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Abstract. Capsaicin is a natural protoalkaloid recognized 
as the main pungent component in hot peppers (Capsicum 
annuum L.). The capsaicin receptor is highly expressed in 
the unmyelinated type C nerve fibers originating from small 
diameter sensory neurons in dorsal root ganglia and cranial 
nerve ganglia correspondents. Capsaicin and related vanilloids 
have a variety of effects on primary sensory neurons function, 
from sensory neuron excitation characterized by local burning 
sensation and neurogenic inflammation, followed by conduc-
tion blockage accompanied by reversible ultrastructural 
changes of peripheral nociceptive endings (desensitization), 
going as far as irreversible degenerative changes (neuro-
toxicity). The main role in capsaicin-induced neurogenic 
inflammation relies on the capsaicin sensitive, small diameter 
primary sensory neurons, therefore its evaluation could be 
used as a diagnostic instrument in functional alterations of 
cutaneous sensory nerve fibers. Moreover, capsaicin-induced 
desensitization and neurotoxicity explain the analgesic/anti-
nociceptive and anti‑inflammatory effects of topical capsaicin 
and its potential use in the management of painful and inflam-
matory conditions. In this study, we describe the effects of 

capsaicin on neurogenic inflammation and nociception, as 
well as its potential diagnostic value and therapeutic impact 
in various conditions involving impairment of sensory nerve 
fibers.
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1. Introduction

Capsaicin and its related vanilloids have a complex action 
on primary sensory neurons with major role in physiology of 
pain by detection of high threshold to physical and noxious 
chemical stimuli, as the first step in producing the pain 
session (1). Initially, capsaicin induces their activation, charac-
terized by a local burning and stinging sensation (2), possibly 
associated with hyperalgesia and allodynia after exposure to 
heat and mechanical stimuli (3). These nociceptive effects are 
accompanied by a localized transient inflammatory response 
denominated as neurogenic inflammation, activated by the 
neuropeptides released from the peripheral sensory nerve 
fibers (2,4). In case of subsequent or prolonged applications 
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of capsaicin, initial excitation is followed by loss of respon-
siveness, known as desensitization of nociceptive neurons (5), 
which stands at the base of analgesic/anti-nociceptive effect 
of topical application of capsaicin. Low-concentration 
topical creams, gels, lotions (0.025, 0.075 and 0.1%) and high 
concentration patches (8%) with capsaicin were developed 
to ‘defunctionalize’ cutaneous nociceptors and treat painful 
conditions  (6). Moreover, capsaicin further depletes the 
neuropeptides from the sensory nerve endings and reduces the 
initial inflammatory response (7). Capsaicin can also induce a 
progressive neurotoxic degeneration of cutaneous nerves when 
used in high concentrations or for a long period of time (8,9).

Given its analgesic and anti-nociceptive effect, capsaicin 
has been used in the management of neuropathic discom-
fort (10-17), post-herpetic neuralgia  (18,19), neuropathy of 
patients with diabetes and/or HIV (20-25), burning mouth 
syndrome  (26), temporomandibular joint disorder  (27), 
chemotherapy-induced peripheral neuropathy (28) and fibro-
myalgia (29). In trials enrolling patients with osteoarthritis and 
rheumatoid arthritis, topical application of capsaicin proved 
its efficacy and safety as an alternative to systemic analgesics, 
which frequently may trigger serious adverse effects (30,31).

Furthermore, capsaicin-induced local inflammation can be 
observed and quantified using laser-Doppler flowmetry (32) 
and more recently through means of in  vivo reflectance 
confocal microscopy (33), suggesting its potential diagnostic 
value in various functional alterations of cutaneous sensory 
nerve fibers (34,35).

2. Physicochemical properties of capsaicin

Capsaicin is a natural protoalkaloid and the major pungent 
component of hot peppers (Capsicum  annuum L.). Also 
known as trans-8-methyl-N-vanillyl-6-nonenamide, this 
chemical compound is crystalline, off-white solid, lipophilic, 
colorless and odorless. It has a melting point of 62-65˚C and 
though not water soluble, it is soluble in ethanol, acetone, and 
fatty oils.

Capsaicin is a member of the vanilloid family of compounds 
such as vanillin (derived from vanilla), eugenol (extracted 
from bay leaves and cloves), and zingerone (encountered in 
ginger) (36,37). Capsaicin shares structural similitudes with 
other vanilloids, namely an aromatic ring and a long hydro-
phobic chain with a polar amide group (Fig. 1).

Capsaicin may also be found in fruits of other plants 
belonging to the genus Capsicum (38). In 1816, Bucholtz was 
the first to succeed extraction in solution of the pungent hot 
pepper compound. In 1846, the name Capsaicine was assigned 
to this pungent ingredient by Thresh, who also isolated it in 
crystalline form. After identification by Nelson in 1919, Darling 
and Späth established a chemical process for its synthesis as a 
crystalline compound with hydrophobic/lipophilic, colourless 
and odourless properties, in 1930 (39).

Several investigative methods are available for capsa-
icinoid analysis, varying from colorimetric photometry, liquid 
and gas chromatography, mass spectrometry, nuclear magnetic 
resonance, spectroscopy, amperometry, modified capillary 
electrophoresis, as well as olfactory electronic sensing (40-48).

High-performance liquid chromatography (HPLC) is 
currently employed on the largest scale, as it can provide 

satisfactory reliability and accuracy, being preferred by the 
American Spice Trade Association (ASTA; Washington, DC, 
USA) as well (49).

Recently, several HPLC methodologies for capsaicin 
purification were published. The main capsaicinoids from 
Naga jolokia peppers were separated using an HPLC method 
with a C18 reverse-phase fused-core column. The separation 
was obtained rapidly with a gradient method with very good 
repeatability and precision. This method is suggested also for 
the separation of major capsaicinoids from commercial prod-
ucts that have chilli peppers (50). Using a methodology with 
aqueous two-phase system (ATPS) comprising an ethylene 
oxide-propylene oxide (EOPO) copolymer, salt and ethanol, 
capsaicin was extracted from capsicum oleoresin with a 95.5% 
yield (51).

For specimens whose concentration of capsaicin and/or 
related resins exceeds 700 ppm, identification and analysis by 
UV absorption is preferred, whilst for specimens with lower 
concentration fluorescence assessment is used.

UV-visible spectrophotometry is often highly sensitive, 
particularly for analytes with high selectivity for molar 
absorptivities. Fig. 2 presents the UV absorption spectrum of 
Capsicum chinense Jacq. extract; the wide absorption peaks 
at 230 and 280 nm are highly suggestive for capsaicinoids and 
derived resins.

3. The capsaicin receptor - structure and functioning

Capsaicin is able to link to transient receptor potential vanil-
loid 1 (TRPV1), mostly present in afferent neural cells (52-54). 
The TRPV1 receptor is a protein consisting of 838 amino-
acids, with a molecular weight of 95  kDa (containing 
6 transmembrane areas and belonging to the transient receptor 

Figure 1. Chemical structure of capsaicin. Capsaicin has an aromatic ring 
and a long hydrophobic chain with a polar amide group.

Figure 2. Absorption spectrum of Capsicum chinense Jacq. The 230 and 
280 nm absorption peaks are characteristic to capsaicinoids and derived resins.
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potential (TRP) family (55). TRP family has three classes: 
Canonical, melastatin, and vanilloid, where TRPV1 belongs 
to the vanilloid class group (56). TRPV1 has a pore domain 
created by the fifth and sixth transmembrane regions, and 
intracellular N and C termini (57,58). TRPV1 is a non-selective 
cation channel with high calcium permeability (permeability 
sequence Ca2+>Mg2+>Na+≈K+≈Cs+) (59,60).

At intracellular level, TRPV1 is expressed in several 
compartments such as in the cytoplasmic membrane, endo-
plasmic reticulum (ER), and cytoplasmic vesicles (61). At the 
membrane level, TRPV1 functions as a classical receptor that 
generates the intracellular signaling cascade when it is acti-
vated. TRPV1 is probably stored in the cytoplasmic vesicles 
and upon stimulation (e.g., activation of protein kinase C), can 
be translocated to the membrane (61). TRPV1 function at the 
ER level is still under thorough research. The first findings 
suggested that activation of TRPV1 at the ER level increases 
Ca2+ mobilization from intracellular compartments and they 
regulate Ca2+ intracellular homeostasis (62,63). Recent studies 
have shown that TRPV1 in ER could be involved in the ER 
stress-related apoptotic intracellular signaling pathway in 
neurodegenerative disorders (64).

TRPV1 is able to integrate various signals and has several 
regulators, activators, inhibitors or even compounds with dual 
action on TRPV1 functioning.

This receptor is activated by chemical stimuli, but also 
by physical triggers like temperature. It is activated by vanil-
loids (65,66) like capsaicin and by several endogenous ligands 
[e.g., anandamide (67), reactive metabolites of acetaminophen, 
N-arachidonoyl-dopamine (68), lipoxygenase products such 
as 12-hydroperoxyeicosatetraenoic acid (69)]. Activation can 
additionally be induced by capsaicin analogues such as resin-
iferatoxin, and agonists like olvanil and camphor (69-75).

The capsaicin receptor is stimulated by temperatures 
over 43˚C and protons (pH <5.2). Moreover, heat and low pH 
sensitize its responses to other activators (76). Inflammatory 
mediators such as bradykinin (77) and prostaglandins pros-
taglandin E2 (PGE2) and PGI2 (78) have a facilitating effect 
on TRPV1. Nerve growth factor  (NGF), which is released 
during inflammatory processes, can be associated with 
increased expression of TRPV1 on nociceptive neurons, and 
may also act directly on this receptor, increasing its response 
to capsaicin (79). There are various other compounds, such as 
histamine, serotonin, mannitol, catecholamines, botulinum 
neurotoxin type A and ethanol, able to potentiate TRPV1 
activity (80-85). In addition, ATP reduces the temperature 
threshold for TRPV1 and increases responses induced by 
capsaicin and protons (86). At the same time, protease‑acti-
vated receptor 2 (PAR2) agonists, such as trypsin and mast 
cell tryptase, sensitize TRPV1, increasing its response to 
capsaicin (87).

Inhibitors of these receptors comprise also chemical and 
physical factors. Hence, low temperatures strongly inhibit the 
activity of the TRPV1 receptor, whereas effects of TRPV1 
activation may be deterred or diminished through action of 
capsazepine, receptor's competitive antagonist (88).

Other compounds may have dual action on TRPV1. 
Omega-3 fatty acids activate TRPV1 and enhance responses 
to low pH on one hand, while they may competitively inhibit 
vanilloid agonists' responses on the other hand. Of omega-3 

fatty acids, docosahexaenoic acid mainly acts as a TRPV1 
activator, whereas eicosapentaenoic acid and linolenic acid are 
primarily inhibitory (88).

Studies of the effect of phosphatidylinositol 4,5-bispho-
sphate (PIP2) on TRPV1 have also provided contradictory 
results: certain studies have shown PIP2 effect of reducing 
TRPV1 sensitivity to protons, capsaicin and heat (77), whereas 
other research suggests the opposite (89).

One of the intracellular communication pathways may be 
induced by TRPV1 sensitization mediated by PKC phosphory-
lation of the receptor (90) or PKA (91). The phosphorylation 
status of the channel plays also an important role in receptor 
desensitization. Channel dephosphorylation occurs through 
action of protein phosphatase 2A (92), and protein phospha-
tase 2B, known as calcineurin  (93), induces an inhibitory 
action on TRPV1 receptor activity. In addition, other research 
suggests that the calmodulin/Ca2+ complex may be involved in 
the channel inactivation process (94,95).

However, many unknowns persist regarding the function 
and modulation of TRPV1 activity and further investigation is 
of great interest for both scientific research and clinical prac-
tice e.g., in pain control and/or neurodegenerative disorders.

4. Expression and roles of the capsaicin receptor

The capsaicin receptor is highly expressed in the unmyelinated 
type C nerve fibers originating from small diameter sensory 
neurons in dorsal root ganglia and cranial nerve ganglia corre-
spondents (96). It can also be found in the thin myelinated 
A-delta fibers (97). In adult rats, the majority of neurons from 
the dorsal root ganglion are immunoreactive for TRPV1. The 
positive marking for TRPV1 has been identified at the level of 
both the cell membrane, inducing a cyclic pattern, and intracy-
toplasmic structures (98). The peripheral endings of primary 
sensory neurons that are positive for TRPV1 also contain 
proinflammatory neuropeptides, such as substance P (SP) and 
the calcitonin gene-related peptide (CGRP) (4,99), released as 
result of activation. Thus, TRPV1 is involved in both nocicep-
tion, by integration of various noxious stimuli, and neurogenic 
inflammation and inflammatory pain (74,100-102).

TRPV1 may also be found within the spinal cord and the 
brain, where it is involved in mediation of the sensation of pain 
as well as in thermoregulation (103).

Evidence from murine and human research has shown that, 
in addition to the nervous structures, TRPV1 is also present 
in other tissues as well, such as skin, adipose tissue, gastro-
intestinal tract, pancreatic islets, respiratory mucosa, urinary 
bladder, cornea, synoviocytes, myocardium, vascular smooth 
muscle, blood mononuclear cells. However, further studies are 
needed in order to clarify TRPV1 expression patterns and role 
in various tissues (104).

In the skin, the capsaicin receptor may work as an extra-
neuronal receptor (105) as it is also expressed by non-neural 
structures, such as keratinocytes, mast cells and dermal blood 
vessels (7).

In epidermal keratinocytes, activation by capsaicin induces 
a calcium influx  (106), a similar effect being observed in 
human skin fibroblasts  (107). Further effects of capsaicin 
receptor activation in keratinocytes are the result of intensi-
fied expression of cyclooxygenase-2 (COX-2) and of increased 
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synthesis of IL-8 and PGE2 (106). Capsazepine, the antagonist 
of TRPV1 receptor, reduces the elevation of intracellular 
calcium concentration and inhibits the capsaicin-induced 
release of these pro-inflammatory mediators. Thus, keratino-
cytes, via TRPV1 receptor, appear to be actively involved in 
inducing inflammation determined by noxious skin stimula-
tion. It makes an interesting hypothesis that pro-inflammatory 
mediators synthesized and released by keratinocytes following 
TRPV1 activation may act on sensory skin nerve endings (108), 
enhancing neurogenic inflammation and nociceptive signaling. 
Indeed, PGE2 stimulates capsaicin-induced SP release from 
sensory neuron terminals (109) and prostaglandin synthesis 
inhibitors are able to reduce the wheal response produced 
by capsaicin (110). Moreover, recent research suggests that 
increased TRPV1 expression in human skin is involved in the 
photo-ageing process (111) and TRPV1 activation in kerati-
nocytes induces an upregulation of matrix metalloproteinases 
leading to an increased breakdown of protein components of 
the extracellular matrix (112,113).

Furthermore, capsaicin and TRPV1 have been proposed 
to be involved in mast cell activation (114,115) and histamine-
induced pruritus, suggesting an even more complex role of 
capsaicin receptor in inflammatory processes (116).

TRPV1 can also be found in skin annex structures such as 
hair follicles, sebaceous and sweat glands. In the hair follicles 
it participates in modulation of outer root sheath keratinocytes 
proliferation, differentiation and apoptosis (117).

5. Capsaicin-induced neurogenic inflammation

The main role in capsaicin-induced neurogenic inflammation 
is played by the peripheral endings of small diameter primary 
sensory neurons, which are able to release bioactive substances, 
thus playing an ‘efferent’ or ‘local effector function’ (118,119). 
Upon activation, the nociceptive nerve endings can release SP 
and CGRP, neurokinin A, neurokinin B, somatostatin, galanin, 
corticotropin-releasing hormone, vasoactive intestinal peptide, 
and pituitary adenylate cyclase-activating polypeptide (120). 
Additionally, there are other substances such as cytokines 
and prostaglandins (106) that may be involved in this process 
as well.

Substances released from the nerve endings under the 
influence of capsaicin interact with endothelial cells, mast 
cells, immune cells and arteriolar smooth muscle cells, 
causing neurogenic inflammation characterized by redness, 
warmth (secondary vasodilation), swelling (induced by plasma 
extravasation), and hyperesthesia (secondary influence of 
certain sensory neurons excitability) (121). Mast cells appear 
to play an important role in production and expansion of 
capsaicin-induced inflammatory reaction. This hypothesis is 
supported by the close contacts between mast cells and small 
diameter fibers of sensory neurons sensitive to capsaicin, 
that were highlighted in a variety of tissues  (122), and by 
the fact that neuropeptides released by the sensory neurons 
activated by capsaicin can induce mast cell degranulation 
(release of serotonin, proteoglycans and histamine), as well as 
synthesis of pro-inflammatory cytokines such as interleukins, 
and tumor necrosis factor-α (TNF-α) (123). These mast cell 
mediators can further stimulate the release of SP and other 
peptides from sensory nerve endings, which can induce a 

supplementary activation of mast cells (124). Another piece 
of evidence supporting mast cell involvement comes from 
the important decrease of capsaicin-induced inflammatory 
response produced by inhibitors of mast cell degranulation and 
by histamine or serotonin antagonists (110). This bidirectional 
autocatalytic loop can amplify the mast cell - sensory nerve 
fiber activation, eventually leading to the well-known wheal 
and flare reaction.

Other research suggests that, in addition to its indirect 
effects via substance P and other neuropeptides, capsaicin 
may also exert direct effects on mast cells (114). Capsaicin 
receptor was identified on the surface of mast cells, and its 
activation induces a calcium influx and subsequent release of 
pro-inflammatory cytokine IL-4. Moreover, it can induce mast 
cell desensitization in case of further stimulation.

Another contribution to capsaicin-induced inflammation 
can be related to its vascular effects. For example, an in vitro 
study on human umbilical vein endothelial cells has shown 
that capsaicin increases both expression and secretion of 
CGRP, a potent vasodilator and this process is mediated by 
TRPV1 (125).

6. Capsaicin-induced hyperalgesia

In addition to local inflammation accompanied by the sensa-
tion of pain, hyperalgesia is another possible effect of capsaicin 
administration to the skin. Primary hyperalgesia has been 
described, occurring on administration area (126-129), as well 
as secondary hyperalgesia, arising in adjacent regions (130). 
Primary hyperalgesia is manifested by an exaggerated response 
to different stimuli, such as thermal or mechanic (131,132). 
The mechanisms of primary hyperalgesia induced by capsa-
icin are complex and not completely understood. One of the 
theories that have tried to explain this phenomenon argues that 
the main mechanism directly involved is sensitization of noci-
ceptive nerve endings that undergo capsaicin action. There 
is experimental evidence supporting this hypothesis. Use of 
capsaicin on a single type C nerve fiber induces sensitization 
of this specific nerve fiber and not of the other adjacent nerve 
endings that have not been exposed to capsaicin (133). These 
results highlight the ability of capsaicin to cause direct sensiti-
zation of nociceptive nerve endings.

Secondary hyperalgesia has been described primarily 
to mechanical stimuli (129) and is probably determined by 
sensitization of dorsal horn neurons in the spinal cord (134). 
Another hypothesis regarding the mechanism of secondary 
hyperalgesia production supports the involvement of ‘silent’ 
nociceptor-free nerve endings of unmyelinated type C fibers 
that can respond to noxious stimuli only after their recruit-
ment through pro-inflammatory mediators (135). In addition 
to activation and sensitization of multimodal nociceptors, 
other peripheral nerve mechanisms that may modulate the 
sensation of pain and hyperalgesia induced by capsaicin also 
include activation of α-adrenergic receptors, local application 
of norepinephrine enhancing the painful effects of capsa-
icin (136).

Involvement of TRPV1/other vanilloid receptors in 
inflammation-associated pain is increasingly acknowle
dged  (102,137). Experimental data show that TRPV1 is 
required for the thermal hyperalgesia associated with acute 
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inflammation  (102,138). Hyperalgesia develops in certain 
pathological conditions characterized by an increased expre
ssion of TRPV1 but the mechanisms involved are yet revealed 
only in part (77,139). For example, in post‑inflammatory states 
or some clinical pain conditions, the increase in TRPV1 is 
associated with higher levels of NGF and glial cell-derived 
neurotropic factor (GDNF). Moreover, peripheral production 
of NGF with an enhanced retrograde transport of NGF to the 
neuronal cell body activates p38  MAPK in the primary 
neurons, inducing an increased expression of TRPV1 in the 
nociceptive nerve endings and further thermal hyper
sensitivity (140-144). The occurrence of thermal hyperalgesia 
also involves sensitization of existing peripheral TRPV1 
channels by a number of mediators such as protons (during 
states of tissue injury or ischemia), prostaglandins, including 
PGE2 and PGI2 bradykinin (BK), ATP, and endothelin (ET)-1, 
possibly also responsible for the persistent burning pain often 
encountered in clinical practice (78,145,146).

7. Capsaicin-induced desensitization

Mechanisms underlying desensitization and numbness 
resulting from treatment with capsaicin are still not well 
understood. One possibility is depletion of neuropeptides SP 
and CGRP from type C nerve fibers, leading to desensitization 
of nociceptors, as capsaicin is known to trigger the release 
of these peptides from primary afferent terminals (118,121). 
However, electrophysiological studies suggest that initial rapid 
desensitization would be the effect of capsaicin on sensory 
neurons ion channels.

Capsaicin excites nociceptors by interacting with its 
receptor TRPV1 (147), inducing depolarization of sensory 
neurons. The membrane permeability to ions increases, a 
process involving mainly calcium ion channels  (148,149). 
This is followed by inactivation of voltage-gated ion channels, 
which affects the formation of action potentials that is possibly 
responsible for the initial rapid desensitization and subsequent 
hypoesthesia. Moreover, capsaicin may also interfere with 
formation of action potentials by inducing mitochondrial 
ultrastructural alterations in the nociceptive endings as a 
consequence of prolonged activation of ion channels (9).

There are two types of desensitization resulting from 
capsaicin application: i)  pharmacological desensitization 
under repeated or prolonged application of capsaicin, leading 
to gradual reduction of subsequent responses to capsaicin; and 
ii) functional desensitization, in which capsaicin decreases 
neuronal sensitivity to a variety of noxious stimuli (heat, 
pressure, chemical irritants, endogenous or exogenous agents). 
Though often occurring together, the two phenomena can 
be separated on very low capsaicin concentrations. In such 
circumstances, the ability to elicit a response to capsaicin is 
selectively diminished or abolished, while the response to other 
stimuli remains unaltered (150). Functional desensitization 
arising on increased concentrations of capsaicin is considered 
the foundation for the analgesic and anti-inflammatory effects 
of capsaicin.

Although initially stimulating the release of neuropeptides, 
capsaicin has a long-term inhibitory effect on the efferent func-
tion of sensory neurons, which may underlie its analgesic and 
anti-inflammatory actions. Following capsaicin application, 

injurious stimuli no longer trigger the release of neurotrans-
mitters and neuropeptides, in spite of the nearly normal levels 
of neuropeptides in the sensory nerve endings  (151-153). 
Inflammation arising from the injection of histamine and 
vasoactive agents SP, VIP and somatostatin were also reduced 
in skin previously treated with capsaicin (151-153).

This long-term inhibitory effect of capsaicin has also 
been connected to inhibition of voltage-gated calcium chan-
nels  (148,149) at the level of central and peripheral nerve 
endings. From animal studies, it appears that the efferent func-
tion of sensory neurons is preferentially inhibited by capsaicin, 
suggesting a higher sensitivity to capsaicin for the mechanism 
of peptide release as compared to the process of sensory trans-
mission. Another possible explanation is the involvement of 
different nerve fiber subpopulations in this process (154).

8. Capsaicin neurotoxicity

Capsaicin elicits a wide variety of effects on the sensory 
neurons ranging from excitation to conduction blockage 
accompanied by reversible ultrastructural changes and going 
up to apoptosis and irreversible changes, such as mitochondrial 
damage and intracellular release of reactive oxygen species 
triggering DNA fragmentation and activation of the caspase 
cascade (155-157).

Capsaicin-induced neurotoxicity may arise at high doses, 
administered systemically or topically (injected intrader-
mally) (9). The first studies on capsaicin neurotoxic effects 
have demonstrated that systemic administration of high-dose 
capsaicin in either adult or new-born rats causes degeneration 
of a subset of primary afferent small diameter fibers and their 
cell bodies (118,158). In humans, systemic administration of 
capsaicin was proven to induce a certain degree of degen-
eration of the sub-epidermal nerve plexus (159), indicating the 
susceptibility of skin nerve fibers to the neurotoxic effects of 
capsaicin. Intradermal injection of capsaicin produces a rapid, 
dose-dependent degeneration of epidermal and sub-epidermal 
nerve fibers; such degeneration is limited to the injection site 
and only to the nerve fibers in direct contact with capsaicin (9). 
This progressive denervation occurs during the first two weeks 
after the injection and can be highlighted by the loss of protein 
gene product 9.5 (PGP 9.5) immunoreactive nerve fibers. For 
capsaicin in low doses, denervation is mainly limited to the 
epidermis, whereas administration of higher doses deter-
mines a complete loss of epidermal PGP 9.5 immunoreactive 
nerve fibers and injury of various degrees of sub-epidermal 
nerve fibers (9). Moreover, 72 h after capsaicin injection, a 
loss of immunoreactivity for CGRP and a decrease of nerve 
fibers immunoreactive for SP can be observed. Reduction of 
epidermal nerve fibers is associated with a reduced pain sensa-
tion from heat and mechanical stimulation, capsaicin exerting 
a greater effect on pain from heat stimulation. The touch 
threshold is not significantly modified following injection of 
capsaicin (9).

Reinnervation of the epidermis begins during the first 
3-4 weeks after capsaicin injection and is characterized by 
re-emergence of an intact sub-epidermal nerve plexus, of 
CGRP immunoreactive nerve fibers and scarce intraepidermal 
fibers. At the same time, one can observe the gradual restora-
tion of pain sensation induced by heat and mechanical stimuli. 
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Immunoreactivity for PGP 9.5 is gradually restored and is 
associated with progressive regeneration of the sub-epidermal 
nervous plexus and with reinnervation of the epidermis, 
although the number of regenerated fibers immunoreactive for 
PGP 9.5 is lower than that of normal skin, even 4 to 6 weeks 
following capsaicin injection. The loss and further reoccur-
rence of immunoreactivity for PGP 9.5 is correlated with loss 
and recovery of somatic sensations (9).

Epidermal nerve fiber degeneration occurs also after topical 
administration of capsaicin, although slower and less intense 
than that produced by intradermal injection (8). Because of 
capsaicin capacity to diffuse, degeneration only develops at 
the application site and in the fibers directly exposed to the 
neurotoxin. Moreover, degeneration develops progressively, 
epidermal nerve fibers being affected 24 h after capsaicin 
administration, while sub-epidermal nerve plexus and nerve 
fibers immunoreactive for CGRP and SP after 1 week. This 
phenomenon has been well illustrated in a study in which 
multiple topical applications of capsaicin caused progressive 
degeneration of the nerve fibers in the epidermis (8).

Mechanisms underlying neurotoxicity evoked by capsaicin 
were investigated in vitro using cell cultures of DRG neurons 
as well as in vivo using murine experimental models (160). 
Studies revealed that capsaicin-induced alterations are caused 
by both osmotic changes and alterations of calcium influx 
levels, inducing activation of calcium-sensitive proteases (160). 
Moreover, unlike adult sensory neurons, the presence of NGF 
is necessary for the survival of immature neurons in the dorsal 
root ganglia and administration of capsaicin in neonate rats 
leads to destruction of most primary nociceptive neurons, 
probably by disrupting intra-axonal transport of NGF (155).

9. Conclusion

Capsaicin, the major pungent ingredient of hot peppers 
activates TRPV1 receptor that is widely expressed in the 
cutaneous peripheral sensory nerve fibers. At first topical 
application, capsaicin induces a local burning sensation, 
associated with allodynia and hyperesthesia and a transient 
inflammatory response secondary to the release of neuro-
modulators from the sensory nerve fibers. The extent of the 
local inflammatory reaction can be quantified noninvasively 
and seems a promising diagnostic tool in functional altera-
tions of cutaneous sensory nerve fibers. Repeated applications 
of capsaicin lead to desensitization of nociceptive neurons, 
gradual reduction of the inflammatory response and further to 
neurotoxic degeneration of cutaneous nerve fibers when used 
in high concentrations. These effects explain the analgesic/
anti-nociceptive and anti-inflammatory effects of topical 
capsaicin and its potential use in the management of painful 
and inflammatory conditions.
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