities of 
firefly and Renilla were measured with the Dual‑Luciferase® 
Reporter Assay System (Promega Corporation), according to 
the manufacturer's protocol. Firefly luciferase activity was 
normalized to Renilla luciferase activity.

Western blotting. Liver tissues or primary HSCs were treated 
with radioimmunoprecipitation assay buffer containing 
1% (v/v) phenylmethylsulfonyl fluoride (both Beijing Solarbio 
Science and Technology Co., Ltd., Beijing, China), 0.3% (v/v) 
protease inhibitor (Sigma‑Aldrich; Merck KGaA, Darmstadt, 
Germany) and 0.1% (v/v) phosphorylated proteinase inhibitor 
(Sigma‑Aldrich; Merck KGaA). A bicinchoninic protein assay 
kit (Pierce; Thermo Fisher Scientific, Inc.) was used to deter-
mine the protein concentration. Subsequently, supernatants were 
extracted from the lysates following centrifugation at 11,000 x g 
at 4˚C for 15 min. Equal amounts of protein (30 µg/lane) were 
separated using 10% SDS‑PAGE at 300 mA for 2 h and trans-
ferred onto a polyvinylidene fluoride membrane, as previously 
reported (10). The following primary antibodies were used: 
β‑Actin (cat. no. 4970), Snai1 (cat. no. 3879), vascular endothelial 
cadherin (VE‑cadherin; cat. no. 2500), Vimentin (cat. no. 5741), 
TGF‑β1 (cat. no. 3711), GFAP (cat. no. 80788; all 1:1,000; Cell 

Table I. Clinical characteristics of healthy control and patients with liver cirrhosis.

Characteristic	 Control (n=40)	 Liver cirrhosis (n=40)

Sex (male/female)	 24/16	 22/18
Age (years)	 43.6±14.5	 52.5±13.4
Tumor stage (n)		
  Stage I		  2
  Stage II		  3
  Stage III		  10
  Stage IV		  25
TBIL (µB)	 11.8±3.8	 106.7±157.9a

ALT (U/l)	 21.3±5.6	 122.4±235.1a

AST (U/l)	 20.3±4.8	 116.4±182.5a

ALB (g/l)	 46.8±2.7	 32.5±8.1a

GGT (U/l)	 23.5±8.2	 116.4±138.9a

AKP (U/l)	 56.2±8.4	 163.2±96.5a

PT time (sec)	 12.1±0.5	 18.3±13.6a

HBV DNA level		  6.7±15.9a

aP<0.05 vs. the control. AKP, alkaline phosphatase; ALB, albumin; ALT, alanine transaminase; AST, aspartate aminotransferase; GGT, 
glutamyltransferase; HBV, hepatitis B virus; PT, prothrombin time; TBIL, total bilirubin.
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Signaling Technology, Inc., Danvers, MA, USA). HSCs are the 
main contributors of hepatic fibrosis (24). Glial Fibrillary Acidic 
Protein (GFAP), first identified in astroglial cells, belongs to 
intermediate filaments, which preserves cell's mechanical 
strength and structure (25). TGF‑β‑mediated activation of GFAP 
has been extensively reported (26,27). A previous study has 
demonstrated that GFAP could be a more useful marker of early 
Hepatic Stellate Cells (HSC) activation than α‑SMA (24). It is 
suggested that GFAP may act as a mesenchymal marker of early 
HSCs activation in liver fibrosis (28). Hence, the present study 
evaluated the expression of GFAP. Following several washes 
with TBS with Tween (TBST), the membranes were incubated 
with horseradish peroxidase (HRP)‑conjugated goat anti‑rabbit 
IgG (1:5,000; cat. no.  ZB‑2306, Zhongshan Gold Bridge 
Biological Technology Co., Beijing, China) for 2 h at room 
temperature and then washed. The proteins were detected using 
enhanced chemiluminescence, according to the manufacturer's 
protocol (Merck KGaA). ImageJ 1.8.0 (National Institutes of 
Health, Bethesda, MD, USA) was used to quantify the relative 
protein levels. β‑Actin was used as an internal control.

Statistical analysis. The data are represented as the 
mean ± standard deviation (SD). Two‑tailed unpaired Student's 
t‑tests were used for comparisons of two groups. Comparisons 
of means among multiple groups were determined using 
one‑way analysis of variance followed by a Turkey's post‑hoc 
test. Receiver operating characteristic (ROC) curves were 
used to assess miR‑291‑3p as a biomarker and the area under 
the curve was reported (version 20.0; SPSS, Inc., Chicago, 
Illinois). P<0.05 was considered to indicate a statistically 
significant difference.

Results

Decreased miR‑291‑3p in the peripheral blood and liver 
tissues of patients with HF. First, the levels of miR‑291‑3p 
in the peripheral blood and liver tissues of patients with HF 
were detected. Compared with healthy controls (1±0.69), the 
levels of miR‑291‑3p in the peripheral blood were decreased 
in patients with HF (0.34±0.32; Fig. 1A). Furthermore, the 
levels of miR‑291‑3p in fibrosis liver tissues and the normal 
liver tissues were tested. As shown in Fig. 1B, a much lower 
miR‑291‑3p level (0.42±0.28) was identified in fibrotic 
liver tissues than that of the normal liver tissues (1±0.83). 
In addition, the present study also evaluated whether 
miR‑291‑3p present in peripheral blood may be a useful 
biomarker to determine possible HF in patients. Receiver 
operating characteristic (ROC) curve analysis showed that 
peripheral blood miR‑291‑3p may differentiate patients with 
HF from healthy controls, with a ROC curve area of 0.942 
(95% confidence interval: 0.858‑1.000; P<0.001; Fig. 1C). 
Meanwhile, the sensitivity and specificity for peripheral blood 
miR‑291‑3p were 85.4 and 93.2%, respectively, at the cut‑off 
of 0.208.

miR‑291‑3p suppresses TGF‑β signaling. TGF‑β signaling 
pathway has become a novel therapeutic in the prevention and 
treatment of HF (29). Thus, the effect of miR‑291‑3p on the 
TGF‑β signaling pathway was evaluated. RT‑qPCR analysis 
showed that transfection of miR‑291‑3p mimic significantly 

enhanced the level of miR‑291‑3p (36.8±4.5) than that of 
NC (1±0.12), but suppressed the mRNA levels of Snai1, 
VE‑cadherin, Vimentin, TGF‑β1, and GFAP  (Fig.  2A). 
In comparison, transfection with miR‑291‑3p inhibitor 
decreased miR‑291‑3p, but increased the mRNA levels of 
Snai1, VE‑cadherin, Vimentin, TGF‑β1 and GFAP (Fig. 2B). 
Additionally, the protein expression levels of Snai1, 
VE‑cadherin, Vimentin, TGF‑β1 and GFAP were decreased 
in HSCs transfected with miR‑291‑3p mimics  (Fig.  2C). 
Furthermore, the protein expression of Snai1, VE‑cadherin, 
Vimentin, TGF‑β1, and GFAP was also observed to be 
enhanced in HSCs transfected with miR‑291‑3p inhibitors 
compared with that of negative controls (Fig. 2D).

Smad2 is a target gene of miR‑291‑3p. Based on these above 
observations, the possible target genes of miR‑291‑3p were 
explored. TargetScan analysis demonstrated a conserved 
binding site of miR‑291‑3p in the 3'UTR of Smad2 (posi-
tion 95‑119 of Smad2 3'UTR; Fig.  3A). Dual luciferase 
reporter assay showed that overexpression of miR‑291‑3p 
significantly suppressed the relative luciferase activity of 
pmirGLO‑Smad2‑3'UTR, but not the relative luciferase 
activity of pmirGLO‑Smad2‑3'UTR‑Mut (Fig. 3B). Western 
blot assay also showed that overexpression of miR‑291‑3p 

Figure 1. miR‑291‑3p was decreased in the peripheral blood and liver 
tissues of patients with HF. (A) Compared with healthy controls, the level of 
peripheral blood miR‑291‑3p was decreased in patients with HF. (B) much 
lower miR‑291‑3p level was identified in the normal liver tissues compared 
to that of fibrotic liver tissues. (C) ROC analysis showed that peripheral 
blood miR‑291‑3p may differentiate patients with HF from healthy controls. 
*P<0.05 vs. control. HF, hepatic fibrosis; miR, microRNA; ROC, receiver 
operating characteristic.
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suppressed the expression of Smad2 (Fig. 3C), while its inhibi-
tion increased the protein levels of Smad2 (Fig. 3D).

miR‑291‑3p suppresses TGF‑β signaling via Smad2. To 
further evaluate whether miR‑291‑3p suppressed TGF‑β 
signaling via Smad2, a specific siRNA targeting Smad2 was 
selected. As shown in Fig. 4, silencing of Smad2 significantly 
inhibited the activation of TGF‑β signaling. In comparison, 
inhibition of miR‑291‑3p increased the activation of TGF‑β 
signaling in Fig. 2D. However, knockdown of Smad2 together 
with miR‑291‑3p inhibitor, significantly abolished miR‑291‑3p 
inhibition‑induced activation of TGF‑β signaling (Fig. 4).

Discussion

Liver fibrosis is a major characteristic of most chronic liver 
diseases  (30,31). During progression, liver fibrosis can 

develop into excessive scarring and organ failure, as demon-
strated in liver cirrhosis and primary liver cancer (32). It 
has been suggested that the fibrous ECM is significantly 
accumulated and increased in the fibrotic liver (33). Hepatic 
stellate cells are the major contributors for ECM after liver 
injury. Once HSCs are activated, they become proliferative 
resulting in enhanced ECM production, thereby leading to 
liver fibrosis.

Although liver fibrosis can be reversible, how to effectively 
prevent or reverse the process is still a large challenge for clini-
cians (34). Additionally, sound diagnostic biomarkers for liver 
fibrosis are still rare. These limitations largely restrict the treat-
ment options (35). Currently, liver biopsy is the gold standard 
to identify liver fibrosis (11). However, it is largely questioned 
due to its painful and invasive characteristics (31). Therefore, 
early identification of liver fibrosis is of great importance to 
develop effective antifibrotic therapies.

Figure 2. miR‑291‑3p suppressed TGF‑β signaling. (A) Reverse transcription‑quantitative polymerase chain reaction showed that transfection of the miR‑291‑3p 
mimic significantly enhanced the level of miR‑291‑3p than that of NC (left panel), but significantly suppressed the mRNA levels of Snai1, VE‑cadherin, 
Vimentin, TGF‑β1, and GFAP (right panel). (B) Transfection of miR‑291‑3p inhibitor decreased miR‑291‑3p (left panel), but increased the mRNA levels of 
Snai1, VE‑cadherin, Vimentin, TGF‑β1, and GFAP. (C) The protein levels of Snai1, VE‑cadherin, Vimentin, TGF‑β1, and GFAP were decreased in HSC 
transfected with miR‑291‑3p mimics (right panel). (D) The expression of Snai1, VE‑cadherin, Vimentin, TGF‑β1, and GFAP was also found to be enhanced 
in HSC transfected with miR‑291‑3p inhibitors compared to that of negative controls. *P<0.05, **P<0.01 and ***P<0.001 vs. negative control (NC). GFAP, glial 
fibrillary acidic protein; HSC, hepatic stellate cells; miR, microRNA; TGF, transforming growth factor; VE‑cadherin, vascular endothelial cadherin.
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Due to their stability and wide gene‑regulating capacity, 
miRNAs are attractive therapeutic targets (36,37). In the progres-
sion of liver fibrosis, increasing evidence has shown the abnormal 

expression of miRNAs, indicating the importance of maintaining 
homeostasis via miRNAs (14,38). The present study showed for 
the first time, to the best of our knowledge, that miR‑291‑3p was 

Figure 4. Knockdown of mothers against decapentaplegic homolog 2 Smad2 significantly abolished microRNA miR‑291‑3p inhibition‑induced activa-
tion of TGF‑β signaling in HSCs transfected with miR‑291‑3p inhibitors compared with that of negative controls. *P<0.05, **P<0.01, ***P<0.001 vs. NC; 
###P<0.001 vs. NC as indicated. Smad2, mothers against decapentaplegic homolog 2; NC, negative control; TGF, transforming growth factor; HSC, hepatic 
stellate cell; GFAP, glial fibrillary acidic protein; VE, vascular endothelial.

Figure 3. Smad2 is a target gene of microRNA miR‑291‑3p. (A) TargetScan analysis demonstrated a conserved binding site of miR‑291‑3p in the 3'UTR 
of Smad2. (B) Dual luciferase reporter assay showed that overexpression of miRNA miR‑291‑3p significantly suppressed the relative luciferase activity of 
pmirGLO‑Smad2‑3'UTR. Western blot assay showed that the overexpression of miR‑291‑3p suppressed the (C) Smad2 expression, while the inhibition of 
miR‑291‑3p increased the protein level of (D) Smad2. **P<0.01, ***P<0.001 vs. NC. 3'UTR, 3' untranslated region; Smad2, mothers against decapentaplegic 
homolog 2; NC, negative control.
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decreased in the peripheral blood and liver tissues of patients 
with HF. ROC analysis showed that miR‑291‑3p could differen-
tiate patients with HF from healthy controls.

Based on the above findings, the study further explored the 
possible association between miR‑291‑3p and liver fibrosis. 
TGF‑β1 is a major cytokine involved in liver fibrosis (39). In 
the progression of liver fibrosis, TGF‑β1 could stimulate and 
activate HSCs to proliferate and constantly secrete ECM via 
autocrine and paracrine mechanisms, resulting in sustained 
fibrosis (40). The present study identified that overexpression 
of miR‑291‑3p suppressed the activation of TGF‑β1 signaling, 
while inhibition of miR‑291‑3p enhanced TGF‑β1 signaling 
activation. Furthermore, it indicated that Smad2 was a 
target gene of miR‑291‑3p. More importantly, silencing of 
Smad2 could abolish miR‑291‑3p inhibition‑induced TGF‑β1 
signaling activation.

It is true that increased GFAP expression is observed in 
liver fibrosis compared with normal control (28). However, 
it has also been stated that high GFAP expression level is 
associated with low fibrosis (28). These data suggested that 
GFAP may be a more useful marker than alpha‑smooth muscle 
actin (α‑SMA) for early activation of HSCs and represent an 
early indicator of hepatic fibrogenesis (41). The present study 
did not examine whether low miR‑291 expression is associated 
with high fibrosis since not enough samples were collected. 
The expression of GFAP in cultured HSCs and the expression 
of miR‑291‑3p was not tested according to the severity of HF 
was examined. Thus, further study is necessary to explore 
whether miR‑291‑3p may represent as an early or late indicator 
of hepatic fibrogenesis.

At present, the ‘gold standard’ for diagnosis of liver fibrosis 
is still liver biopsy, but liver biopsy is an invasive operation, 
which has some limitations, such as sampling error, subjective 
deviation of different pathological readers (42). Therefore, 
non‑invasive diagnosis of liver fibrosis has become a research 
topic in recent years, among which aspartate aminotransferase 
(AST) to platelet ratio index (APRI) and fibrosis‑4 (FIB‑4) 
are widely used (42). However, it is reported that the accuracy 
of diagnosis of hepatic fibrosis by APRI and FIB‑4 alone is 
not more than 75% (43). The rate of misdiagnosis and missed 
diagnosis is still high (43). However, the sensitivity and speci-
ficity for peripheral blood miR‑291‑3p were 85.4 and 93.2%, 
respectively. The samples in the current study were limited 
and future work with large patient samples is required to 
validate the present findings. Studies exploring the diagnostic 
value of combination of APRI, FIB‑4 and peripheral blood 
microRNA‑291‑3p for liver fibrosis in patients with chronic 
hepatitis B, are needed in order to improve the diagnostic 
accuracy of liver fibrosis in patients with chronic hepatitis B.

In summary, reduced peripheral blood miR‑291‑3p may 
serve a role in the progression of HF via targeting Smad2. 
However, there are still some limitations in the current study. 
On the one hand, the current study was limited due to the small 
sample size of patient samples. On the other hand, whether 
miR‑291‑3p could be the therapeutic target of HF deserves 
further study.
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