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Abstract. Psoriasis is a chronic inflammatory skin disorder
that impairs the quality of life of affected patients. Emerging
studies indicate that certain long non-coding RNAs (IncRNAs)
have important roles in psoriasis. However, the exact functions
of IncRNAs and their regulatory mechanisms as competitive
endogenous RNAs (ceRNAsS) in psoriasis have remained to be
fully elucidated. In the present study, differentially expressed
IncRNAs, microRNAs (miRNAs) and mRNAs were identi-
fied by analyzing public datasets, and a psoriasis-associated
IncRNA-miRNA-mRNA network was constructed based on the
ceRNA theory. Furthermore, previously validated abnormally
expressed miRNAs in psoriasis were identified by a systematic
literature search in the PubMed and Web of Science databases,
and a specific miRNA-associated IncRNA-miRNA-mRNA
sub-network was extracted. Furthermore, Gene Ontology and
Kyoto Encyclopedia of Genes and Genomes pathway enrich-
ment analyses were performed using DAVID 6.8. A total of
253 IncRNAs, 106 miRNAs and 1,156 mRNAs were identi-
fied as being differentially expressed between psoriasis skin
and healthy control skin. The present study identified two key
IncRNAs that may potentially have a role in the pathogenesis
of psoriasis: AL035425.3 and Prader Willi/Angelman region
RNA 6. This integrative analysis enhances the understanding
of the molecular mechanism of psoriasis and may provide
novel therapeutic targets for the treatment of psoriasis.

Introduction

Psoriasis is a chronic, systemic, recurrent inflammatory disease,
which is characterized by erythema, papules and scaling (1).
This condition is caused by genetic and environmental
factors, including gene mutations, infection and stress (2).

Correspondence to: Professor Yuling Shi, Department of
Dermatology, Shanghai Tenth People's Hospital, Tongji University
School of Medicine, Shanghai 200072, P.R. China

E-mail: shiyuling1973@tongji.edu.cn

Key words: network, competing endogenous RNAs, long
non-coding RNAs, psoriasis

The pathological manifestations of psoriasis include abnormal
keratinocyte differentiation/proliferation and inflammatory cell
infiltration (3). It is currently recognized that the pathogenesis
of psoriasis is associated with the interleukin (IL)-23/type 17
T-helper cell immune axis, leading to abnormalities in immune
cells and associated cytokines, which further induces excessive
proliferation of keratinocytes (4). Although extensive research
has been performed on the pathogenesis of psoriasis, the mecha-
nisms of psoriasis have remained to be fully elucidated.

Long non-coding RNAs (IncRNAs) are a type of
non-coding RNA with a length of >200 nt (5,6). It is speculated
that IncRNAs are involved in numerous important biological
processes, including cellular homeostasis, genomic imprinting,
immunity and development (7). In addition, certain IncRNAs
have a role in cardiovascular, neurological and developmental
diseases, as well as cancers (5,8). Recently, IncRNAs were
reported to have pivotal roles in psoriasis. For instance, the
IncRNA psoriasis susceptibility-associated RNA gene induced
by stress (PRINS) is the most frequent transcript detected in
the non-defective epidermis of patients with psoriasis, and it
is thought to contribute to the pathogenesis of psoriasis (9,10).
Certain studies have reported that PRINS is capable of regu-
lating G1P3, which is expressed at high levels in psoriatic
lesions and has an anti-apoptotic role in keratinocytes (9,11).
Furthermore, stressors including microbial components and
ultraviolet-B radiation are capable of inducing high expression
of PRINS in keratinocytes (9). Msh homeobox 2 pseudogene
1 (MSX2P1), which is another IncRNA, facilitates the prolif-
eration of IL-22-stimulated keratinocytes by suppressing
microRNA (miRNA/miR)-6731-5p and upregulating the
expression of SIO0A7 (12). In addition, IncRNAs have been
indicated to be an important type of competing endogenous
RNA (ceRNA) (13). IncRNAs inhibit miRNA-mediated
target repression by competing for miRNA-binding sites with
mRNAs. However, the regulatory mechanisms involving
ceRNAs in psoriasis have remained elusive. In the present
study, psoriasis-associated RNA networks were reconstructed
based on the ceRNA theory, and the biological functions of the
networks were also investigated.

Materials and methods

Processing of raw data. High-throughput sequencing data
for psoriasis-associated IncRNAs, mRNAs and miRNAs
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Figure 1. Identification of differentially expressed IncRNAs, mRNAs and miRNAs in psoriasis. (A) Integrated analysis of upregulated (top left) and downregu-
lated (top right) IncRNAs. (B) Integrated analysis of upregulated (bottom left) and downregulated (bottom right) mRNAs. (B) Heat map displaying differential
miRNA expression in psoriasis within the GSE31037 dataset. IncRNA, long non-coding RNA; miR/miRNA, microRNA; hsa, Homo sapiens.

were downloaded from the Gene Expression Omnibus (GEO)
database (http://www.ncbi.nlm.nih.gov/geo/; IncRNA and
mRNA expression profile accession numbers, GSE54456 and
GSE74697; miRNA expression profile expression number,
GSE31037). For the high-throughput raw sequencing data for
IncRNAs and mRNAs, quality assessment was performed
with FastQC (v0.11.7) (http:/www.bioinformatics.babraham.
ac.uk/projects/fastqc/); further, sequencing reads were
trimmed by removing adapters and low-quality sequences
were trimmed by using Trimmomatic (v0.38) (14). Hisat2
(v2.1.0) (15) was used to map the trimmed reads to the
human GRCh38 reference genome (http://useast.ensembl.
org/info/data/ftp/index.html), and the HTSeq-count (16) was
then used to quantify the genes. Furthermore, microarray data
(accession no. GSE13355) for comparing the difference in
the expression of IncRNAs were also downloaded from the
GEO database. After the probe was set, re-annotation was
performed to identify specific IncRNAs. The method of the
re-annotation method was performed as previously described
by Shen et al (17). For the miRNA high-throughput raw
sequencing data, miRDeep2 (18) was used to remove adapters,
map the trimmed reads to the human GRCh38 reference
genome and quantify the expression of miRNAs.

Screening for differentially expressed IncRNAs, miRNAs and
mRNAs. The differentially expressed IncRNAs, mRNAs and
miRNAs between psoriatic lesions involving the skin and
healthy controls were identified with the DESeq2 package (19).
The differentially expressed IncRNAs, mRNAs and miRNAs
were selected according to the adjusted P-values (P<0.05 and
llog2 fold changel>1).

Functional enrichment analysis. DAVID 6.8 (20) was used
to perform the Gene Ontology (GO) functional enrichment
analysis in the category Biological Processes (BP), and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway
functional enrichment analysis of differentially expressed
genes was also performed. P<0.05 was considered to indicate
statistical significance.

Construction of the psoriasis-associated IncRNA-miRNA-
mRNA network. miRNA-RNA interactions were downloaded
from the experimentally verified databases DIANA-TarBase
V8 (21) and miRTarBase (V7.0) (22), and miRNA-IncRNA
interactions were downloaded from starBase v2.0 (23) and
LncBase V2 (24). To construct the psoriasis-associated ceRNA
network, the differentially expressed miRNAs, mRNAs and
IncRNAS in psoriasis vs. normal samples were integrated
with the miRNA-mRNA and miRNA-IncRNA pairs down-
loaded from the databases. Subsequently, miRNA-mRNA and
miRNA-IncRNA pairs that shared common miRNAs were
integrated into the psoriasis-associated ceRNA network. In
the present study, to create the psoriasis-associated ceRNA
network, only upregulated IncRNAs and downregulated
miRNAs were integrated with upregulated mRNAs, while
only downregulated IncRNAs and upregulated miRNAs
were integrated with downregulated mRNAs (25). The
degree of interaction - a topological property that indicates
the number of edges that connect to a node-was also calcu-
lated. IncRNAs in the ceRNA network that interacted with
>5 different miRNAs were identified as key IncRNAs
in the present study. The networks were visualized using
Cytoscape 3.6.1 (26).
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Figure 2. Biological function and pathway analysis of differentially expressed genes (top 15). (A) GO biological process enrichment analysis of upregulated
mRNAs. (B) GO biological process enrichment analysis of downregulated mRNAs. (C) KEGG pathway analysis of upregulated mRNAs. (D) KEGG pathway
analysis of downregulated mRNAs. KEGG, Kyoto Encyclopedia of Genes and Genomes; GO, gene ontology.

Results

Identification of differentially expressed IncRNAs, mRNAs
and miRNAs. Analysis of the high-throughput data deposited
under accession numbers GSE54456 and GSE74697 revealed
that a total of 89 upregulated IncRNAs and 164 downregu-
lated IncRNAs were shared between the datasets for psoriatic
lesions involving the skin and healthy controls, 426 upregu-
lated mRNAs and 730 downregulated mRNAs were shared
between the two datasets (Fig. 1A). The sRNA sequencing
data (GSE31037) were obtained from biopsy samples of
24 psoriasis lesions from skin biopsies and 20 normal skin
biopsies from healthy controls. The expression profiles of

miRNAs between psoriasis-affected skin and healthy control
skin were compared with the R Deseq2 package, and 77
upregulated miRNAs and 29 downregulated miRNAs were
identified (Fig. 1B).

Functional enrichment analysis of differentially expressed
mRNAs in psoriasis. To investigate the biological mechanisms
of IncRNAs in the development of psoriasis, GO functional
and KEGG pathway enrichment analyses were performed
for differentially expressed genes (DEGs) in psoriasis. The
results indicated that the upregulated mRNAs were enriched
for the following GO terms: Keratinization, keratinocyte
differentiation, peptide cross-linking, type I interferon
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Figure 3. Construction of upregulated IncRNA-mediated ceRNA network. Green nodes, IncRNAs; red nodes, miRNAs; blue nodes, mRNAs. IncRNA, long

non-coding RNA; miR/miRNA, microRNA; hsa, Homo sapiens.
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Figure 4. Construction of downregulated IncRNA-mediated ceRNA network. Green nodes, IncRNAs; red nodes, miRNAs; blue nodes, mRNAs. IncRNA, long

non-coding RNA; miR/miRNA, microRNA; hsa, Homo sapiens.

signaling pathway, innate immune response, inflammatory
response, defence response to virus, interferon-y-mediated
response, immune response, response to virus, sister chro-
matid cohesion, epidermis development, cellular response

to lipopolysaccharide, mitotic nuclear division and defence
response to bacterium (Fig. 2A). By contrast, the down-
regulated genes were enriched in the following GO terms:
Muscle filament sliding, homophilic cell adhesion via
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Figure 5. Identification of key IncRNA analysis. (A) The degree distribution

of IncRNAs in the downregulated IncRNA-mediated ceRNA network are

presented. (B) Expression level of two key IncRNAs in psoriasis skin and healthy control skin. (C) Key downregulated IncRNA-mediated biological processes
analysis. IncRNA, long non-coding RNA; ceRNA, competing endogenous RNA; PWARG6, Prader Willi/Angelman region RNA 6.

plasma membrane adhesion molecules, positive regulation
of synapse assembly, regulation of muscle contraction, ion
transmembrane transport, linoleic acid metabolic process,
sensory perception of sound, fatty acid biosynthesis process,
transport, regulation of cardiac conduction, cochlear devel-
opment, ionotropic glutamate receptor signaling pathway,
skeletal muscle contraction, muscle contraction and sarco-
mere organization (Fig. 2B).

The most significant KEGG pathway terms for the
upregulated mRNAs are provided in Fig. 2C: Influenza
A, cell cycle, measles, amoebiasis, rheumatoid arthritis,
linoleic acid metabolism, cytokine-cytokine receptor
interaction, pyrimidine metabolism, a-linolenic acid
metabolism, arachidonic acid metabolism, herpes simplex
infection, hepatitis C, cytosolic DNA-sensing pathway,
tuberculosis and pertussis. The downregulated genes were

mainly involved in adrenergic signaling in cardiomyocytes,
neuroactive ligand-receptor interaction, nicotine addic-
tion, biosynthesis of unsaturated fatty acids, glutamatergic
synapse, cell adhesion, dilated cardiomyopathy, salivary
secretion, gastric acid secretion, cCAMP signaling pathway,
hypertrophic cardiomyopathy, peroxisome proliferator
activated receptor-a signaling pathway, retrograde endocan-
nabinoid signaling, thyroid hormone synthesis and calcium
signaling pathway (Fig. 2D).

Construction of the psoriasis-associated ceRNA network. As
presented in Figs. 3 and 4, the upregulated IncRNA-mediated
ceRNA network contained 4 IncRNA nodes, 3 miRNA nodes
and 139 mRNA nodes, and the downregulated IncRNA-medi-
ated ceRNA network contained 42 IncRNA nodes, 43 miRNA
nodes and 382 mRNA nodes.
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Identification of key IncRNAs. IncRNA nodes that interacted
with >5 different miRNAs were identified as key IncRNAs,
which may have critical roles in biological networks. Of note,
in the downregulated IncRNA-mediated ceRNA network,
only two IncRNAs, AL035425.3 and Prader Willi/Angelman
region RNA 6 (PWAR®G), interacted with >5 different miRNAs
(Fig. 5A), while in the upregulated IncRNA-mediated ceRNA
network, none of the IncRNAs interacted with >5 different
miRNAs. To further validate the differentially expressed
key IncRNAs, a t-test was used to compare their expression
between psoriasis lesions involving the skin and healthy
controls. As presented in Fig. 5B, the key IncRNAs were
downregulated in psoriasis-affected skin. To better understand
the mechanism of those key IncRNAs in psoriasis, sub-ceRNA
networks were extracted and GO functional enrichment
analysis for the DEGs associated with those key IncRNAs
was performed (Fig. 5C). In the GO enrichment analysis, the
DEGs associated with IncRNA AL035425.3 and PWARG6
were involved in the biological processes of muscle filament
sliding, glutamate receptor signaling pathway, homophilic
cell adhesion via plasma membrane adhesion molecules, axon
guidance, ion transmembrane transport, cochlear development
and ionotropic glutamate receptor signaling pathway.

Construction of a specific validated miRNA-associated
IncRNA-miRNA-mRNA sub-network. A systematic literature
search in the PubMed and Web of Science databases was
performed to identify real-time PCR-validated differentially
expressed microRNAs, using the following key words:
‘MicroRNA’, ‘microRNASs’, ‘miRNA’, ‘miRs’ and ‘Psoriasis’.
A total of 37 miRNAs were identified, including 20 downregu-
lated miRNAs and 17 upregulated miRNAs (Table I) (27-48). Of
the identified miRNAs, 7 validated upregulated miRNAs were
also present in the downregulated IncRNA-mediated ceRNA
network,butnone of the validated downregulated miRNAs were
present in the upregulated IncRNA-mediated ceRNA network
(Fig. 6A). The validated differentially expressed miRNA-asso-
ciated IncRNA-miRNA-mRNA sub-networks were extracted
(Fig. 6B). Finally, DEGs were identified from the literature.
The miRNAs associated with the IncRNA-miRNA-mRNA
sub-network were subsequently extracted and functional
enrichment analysis was performed (Tables II and III). These
genes were mainly enriched in the following GO terms:
Muscle filament sliding, regulation of muscle contraction, in
utero embryonic development, and enriched in the following
KEGG pathways: AMPK signalling pathway, neuroactive
ligand-receptor interaction, hypertrophic cardiomyopathy,
calcium signalling pathway, insulin signalling pathway, adipo-
cytokine signalling pathway, dilated cardiomyopathy,
adrenergic signalling in cardiomyocytes and insulin resistance.

Discussion

Psoriasis is a chronic immune-mediated inflammatory disease
that affects 3.2% of the adult population in the US (49). Over
the past decades, the role of different cytokines in psoriasis
has been studied widely (50), and therefore, cytokine-targeting
drugs have been developed, including adalimumab (which
targets tumor necrosis factor-a), secukinumab (which targets
IL-17A) and ustekinumab (which targets IL-12 and IL-23

ZHOU et al: IncRNA-ASSOCIATED ceRNA NETWORK IN PSORIASIS

Table I. Differentially expressed miRNAs in psoriasis skin
identified by the literature search.

A, Downregulated miRNAs

miRNA fold-change

in GSE31037
miRNA name log2 fold-change P-value (Refs.)
miR-10b-5p -0.84 2.27x107 27
miR-125b -0.91 1.12x10°" (28)
miR-138 -0.22 2.98x1072 (29)
miR-143-3p -0.33 4.32x1072 27
miR-145-5p -0.05 7.84x10°! 27
miR-181b-5p -0.58 9.74x107 (30)
miR-194 -0.28 1.17x10"! (€28)
miR-196b-5p -0.62 4.00x10° (27)
miR-197 -0.28 2.11x107 (32)
miR-20a-3p 0.61 1.26x10* (33)
miR-217 0.17 5.51x10! (34)
miR-320b -0.54 5.42x10* (35
miR-338-3p -0.48 5.24x107 (27)
miR-423 0.05 8.52x10" (32)
miR-424 0.83 1.99x10°¢ (36)
miR-4516 -0.90 1.03x1072 37
miR-486-3p -1.09 4.17x1073 (38)
miR-876-5p 0.06 9.37x10"! (39)
miR-99a -0.99 2.47x10™ (32)
miR-675-3p -2.05 2.56x10™" (40)
B, Upregulated miRNAs
miRNA fold-change
in GSE31037

miRNA name log2 fold-change P-value (Refs.)
miR-122-5p -0.48 6.17x10"! (41)
miR-130a-3p 0.01 9.55x10"! (42)
miR-135b-5p 2.56 2.46x10% (40)
miR-146a-5p 1.28 1.67x10" 27
miR-146b 0.36 9.03x1072 (43)
miR-155-5p 1.53 1.60x10" (44)
miR-203 -0.12 5.77x10"! (28)
miR-205 0.56 8.04x107 (45)
miR-21-5p 2.07 2.40x107% 27
miR-210 -0.54 2.03x1072 (46)
miR-221 -0.07 6.02x10"! (45)
miR-222-3p 0.11 4.26x10"! (45)
miR-31-5p 546 7.08x10% 27)
miR-3613-5p 1.68 2.16x10" (40)
miR-369-3p 1.30 3.78x10™" 47
miR-431 2.20 1.67x107 (40)
miR-744-3p 0.38 2.78x107 (40)

miRNA/miR, microRNA.
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Figure 6. Construction of a specific literature confirmed miRNA-associated IncRNA-miRNA-mRNA sub-network. (A) Intersection of confirmed
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Table II. Gene Ontology enrichment analysis of differentially expressed mRNAs from the specific miRNA-associated long

non-coding RNA-miRNA-mRNA sub-networks (top 20).

Term n (%) P-value Genes

G0:0030049~muscle filament sliding 9(3.93) 1.17x10°® ACTCI1, TNNT1, TNNC2,ACTA1, TNNCI1,
MYBPCI1, DMD, TPM1, TNNI2

GO0:0006937~regulation of muscle contraction 5(2.18) 1.71x10° TNNT1, TNNC2, TNNC1, TPM1, TNNI2

GO0:0001701~in utero embryonic development 11 (4.80) 7.68x107 MUCI1,AR,NOG, LMXI1B, GATA6, GATA3,
FOXC1, GLI2, TPM1, PITX2, FOXD3

GO:0003009~skeletal muscle contraction 5(2.18) 1.66x10* TNNT1, TNNC2, TNNC1,MYH14, TNNI2

GO:0060048~cardiac muscle contraction 6 (2.62) 1.81x10* ACTC1,TNNC1, DMD, TPM1, CASQ2, TNNI2

GO0:0045214~sarcomere organization 5(2.18) 3.54x10* KRT19, KRT8, LDB3, TPM1, CASQ2

GO0:0007267~cell-cell signaling 11 (4.80) 8.84x10* AR,ADRB2, CRBI1, SSTR1, FGF9, FADS1,
ADRA2B, GDF15, MERTK, ASIP, SHH

G0:0042493~response to drug 12(5.24)  9.89x10* ACTCI1, GATA6, GATA3, PPARG, NPPC,
GRIN2A, PTN, TIMP4, ACACB, GAL, ABCCS8,
MGST]1

G0:0048645~organ formation 3(1.31) 1.35x1073 AR, GATA6, SHH

GO:0045165~cell fate commitment 5(2.18) 2.08x10° SPRY2, ERBB4, GATA6, GATA3, PPARG

GO0:0007156~homophilic cell adhesion via 8(349) 2.72x103 CDH12,CDH7,DSG2, CADM2, PCDH10,

plasma membrane adhesion molecules CDH2, PCDHGA4, PCDHGA3

GO0:0007010~cytoskeleton organization 8(3.49) 3.03x1073 APOE, DMD, KRT15, PAKS5, KRT31, CECR2,
GAN, TPM1

G0:0042472~inner ear morphogenesis 5(2.18) 3.26x1073 SPRY2, KCNQ4, FGF9, GATA3, INSIG1

GO:0007605~sensory perception of sound 7(3.06) 4.96x10°  COCH, SPRY2, KCNQ4, TSPEAR, GABRB3,
OTOF,MYH14

GO0:0009953~dorsal/ventral pattern formation 4 (1.75) 6.22x107 NOG, LMX1B, LHX2, SHH

GO0:0042593~glucose homeostasis 6 (2.62) 6.89x107 SLC2A4, LEPR, PDK4, PPARG, TRPV4,
PRKAA2

GO0:0043627~response to estrogen 5(2.18) 7.25x1073 KRT19, GATA6, GATA3, PPARG, GAL

G0:0032868~response to insulin 5(2.18) 8.06x107 EGR2, FADS1, TRPV4, GAL, ABCC8

GO:0007171~activation of transmembrane 3(1.31) 8.45x1073 ADRB2, NRG3, PRLR

receptor protein tyrosine kinase activity

GO0:0034332~adherens junction organization 4 (1.75) 9.35x10° CDHI12,CDH7,CADM2, CDH2

GO, Gene Ontology; miRNA, microRNA.

p40) (51). However, the roles of IncRNAs in psoriasis have
remained largely elusive.

IncRNAs have important roles in immune and inflamma-
tory pathways by regulating gene expression through multiple
mechanisms (52). Among these mechanisms, the ceRNA theory
is commonly studied. According to this theory, IncRNAs
act as ‘sponges’ for miRNAs and decrease the effects of
miRNAs on their target genes, thus promoting the expression
of target genes (53). For instance, Qiao et al (12) reported that
IncRNA-MSX2P1 activates SIO0A71 and facilitates the growth
of IL-22-stimulated keratinocytes by inhibiting miR-6731-5p.
Furthermore, Li ef al (54) demonstrated that IncRNA H19
regulates the differentiation of keratinocytes by increasing
desmoglein 1 expression through sponging miR-130b-3p.

In the present study, psoriasis-associated IncRNA-miRNA-
mRNA networks were constructed based on the ceRNA
theory, and the DEGs were also subjected to GO BP enrich-
ment analysis and KEGG pathway enrichment analysis.

GO BP enrichment analysis of the upregulated mRNAs
indicated that the significantly enriched GO BP terms were
psoriasis-associated biological processes, including kerati-
nization (55), keratinocyte differentiation (3), inflammatory
response (56) and immune response (56). Furthermore, the
downregulated mRNAs were mainly enriched in the BP terms
muscle filament sliding, homophilic cell adhesion via plasma
membrane adhesion molecules, positive regulation of synapse
assembly and regulation of muscle contraction.

In the present study, the downregulated IncRNAs
AL035425.3 and PWARG were identified as key IncRNAs.
GO BP analysis of the key IncRNAs revealed that AL035425.3
and PWARG were involved in muscle filament sliding, the
glutamate receptor signaling pathway, homophilic cell
adhesion via plasma membrane adhesion molecules, axon
guidance, ion transmembrane transport, cochlear develop-
ment and ionotropic glutamate receptor signaling pathway.
Of the two key IncRNAs, PWARG6 was previously reported
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Table III. Kyoto Encyclopedia of Genes and Genomes signaling pathway enrichment analysis of differentially expressed mRNAs
from the specific miRNAs-associated long non-coding RNA-miRNA-mRNA sub-network.

Term n (%) P-value Genes

hsa04152:AMPK signaling pathway 8(349) 822x10* IRS4,SLC2A4,LEPR, PPARG, FASN, FBP1,
PRKAA2,ACACB

hsa04080:Neuroactive ligand-receptor 11 (4.80) 2.25x1073 GLRB,ADRB2,PRLR, GABRB3,CHRM3, SSTR1,

interaction LEPR, GRIKS5, GRIN2A, ADRA2B, GRM1

hsa05410:Hypertrophic cardiomyopathy 6(2.62) 2.80x10°  ACTC1,TNNCI1,DMD, PRKAA2, CACNA2D?2,
TPM1

hsa04020:Calcium signaling pathway 8(349) 6.85x10° ADRB2,TNNC2, CHRM3, ERBB4, TNNCI,
GRIN2A, CAMK2B, GRM1

hsa04910:Insulin signaling pathway 7(3.06) 7.39x10° IRS4,PYGM, SLC2A4, FASN, FBP1, PRKAA2,
ACACB

hsa04920: Adipocytokine signaling pathway 5(2.18) 1.12x10%  IRS4,SLC2A4, LEPR, PRKAA2, ACACB

hsa05414:Dilated cardiomyopathy 5(2.18) 2.06x10?  ACTC1,TNNC1, DMD, CACNA2D2, TPM1

hsa04261:Adrenergic signaling in 6(2.62) 2.88x1072 ACTC1,ADRB2, TNNCI1, CAMK2B, CACNA2D2,

cardiomyocytes TPM1

hsa04931:Insulin resistance 5(2.18)  4.58x10%2 PYGM, SLC2A4, PRKAA2, ACACB, SLC27A2

miRNA, microRNA; hsa, Homo sapiens.

to be a tumor suppressor IncRNA in glioma, and high
expression of PWARG6 was reported to be an indicator of
better survival in glioma patients (57). In addition, PWARG6
is functionally important in Prader-Willi syndrome, and the
disruption of its expression is associated with the pathogen-
esis of the disease (58). Two potential target miRNAs of
PWARG6 were identified from the validated miRNA-asso-
ciated IncRNA-miRNA-mRNA sub-network: miR-155-5p
and miR-369-3p. Previous studies have demonstrated that
knockdown of miR-155-5p suppresses psoriasis-associated
inflammatory responses through regulation of the NLR
family pyrin domain containing 3 inflammasome (44);
furthermore, the expression levels of miR-369-3p in skin had
a positive correlation with the Psoriasis Area and Severity
Index, which is used to assess disease severity (47). Taken
together, these results indicate that PWARG6 may be involved
in the progress of psoriasis via regulation of the expression of
miR-155-5p and miR-369-3p.

The present study has certain limitations that should be
considered: First, although the expression profiles of IncRNA
and mRNA were determined from the same specimens, the
miRNA expression profile is from an independent dataset.
Thus, combining these profiles into a network may intro-
duce selection bias, and further experiments using the same
specimens are required. In addition, further validation of key
IncRNA expression levels in psoriasis samples is required.
Finally, additional functional investigations of these IncRNAs
in the context of psoriasis progression are required.

In summary, the present study presented a novel and impor-
tant psoriasis-associated ceRNA network based on the ceRNA
theory. The results indicate that certain IncRNAs have key
roles in the development of psoriasis. In addition, the present
study identified two IncRNAs, AL035425.3 and PWARG,
that were indicated to have a central role in psoriasis. The

present study provides insight into the molecular mechanisms
of psoriasis, and this may help to identify novel therapeutic
targets for the treatment of psoriasis in the future.
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