
EXPERIMENTAL AND THERAPEUTIC MEDICINE  17:  4506-4516,  20194506

Abstract. In the present study, gene expression data of 
hepatocellular carcinoma (HCC) were analyzed by using 
a multi-step Bioinformatics approach to establish a novel 
prognostic prediction system. Gene expression profiles were 
downloaded from The Cancer Genome Atlas (TCGA) and 
Gene Expression Omnibus (GEO) databases. The overlapping 
differentially expressed genes (DEGs) between these two 
datasets were identified using the limma package in R. 
Prognostic genes were further identified by Cox regression 
using the survival package. The significantly co-expressed 
gene pairs were selected using the R function cor to construct 
the co-expression network. Functional and module analyses 
were also performed. Next, a prognostic prediction system 
was established by Bayes discriminant analysis using the 
discriminant.bayes function in the e1071 package, which was 
further validated in another independent GEO dataset. A total 
of 177 overlapping DEGs were identified from TCGA and the 
GEO dataset (GSE36376). Furthermore, 161 prognostic genes 
were selected and the top six were stanniocalcin 2, carbonic 
anhydrase 12, cell division cycle (CDC) 20, deoxyribonuclease 1 
like 3, glucosylceramidase β3 and metallothionein 1G. A 
gene co-expression network involving 41 upregulated and 52 
downregulated genes was constructed. SPC24, endothelial 
cell specific molecule 1, CDC20, CDCA3, cyclin (CCN) E1 
and chromatin licensing and DNA replication factor 1 were 
significantly associated with cell division, mitotic cell cycle 
and positive regulation of cell proliferation. CCNB1, CCNE1, 
CCNB2 and stratifin were clearly associated with the p53 
signaling pathway. A prognostic prediction system containing 
55 signature genes was established and then validated in the 
GEO dataset GSE20140. In conclusion, the present study 

identified a number of prognostic genes and established a 
prediction system to assess the prognosis of HCC patients.

Introduction

Hepatocellular carcinoma (HCC) is the sixth most common 
cancer type worldwide and the third most common cause of 
cancer-associated death (1). Viral hepatitis infection is the 
major cause of HCC (2). The prognosis of HCC is mainly 
dependent on tumor size and staging (3). Prognosis is typically 
poor as complete tumor resection only occurs in 10-20% of 
cases (4).

Recently, considerable efforts have been made to identify 
prognostic markers for HCC. It has been reported that the 
expression of survivin mRNA correlates with poor prognosis 
in patients with HCC (5). In addition, Akt phosphorylation is 
a risk factor for early disease recurrence and poor prognosis 
of HCC patients (6). Furthermore, Yes-associated protein was 
identified as an independent prognostic marker in HCC (7) 
and the overexpression of pituitary tumor transforming gene 1 
(PTTG1) was reported to be associated with angiogenesis 
and poor prognosis in patients with HCC (8). Furthermore, 
the downregulation of phosphatidylethanolamine binding 
protein 1 is associated with aggressive tumor behavior and 
unfavorable clinical outcomes in HCC patients with hepatitis B 
infection (9). In addition, HCC patients overexpressing T-cell 
lymphoma invasion and metastasis 1 displayed a significantly 
shorter overall survival time (10). Finally, high expression of 
epidermal growth factor-like repeats and discoidin domains 3 
also predicts poor prognosis in HCC patients (11).

Numerous novel prognostic models for HCC have been 
reported. Yamashita et al (12) proposed a classification system 
defined by epithelial cell adhesion molecule and α-fetoprotein, 
revealing novel prognostic subtypes of HCC. Calvisi et al (13) 
indicated that genome-wide hypomethylation and CpG 
hypermethylation are associated with biological features and 
the clinical outcome of HCC. The intratumoral balance of 
regulatory and cytotoxic T cells is a promising independent 
predictor for recurrence and survival of HCC after resec-
tion (14). Budhu et al (15) reported that a unique immune 
response signature (a refined 17‑gene signature) of the liver 
microenvironment may be used to predict venous metastases, 
recurrence and prognosis in HCC. A Met-regulated expression 
signature significantly correlated with an increased vascular 
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invasion rate, microvessel density and decreased mean 
survival of HCC patients (16). However, improved prognostic 
prediction systems are required to guide clinical treatments for 
HCC patients (17).

In the present study, a multi-step strategy was used to iden-
tify prognostic gene signatures in HCC (Fig. 1). Gene expression 
data from HCC datasets were analyzed and differentially 
expressed genes (DEGs) were identified. Furthermore, the 
prognostic genes were used to construct a gene co-expression 
network and a prognostic prediction system was established. 
In addition, functional and module analyses were performed 
for the gene co-expression network. The prediction model 
was further validated in another independent gene expression 
dataset. The created prognostic prediction system may be 
applied to predict the prognosis of HCC.

Materials and methods

Raw data and pre‑treatment. The mRNA expression profiles 
of 421 samples (371 samples from patients with HCC and 
50 samples from normal controls), along with their corre-
sponding clinical information (contained in TXT files) 
were downloaded from The Cancer Genome Atlas (TCGA; 
gdc‑portal.nci.nih.gov). These gene expression profiles had 
been generated by using the Illumina HiSeq 2000 RNA 
Sequencing platform (Illumina, Inc., San Diego, CA, USA). 
The genes in the TCGA dataset were annotated using informa-
tion retrieved from the Human Genome Organization Gene 
Nomenclature Committee (HGNC; www.genenames.org), 
which establishes unique symbols and names for human loci.

The inclusion and exclusion criteria for the selection of 
microarray datasets were as follows: Human HCC; number 
of tumor samples, >100; number of control samples, >100; 
total number of tumor and control samples larger than that of 
the samples in TCGA dataset. Finally, the mRNA expression 
dataset GSE36376 was retrieved and raw data (TXT files) 
were downloaded from the Gene Expression Omnibus reposi-
tory (GEO; www.ncbi.nlm.nih.gov/geo). This GEO dataset 
contained gene expression profiles of tumor liver tissues 
(n=240) and adjacent non-tumorous liver tissues (n=193). Data 
had been acquired based on the platform GPL10558 Illumina 
HumanHT-12 V4.0 expression bead chip (Illumina, Inc.). 
Probes were annotated to genes according to platform annota-
tion profiles. Furthermore, the average expression value of a 
gene symbol mapped with multiple probes was calculated. The 
genes with low abundance (expression value <5) were removed 
and Log 2 conversion was applied for data using the R limma 
package (18). The microarray data were normalized by the 
quantile method (19).

Identification of DEGs and clustering analysis. The differ-
ences in gene expression levels between tumor and control 
samples in TCGA and GSE36376 datasets were analyzed 
using the limma package (18) of R. The false discovery rate 
(FDR) was calculated with the multtest package (20) of R. 
An FDR <0.05 and a |log2 (fold change)| >0.585 (i.e., absolute 
fold change >1.5) (21-23) were selected as the cut-off thresh-
olds to identify DEGs. The overlapping DEGs between the 
TCGA and GSE36376 datasets were used for further analysis. 
The top 25 downregulated and upregulated DEGs in the 

latter subset were used for hierarchical clustering analysis 
by the pheatmap package (version 1.0.8; cran.r-project.
org/package=pheatmap) (24) in R, based on the Encyclopedia 
of Distances (25), to intuitively identify the differences in gene 
expression levels among samples.

Screening of prognostic genes. In the TCGA dataset, the 
mRNA expression profiles and survival information were 
available for 330 patients. These data were used to screen 
prognostic genes from the overlapping DEGs using Cox 
regression (26) from the survival package of R. The genes with 
a log-rank P-value of <0.05 were considered to be prognostic. 
The top 6 prognostic genes ranked by-logRank (P-value) were 
used for stratification of patients in the Kaplan‑Meier (K‑M) 
survival analysis.

Construction of gene co‑expression network. The expression 
data of prognostic genes were used to calculate the correlation 
coefficients (r) and the corresponding P-values between pair-
wise genes were determined using the cor function of R. The 
gene pairs with the |r|≥0.6 and P<0.05 were considered to be 
significantly co‑expressed. A gene co‑expression network was 
constructed with these co-expressed gene pairs and visualized 
by Cytoscape 2.8.0 (www.cytoscape.org) (27).

Functional annotation and functional module analysis. 
Gene Ontology (GO) functional and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathway enrichment analyses 
were performed for the prognostic genes in the co-expression 
network using the cluster Profiler package of R (28).

After the enrichment analysis, the transcription factors 
(TFs) significantly associated with genes in the co‑expression 
network were identified using the Database for Annotation and 
the Visualization and Integrated Discovery platform (DAVID; 
david.ncifcrf.gov) (29). The identified TFs were also integrated 
into the co-expression network. Functional modules were 
unveiled from the co-expression network using GraphWeb 
(biit.cs.ut.ee/graphweb) (30). Furthermore, GO functional 
enrichment analyses were performed for the genes in the 
modules.

Prognostic prediction system. The 330 HCC samples with 
survival information in the TCGA dataset were selected as 
a training set. These samples were divided into two groups: 
A favorable prognostic group (status is alive and time of 
follow‑up ≥15 months; n=139) and a poor prognostic group 
(status is deceased and the time of survival <15 months; n=191) 
based on their survival status. Genes in the co-expression 
network were ranked by logRank (P-value) and then analyzed 
by Bayes discriminant analysis (31) using the discrimin‑
iant bayes function from package e1071 (32) of R. The optimal 
combination of genes with the highest discriminative ability 
between the favorable and poor prognostic groups was defined 
as prognostic prediction system. The K‑M survival curves 
were plotted for samples from the TCGA dataset to assess the 
prediction accuracy.

Validation of the prognostic prediction system. The predictive 
value of the abovementioned prognostic prediction system 
was further assessed using another independent validation 
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microarray dataset. The independent validation microarray 
dataset was selected according to the following inclusion 
and exclusion criteria: Human HCC; containing prognostic 
information; number of tumor samples, >100; number of 
tumor samples and control samples larger than that of samples 
in the TCGA dataset. Finally, the mRNA expression dataset 
GSE20140 was retrieved for validation and raw data (TXT 
files) were downloaded from GEO. This independent validation 
dataset contained 80 HCC samples and 540 hepatitis/cirrhotic 
liver samples with corresponding survival information. 
This prognostic prediction system was used to separate the 
GSE20140 samples into favorable and poor prognostic groups 
based on the prognostic score. Furthermore, the K‑M survival 
curves were plotted for the GSE20140 samples to examine the 
predictive accuracy.

Results

DEGs. A total of 17,137 protein-coding mRNAs were 
annotated in the TCGA dataset based on the information 
from HGNC. After removal of low-abundance (expression 
value, <5) mRNAs, 12,370 mRNAs were retained and the 
expression density was significantly improved (Fig. 2). A total 
of 498 and 3,028 DEGs were identified from the TCGA and 
the GSE36376 dataset, respectively, and 177 of these were 
overlapping DEGs. The hierarchical clustering analysis indi-
cated that, among these genes, the top 25 downregulated and 
upregulated DEGs were able to discriminate between HCC 
and control samples (Fig. 3).

Prognostic genes. A total of 161 prognostic genes (P<0.05) 
were identified. The top 6 prognostic mRNAs, ranked by 
-logRank in descending order, were stanniocalcin 2 (STC2), 
carbonic anhydrase 12 (CA12), cell division cycle 20 (CDC20), 

deoxyribonuclease 1 like 3 (DNASE1L3), glucosylcerami-
dase β3 (GBA3) and metallothionein 1G (MT1G). The K‑M 
survival curves of patients stratified by these 6 prognostic 
genes individually suggested that these molecular markers 
may be used to predict the prognosis of HCC patients (Fig. 4). 
Patients with high expression levels of STC2, CA12, CDC20, 
DNASE1L3, GBA3 and MT1G had a significantly shorter 
survival time.

Gene co‑expression network. The constructed co-expression 
network for prognostic genes contained 1,017 edges and 
93 nodes involving 41 upregulated and 52 downregulated 
genes (Fig. 5A). A total of 3 TFs, i.e., nuclear transcription 
factor Y, cooperates with myogenic proteins 1 and signal 
transducer and activator of transcription 5B were identified 
and integrated into the gene co-expression network (Fig. 5B). 
A total of 18 significant GO terms and 7 KEGG pathways 
were significantly enriched by the prognostic genes in the 
co-expression network (Fig. 6). The prognostic genes NIMA 
related kinase 2 (NEK2), cell division cycle 20 (CDC20), 
aurora kinase A (AURKA), pituitary tumor‑transforming 1 
(PTTG1), cell division cycle 25A (CDC25A), SPC24 compo-
nent of NDC80 kinetochore complex (SPC24), family with 
sequence similarity 83 member D (FAM83D), cyclin B2 
(CCNB2), BUB1 mitotic checkpoint serine/threonine kinase 
(BUB1), centromere protein W (CENPW), cell division cycle 
associated 5 (CDCA5), cyclin A2 (CCNA2) and cell division 
cycle associated 3 (CDCA3) were significantly associated 
with cell division (P=2.29x10-13) and mitotic nuclear division 
(P=2.76x10-12; Table I). A total of 7 prognostic genes, i.e. CDC7, 
PRC1, PTH1R, PDGFRA, CDC20, endothelial cell specific 
molecule 1 (ESM1) and VIPR1, were significantly associated 
with increased cell proliferation (P=3.56x10-2). Furthermore, 
CCNB1, FAM83D, CCNE1, PRC1, AURKA, stratifin (SFN), 
CCNA2, CDC25A and KIF20A were significantly associ-
ated with protein kinase binding (P=7.10x10-4). The pathway 

Figure 1. Schematic diagram for a multi-step strategy to identify a gene 
signature for the prognosis of hepatocellular carcinoma. The results for each 
step have been summarized. TCGA, The Cancer Genome Atlas; DEGs, 
differential expressed genes; OS, overall survival; K‑M, Kaplan‑Meier; TF, 
transcription factor.

Figure 2. Distribution of mRNA expression density. The solid and dotted 
line, respectively, indicate the distribution prior to and after the removal of 
low-abundance mRNAs.
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Figure 3. Hierarchical clustering analysis using the top 25 downregulated and upregulated genes among the 177 overlapping differentially expressed genes. 
(A) for The Cancer Genome Atlas dataset; (B) for the GSE36376 dataset. Pink indicates hepatocellular cancer cases, while blue indicates normal controls.

Figure 4. Kaplan‑Meier survival curves for the top six prognostic genes. (A) STC2; (B) CA12; (C) CDC20; (D) DNASE1L3; (E) GBA3; (F) MT1G. The red 
lines indicate cases with high expression (expression value > median), while the black line indicates cases with low expression (expression value < median). 
95% confidence intervals are displayed after the HR in brackets. HR, hazard ratio; STC2, stanniocalcin 2; CA12, carbonic anhydrase 12; CDC20, cell division 
cycle 20; DNASE1L3, deoxyribonuclease 1 like 3; GBA3, glucosylceramidase β3; MT1G, metallothionein.
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enrichment analysis revealed that most of the prognostic genes 
in the co‑expression network were significantly involved in the 
cell cycle (P=4.51x10-9; Table II), including CCNB1, CDC7, 
CCNE1, CDC45, CCNB2, BUB1, CDC20, PTTG1, SFN, 
CCNA2 and CDC25A. The four prognostic genes CCNB1, 
CCNE1, CCNB2 and SFN were significantly associated with 
the p53 signaling pathway (P=9.25x10-3).

A total of 4 functional modules were revealed by 
GraphWeb (Fig. 5B). The prognostic genes in the purple 
module [chromatin licensing and DNA replication factor 1 
(CDT1), CHAF1B, RAD51, CDCA5, CDCA8, CDC7, TRIP13, 
CDC25A, AURKB and CEP55] were mainly associated with 
the cell cycle (P=6.57x10-10). The prognostic genes in the blue 
module (CDC20, CCNB2, CDCA3, KIFC1, PBK, NCAPG, 

BUB1, DLGAP5 and CDKN3) were significantly associated 
with the mitotic cell cycle (P=3.71x10-10). Furthermore, the 
prognostic genes in the yellow module (CCNA2, PTTG1, 
PRC1, NEK2, SPC24 and AURKA) were significantly 
involved in cell division (P=8.71x10-6).

Prognostic prediction system. The prognostic prediction 
system was established based on Bayes discriminant analysis 
(Fig. 7A). Finally, a prognostic prediction system consisting 
of 55 signature genes and represented by 29 upregulated 
genes (including SPC24, TGM3, KIF20A, ESM1, CDC20, 
CDCA3, CCNE1, TNFRSF4, COL15A1, and CELSR3) and 
26 downregulated genes (including CYP4A22, TMEM82, 
GLYAT, GBA3, APOF, SLC22A1, DNASE1L3, ECM1, CETP, 

Figure 5. Co-expression network. (A) For prognostic genes; (B) transcription factor-regulated. Red lines indicate negative co-expression pairs, green lines 
indicate positive co-expression pairs and purple lines indicate transcriptional regulations. Triangles represent upregulated genes, while inverted triangles 
represent downregulated genes, and pink squares represent transcriptional factors. Functional modules are presented in different colors.
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and GLS2; Table III) was obtained. This system exhibited the 
highest discriminative ability to predict the survival of 330 
samples in the TCGA dataset. The prognostic scoring system 
was established following the Bayes discriminant analysis 
method as previously described (33).

The samples were stratified into favorable and poor prog-
nostic groups based on the score. If the prognostic score was 
between 0 and 3, the patient was defined as having a favorable 
prognosis, whereas a prognostic score between -3 and 0 was 
indicative of a poor prognosis. The distribution of the prog-
nostic scores indicated that the prognostic scores of samples 
in the favorable and poor prognostic groups were obviously 
different (Fig. 7B). The survival ratio of patients in the favor-
able prognostic group was significantly higher than that of 
patients in the poor prognostic group, according to the K‑M 
survival curves (Fig. 7C, P=8.16x10-8).

Validation of the prognostic prediction system. The predictive 
value of the identified prognostic scoring system was further 
validated using another independent GEO dataset, GSE20140. 
The samples in GSE20140 were divided into favorable and 
poor prognostic groups based on the prognostic score. The 
K‑M survival curve indicated that patients in the favorable 
prognostic group survived significantly longer than those in 
the poor prognostic group (Fig. 7D; P=1.73x10-3).

Discussion

In the present study, 177 overlapping DEGs were identified 
from the gene expression data from the TCGA and GEO 

dataset (GSE36376). Of these, 161 genes were identified as 
being prognostic based on the analysis of survival. Of note, 
according to the K‑M survival curves, the top 6 prognostic 
genes (STC2, CA12, CDC20, DNASE1L3, GBA3 and MT1G) 
were able to predict the prognosis of the HCC patients from the 
TCGA dataset. It was revealed that patients with high expres-
sion levels of STC2, CA12, CDC20, DNASE1L3, GBA3 and 
MT1G have a significantly shorter survival time. The STC2 
protein, encoded by the STC2 gene, is an extracellular matrix 
protein involved in a number of physiological processes, 
including bone development, wound healing, angiogenesis 
and modulation of the inflammatory response (34). Previous 
studies have reported that HCC patients with expression of 
STC2 had a poorer prognosis according to the K‑M survival 
curves, suggesting that STC2 expression may be a useful indi-
cator of poor prognosis in HCC patients (35,36). CDC20 is a 
regulatory protein interacting with the anaphase-promoting 
complex cyclosome in the cell cycle and has important roles 
in the progression of multiple tumors (37,38). It has also been 
demonstrated that increased expression of CDC20 is associ-
ated with the development and progression of HCC (39). 
The expression of MT1G was reported to be negatively 
associated with aberrant promoter hypermethylation, and 
the data from TCGA suggested that hypermethylation of 
MT1G is linked with favorable survival of HCC patients (40). 
Therefore, the prognostic predictive value of STC2, CDC20 
and MT1G in the present study was consistent with the 
results of previous studies. CA12 is a transmembrane enzyme 
that hydrates extracellular CO2, leading to the generation 
of membrane-impermeable H+ and HCO3

- (41). It has been 

Figure 6. Significantly enriched (A) GO terms and (B) Kyoto Encyclopedia of Genes and Genomes pathways for the 93 prognostic genes from the gene 
co-expression network. GO, gene ontology; Hsa, Homo sapiens.
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Table I. GO functional terms enriched by the prognostic genes in the co-expression network.

Category/term Count P-value Genes

Biological process
  GO:0051301~cell division 19 2.29x10-13 CDC7, KIFC1, NEK2, AURKA, CDC20, PTTG1, CDC25A, 
   SPC24, FAM83D, CCNB1, CCNE1, CDCA8, CCNB2, NCAPG, 
   BUB1, CENPW, CDCA5, CCNA2, CDCA3
  GO:0007067~mitotic nuclear 16 2.760x10-12 NEK2, CDC20, AURKA, PBK, AURKB,
  division   CEP55, PTTG1, CDC25A, SPC24, FAM83D, CCNB2, BUB1,
   CENPW, CDCA5, CCNA2, CDCA3
  GO:0000082~G1/S transition   8 1.05x10-6 CDC7, CCNE1, CDC45, POLE2, CDKN3, CDCA5, CDC25A, 
  of mitotic cell cycle   CDT1
  GO:0007062~sister chromatid   7 1.66x10-5 SPC24, CDCA8, CENPL, BUB1, CDC20, AURKB, CDCA5
  cohesion
  GO:0006260~DNA replication   7 1.63x10-4 CDC7, CDC45, POLE2, CHAF1B, CDC25A, DSCC1, CDT1
  GO:0008284~positive regulation   7 3.56x10-2 CDC7, PRC1, PTH1R, PDGFRA, CDC20, ESM1, VIPR1
  of cell proliferation
  GO:0071276~cellular response   6 2.07x10-8 MT1A, CYP1A2, MT1H, MT1X, MT1G, MT1F
  to cadmium ion
  GO:0000086~G2/M transition   6 7.65x10-4 CCNB1, CCNB2, NEK2, AURKA, CDC25A, HMMR
  of mitotic cell cycle
  GO:0006281~DNA repair   6 7.87x10-3 RAD51AP1, POLE2, PTTG1, CHAF1B, UBE2T, RAD51
  GO:0008283~cell proliferation   6 4.32x10-2 FAM83D, STIL, DLGAP5, BUB1, AURKB, CDC25A

Cellular component
  GO:0005654~nucleoplasm 26 1.40x10-3 PRC1, AURKA, AURKB, CDT1, CCNE1, CDC45, CDCA8,
   POLE2, BUB1, THRSP, CCNA2, CDCA5, TOP2A, CDC7,
   RAD51AP1, CENPL, CDC20, CDC25A, RAD51, CCNB1,
   CCNB2, CENPW, CHAF1B, UBE2T, DSCC1, KIF20A
  GO:0005576~extracellular 14 4.86x10-2 C7, CNDP1, HSD17B13, COL15A1, CCL19, DCN, ESM1,
  region   ECM1, GREM2, DNASE1L3, MMP11, LPA, APOF, MFAP4
  GO:0005813~centrosome   9 1.13x10-3 CCNB1, STIL, CDC45, CCNB2, NCAPG, NEK2, AURKA,
   CDC20, CEP55
  GO:0048471~perinuclear   9 1.09x10-2 MT1A, AURKA, CDC20, CDKN3, MT1H, MT1X, MT1G, 
  region of cytoplasm   RAD51, MT1F
  GO:0030496~midbody   8 3.22x10-6 CDCA8, PRC1, NEK2, AURKA, CEP55, AURKB, ECT2,
   KIF20A
  GO:0005819~spindle   6 3.16x10-4 KIFC1, PRC1, AURKA, CDC20, AURKB, KIF20A
Molecular function
  GO:0019901~protein   9 7.10x10-4 CCNB1, FAM83D, CCNE1, PRC1, AURKA, SFN, CCNA2,
  kinase binding   CDC25A, KIF20A
  GO:0004672~protein   7 1.06x10-2 CDC7, NEK2, PDGFRA, BUB1, AURKA, PBK, AURKB
  kinase activity   
  GO:0004674~protein   6 4.48x10-2 CDC7, NEK2, BUB1, AURKA, PBK, AURKB
  serine/threonine kinase activity   

GO, Gene Ontology; APOF, apolipoprotein F; AURKA, aurora kinase A; AURKB, aurora kinase B; BUB1, BUB1 mitotic checkpoint serine/threonine kinase; 
C7, complement C7; CCL19, C-C motif chemokine ligand 19; CCNA2, cyclin A2; CCNB1, cyclin B1; CCNB2, cyclin B2; CCNE1, cyclin E1; CDC7, cell 
division cycle 7; CDC20, cell division cycle 20; CDC25A, cell division cycle 25A; CDC45, cell division cycle 45; CDCA3, cell division cycle associated 3; 
CDCA5, cell division cycle associated 5; CDCA8, cell division cycle associated 8; CDKN3, cyclin dependent kinase inhibitor 3; CDT1, chromatin licensing 
and DNA replication factor 1; CENPL, centromere protein L; CENPW, centromere protein W; CEP55, centrosomal protein 55; CHAF1B, chromatin assembly 
factor 1 subunit B; CNDP1, carnosine dipeptidase 1; COL15A1, collagen type XV alpha 1 chain; CYP1A2, cytochrome P450 family 1 subfamily A member 2; 
DCN, decorin; DLGAP5, DLG associated protein 5; DNASE1L3, deoxyribonuclease 1 like 3; DSCC1, DNA replication and sister chromatid cohesion 1; ECM1, 
extracellular matrix protein 1; ECT2, epithelial cell transforming 2; ESM1, endothelial cell specific molecule 1; FAM83D, family with sequence similarity 83 
member D; GREM2, gremlin 2, DAN family BMP antagonist; HMMR, hyaluronan mediated motility receptor; HSD17B13, hydroxysteroid 17-beta dehydro-
genase 13; KIF20A, kinesin family member 20A; KIFC1, kinesin family member C1; LPA, lipoprotein(a); MFAP4, microfibril associated protein 4; MMP11, 
matrix metallopeptidase 11; MT1A, metallothionein 1A; MT1F, metallothionein 1F; MT1G, metallothionein 1G; MT1H, metallothionein 1H; MT1X, metallo-
thionein 1X; NCAPG, non‑SMC condensin I complex subunit G; NEK2, NIMA related kinase 2; PBK, PDZ binding kinase; PDGFRA, platelet derived growth 
factor receptor alpha; POLE2, DNA polymerase epsilon 2, accessory subunit; PRC1, protein regulator of cytokinesis 1; PTH1R, parathyroid hormone 1 receptor; 
PTTG1, pituitary tumor‑transforming 1; RAD51, RAD51 recombinase; RAD51AP1, RAD51 associated protein 1; SFN, stratifin; SPC24, kinetochore‑associated 
Ndc80 complex subunit SPC24; STIL, STIL centriolar assembly protein; THRSP, thyroid hormone responsive; TOP2A, DNA topoisomerase II alpha; UBE2T, 
ubiquitin conjugating enzyme E2 T; VIPR1, vasoactive intestinal peptide receptor 1.
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revealed that inhibition of CA12 with sulphonamide- or 
coumarin-based small-molecule inhibitors reversed the 
effects of tumor acidification, thereby inhibiting primary or 
metastatic tumor cell growth (42). CA12 may affect the capa-
bility of invasion and migration of breast cancer cells through 
the p38/mitogen-activated protein kinase pathway (43). 
DNase1l3 is an endonuclease encoded by DNASE1L3, and 
is necessary for cytokine secretion following inflammasome 
activity (44). GBA3 is a cytosolic β-glycosidase produced by 
mammals and has broad substrate specificity (45). However, 
few studies have reported on the roles of CA12, DNASE1L3 

and GBA3 in the prognosis of HCC patients. Therefore, the 
associations of CA12, DNASE1L3 and GBA3 with HCC and 
their prognostic value require to be further studied.

Next, significantly co-expressed pairs were selected 
for the prognostic genes and a gene co-expression network 
involving 93 prognostic genes was constructed. From these, 
a prognostic prediction system consisting of 55 signature 
genes was established based on Bayes discriminant analysis. 
These 55 signature genes comprised 29 upregulated genes 
(including SPC24, TGM3, KIF20A, ESM1, CDC20, CDCA3, 
CCNE1, TNFRSF4, COL15A1, CELSR3 and CDT1) and 

Table II. Significantly enriched pathways for the prognostic genes in the co‑expression network.

Term Count P-value Genes

hsa04110:Cell cycle 11 4.51x10-9 CCNB1, CDC7, CCNE1, CDC45, CCNB2, BUB1, 
   CDC20, PTTG1, SFN, CCNA2, CDC25A
hsa04978:Mineral absorption   5 2.10x10-4 MT1A, MT1H, MT1X, MT1G, MT1F
hsa04115:p53 signaling pathway   4 9.25x10-3 CCNB1, CCNE1, CCNB2, SFN
hsa00380:Tryptophan metabolism   3 2.77x10-2 AADAT, CYP1A2, INMT
hsa00232:Caffeine metabolism   2 3.22x10-2 NAT2, CYP1A2
hsa00140:Steroid hormone biosynthesis   3 3.45x10-2 CYP3A4, SRD5A2, CYP1A2
hsa05204:Chemical carcinogenesis   3 4.53x10-2 CYP3A4, NAT2, CYP1A2

Hsa, Homo sapiens; AADAT, aminoadipate aminotransferase; BUB1, BUB1 mitotic checkpoint serine/threonine kinase; CCNA2, cyclin A2; CCNB1, cyclin B1; 
CCNB2, cyclin B2; CCNE1, cyclin E1; CDC20, cell division cycle 20; CDC25A, cell division cycle 25A; CDC45, cell division cycle 45; CDC7, cell division 
cycle 7; CYP1A2, cytochrome P450 family 1 subfamily A member 2; CYP3A4, cytochrome P450 family 3 subfamily A member 4; INMT, indolethylamine 
N-methyltransferase; MT1A, metallothionein 1A; MT1F, metallothionein 1F; MT1G, metallothionein 1G; MT1H, metallothionein 1H; MT1X, metallothionein 
1X; NAT2, N‑acetyltransferase 2; PTTG1, pituitary tumor‑transforming 1; SFN, stratifin; SRD5A2, steroid 5 alpha‑reductase 2.

Figure 7. (A) Workflow for the established prognostic prediction system. (B) Distribution of the prognostic score. (C) Kaplan‑Meier survival curves for cases 
from the TCGA dataset. The blue line represents the favorable prognostic group and the green line represents the poor prognostic group. (D) Kaplan‑Meier 
survival curves for cases from the GSE20140 dataset. The blue line represents the favorable prognostic group and the green line represents the poor prognostic 
group, as identified by the prognostic prediction system. TCGA, The Cancer Genome Atlas.
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26 downregulated genes (including CYP4A22, TMEM82, 
GLYAT, GBA3, APOF, SLC22A1, DNASE1L3, ECM1, 
CETP and GLS2). The functional and module analysis of the 
co-expression network indicated that SPC24, ESM1, CDC20, 
CDCA3, CCNE1 and CDT1 were significantly associated with 
cell division, mitotic cell cycle and positive regulation of cell 
proliferation. SPC24 is an important component of the nuclear 
division cycle 80 kinetochore complexes. It has been reported 
that SPC24 is significantly upregulated in HCC and may be 
a prognostic biomarker for patients with HCC (46). ESM1 
is a secreted protein that is mainly expressed in endothelial 
cells. The expression of ESM1 in HCC tissues is positively 
correlated with venous invasion (47). Upregulation of CDC20 
is associated with the progression of HCC and may be a prom-
ising therapeutic target (39). Suppression of oncogene CCNE1, 
an important mediator in the G1/S-phase transition, exerts 
tumor-suppressive effects in HCC (48). CDT1 is involved in 
the formation of the pre-replication complex that is necessary 
for DNA replication. It has been reported that the expression 
of CDT1 in HCC tissue is clearly attenuated as compared with 

Table III. The 55 signature genes involved in the prognostic predic-
tion system. 

A, Upregulated genes

Gene logFC P-value FDR

SPC24 1.777 8.57x10-33 2.66x10-30

TGM3 1.396 4.38x10-35 1.96x10-32

KIF20A 1.173 2.42x10-30 5.74x10-28

ESM1 1.162 6.50x10-30 1.40x10-27

CDC20 1.106 1.51x10-30 3.88x10-28

CDCA3 1.018 3.84x10-23 4.22x10-21

CCNE1 0.964 4.97x10-19 3.47x10-17

TNFRSF4 0.949 8.28x10-19 5.59x10-17

COL15A1 0.942 2.28x10-25 3.00x10-23

CELSR3 0.921 1.59x10-19 1.16x10-17

CEP55 0.920 1.99x10-17 1.19x10-15

CDT1 0.860 4.43x10-20 3.41x10-18

C16orf59 0.846 1.13x10-16 6.18x10-15

MUC13 0.800 1.07x10-19 7.93x10-18

GPC3 0.778 9.91x10-26 1.36x10-23

MMP11 0.723 2.34x10-16 1.24x10-14

IGF2BP3 0.702 2.73x10-12 1.04x10-10

STC2 0.687 1.29x10-13 5.67x10-12

RAD51AP1 0.672 3.06x10-11 1.05x10-9

CCNB1 0.653 1.50x10-14 7.08x10-13

STIL 0.622 1.95x10-10 6.11x10-9

CA12 0.615 9.69x10-11 3.15x10-9

PNMA3 0.550 8.68x10-7 1.55x10-5

POLE2 0.540 4.99x10-8 1.07x10-6

FOXD2 0.534 3.59x10-7 6.83x10-6

MSX1 0.531 4.53x10-7 8.45x10-6

ITPKA 0.525 1.77x10-8 4.16x10-7

ACTG2 0.525 3.01x10-8 6.78x10-7

AKR1B10 0.514 7.73x10-13 3.14x10-11

B, Downregulated genes

Gene logFC P-value FDR

CYP4A22 -0.492 2.25x10-12 8.69x10-11

TMEM82 -0.519 5.69x10-13 2.36x10-11

GLYAT -0.536 1.39x10-16 7.57x10-15

GBA3 -0.546 1.40x10-15 7.17x10-14

APOF -0.555 1.52x10-18 1.00x10-16

SLC22A1 -0.565 1.50x10-20 1.23x10-18

DNASE1L3 -0.580 4.07x10-17 2.31x10-15

ECM1 -0.591 7.68x10-17 4.26x10-15

CETP -0.602 1.68x10-15 8.57x10-14

GLS2 -0.603 6.99x10-20 5.35x10-18

GREM2 -0.614 1.99x10-16 1.06x10-14

AADAT -0.615 2.46x10-17 1.42x10-15

MME -0.616 6.41x10-17 3.57x10-15

SRD5A2 -0.650 5.30x10-19 3.64x10-17

C9 -0.655 7.70x10-28 1.33x10-25

CLRN3 -0.701 2.09x10-20 1.68x10-18

IGFALS -0.716 7.36x10-26 1.03x10-23

TMEM27 -0.730 5.13x10-21 4.37x10-19

ASPG -0.735 1.68x10-25 2.26x10-23

SRPX -0.763 7.97x10-21 6.69x10-19

Table III. Continued.

B, Downregulated genes

Gene logFC P-value FDR

MYOM2 -0.784 3.33x10-18 2.13x10-16

MT1F -0.846 1.21x10-34 5.04x10-32

PTH1R -0.866 3.18x10-28 5.82x10-26

FCN3 -0.978 1.24x10-42 9.37x10-40

HAMP -1.052 2.53x10-55 2.78x10-52

MT1H -1.425 5.74x10-76 6.94x10-72

logFC, log2(fold change); FDR, false discovery rate; SPC24, SPC24 compo-
nent of NDC80 kinetochore complex; TGM3, transglutaminase 3; KIF20A, 
kinesin family member 20A; ESM1, endothelial cell specific molecule 1; 
CDC20, cell division cycle 20; CDCA3, cell division cycle associated 3; 
CCNE1, cyclin E1; TNFRSF4, umor necrosis factor receptor superfamily, 
member 4; COL15A1, collagen type XV alpha 1 chain; CELSR3, cadherin 
EGF LAG seven-pass G-type receptor 3; CEP55, centrosomal protein 55; 
CDT1, chromatin licensing and DNA replication factor 1; C16orf59/ TEDC2, 
tubulin epsilon and delta complex 2; MUC13, mucin 13, cell surface asso-
ciated; GPC3, glypican 3; MMP11, matrix metallopeptidase 11; IGF2BP3, 
nsulin like growth factor 2 mRNA binding protein 3; STC2, stanniocalcin 
2; RAD51AP1, RAD51 associated protein 1; CCNB1, cyclin B1; STIL, 
STIL centriolar assembly protein; CA12, carbonic anhydrase 12; PNMA3, 
PNMA family member 3; POLE2, DNA polymerase epsilon 2, accessory 
subunit; FOXD2, forkhead box D2; MSX1, msh homeobox 1; ITPKA, 
inositol-trisphosphate 3-kinase A; ACTG2, actin gamma 2, smooth muscle; 
AKR1B10, aldo‑keto reductase family 1 member B10; CYP4A22, cytochrome 
P450 family 4 subfamily A member 22; TMEM82, transmembrane protein 82; 
GLYAT, glycine-N-acyltransferase; GBA3, glucosylceramidase beta 3; APOF, 
apolipoprotein F; SLC22A1, solute carrier family 22 member 1; DNASE1L3, 
deoxyribonuclease 1 like 3; ECM1, extracellular matrix protein 1; CETP, 
cholesteryl ester transfer protein; GLS2, glutaminase 2; GREM2, gremlin 
2, DAN family BMP antagonist; AADAT, aminoadipate aminotransferase; 
MME, membrane metalloendopeptidase; SRD5A2, steroid 5 alpha-reductase 
2; C9, complement C9; CLRN3, clarin 3; IGFALS, insulin like growth factor 
binding protein acid labile subunit; TMEM27/CLTRN, collectrin, amino 
acid transport regulator; ASPG, asparaginase; SRPX, sushi repeat containing 
protein X-linked; MYOM2, myomesin 2; MT1F, metallothionein 1F; PTH1R, 
parathyroid hormone 1 receptor; FCN3, ficolin 3; HAMP, hepcidin antimicro-
bial peptide; MT1H, metallothionein 1H.
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that in normal hepatic tissue (49). Taking all this into consid-
eration, it may be speculated that SPC24, ESM1, CDC20, 
CDCA3, CCNE1 and CDT1 may have important roles in HCC 
by regulating functions associated with the cell cycle and cell 
proliferation.

Kinesin family member 20A (KIF20A) is significantly 
associated with protein kinase binding; it is a downstream 
target of glioma-associated oncogene 2, which is important 
for HCC proliferation and tumor growth. KIF20A has been 
reported to be upregulated in HCC and to be a predictor of 
poor prognosis (50). Therefore, KIF20A may promote HCC 
progression by protein kinase binding. A total of 4 prognostic 
genes, i.e., CCNB1, CCNE1, CCNB2 and SFN, were associ-
ated with p53 signaling. p53 is mostly known for its tumor 
suppressor properties and is also a major regulator of cell 
metabolism (51). Of note, the p53 signaling pathway was 
reported to be significantly dysregulated in HCC (52). Thus, 
CCNB1, CCNE1, CCNB2 and SFN may participate in the 
molecular mechanisms of HCC by regulating the p53 signaling 
pathway.

The predictive value of the prognostic prediction system 
was also validated in another independent GEO dataset, 
GSE20140. The K‑M survival analysis suggested that the 
survival ratio of patients in the favorable prognostic group, 
based on the prognostic prediction score, was significantly 
larger than that of the patients in the poor prognostic group. 
Therefore, this prognostic prediction system may be applied 
to predict the prognosis of HCC. As a limitation of the present 
study, the expression levels of the important signature genes 
in the clinical samples were not detected by any experimental 
methods.

In conclusion, a predictive gene signature for HCC 
prognosis was identified via a multi-step strategy. The 
significant functions and pathways enriched by the genes in 
the co-expression network of the prognostic genes were also 
determined. A novel prognostic prediction system, consisting 
of 55 signature genes, that was able to predict the prognosis of 
HCC patients was established. In future studies, the expression 
levels of the important signature genes will be validated in 
clinical samples by experimental methods.
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