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Abstract. Cholangiocarcinoma (CCA) is the second most 
common type of primary malignancy of the liver. Certain long 
non‑coding RNAs (lncRNAs) have been demonstrated to have 
key roles in tumor pathogenesis by binding to microRNAs 
(miRNAs). However, the competing endogenous RNA (ceRNA) 
network of CCA remains to be fully determined. In the present 
study, the RNA expression profiles for CCA were downloaded 
from The Cancer Genome Atlas and further analyzed. A total 
of 318 differentially expressed (DE) lncRNAs, 87 DE miRNAs 
and 3,851 DE mRNAs were identified from 36 CCA samples and 
9 adjacent non‑tumor samples (for lncRNAs and miRNAs, fold 
change ≥2.5 and P<0.01; for mRNAs, fold change ≥2 and P<0.01). 
Further bioinformatics analyses were performed and the ceRNA 
network for CCA was constructed, which included 16 lncRNAs, 
55 miRNAs and 373 mRNAs. Survival analysis of all genes in the 
network revealed that high expression of the mRNAs fucosyltrans-
ferase 4 (P<0.005) and huntingtin‑interacting protein 1 related 
(P<0.001) has a positive impact on the overall survival of patients 
with CAA. Furthermore, the lncRNAs H19 and PVT1, and the 
miRNAs Homo sapiens (hsa)‑miR‑16‑5p and hsa‑miR‑424‑5p, 
together with peroxisome proliferator‑activated receptors, may 
also have important roles in the pathogenesis of CCA. The present 
study provided data to further the understanding of and research 
into the molecular mechanisms implicated in CCA.

Introduction

Cholangiocarcinoma (CCA) is a deadly malignancy of the 
biliary tree. Due to the high frequency of diagnosis at a late 
stage, metastasis and recurrence, surgical treatment for CCA 

is associated with poor outcomes. The 5‑year survival rate is 
5‑10% in patients with CCA (1). Therefore, understanding the 
molecular mechanisms involved in the tumorigenesis of CCA is 
a critical step for improving early diagnosis, reducing mortality, 
and developing effective targeted therapies. Long non‑coding 
RNAs (lncRNAs) are autonomously transcribed non‑coding 
RNAs of >200 nt in length, which have an important role in 
the regulation of gene transcription through the recruitment 
of chromatin‑modifying enzymes (2). Accumulating studies 
have indicated that lncRNAs may interact with microRNAs 
(miRNAs/miRs) as competing endogenous RNAs (ceRNAs), 
and regulate the expression of target genes, which may have 
a role in tumor occurrence and progression (3). Therefore, 
lncRNAs are considered to be potential diagnostic and 
prognostic biomarkers of malignancy (4,5). Based on these 
facts, Salmena et al (3) provided the ceRNA hypothesis and 
constructed a large‑scale ceRNA regulatory network, which 
may explain tumor processes and present opportunities for 
novel therapies. 

 In previous studies, regulatory ceRNA networks 
composed of lncRNAs, miRNAs and mRNAs have been used 
to study molecular mechanisms of tumor occurrence and 
progression. Numerous studies have indicated that ceRNA 
regulatory lncRNA‑miRNA‑mRNA networks are implicated 
in the occurrence and progression of gastric, breast, pancre-
atic and liver cancer (6‑9). Recently, lncRNA actin filament 
associated protein 1 (AFAP1)‑antisense (AS)1 was reported to 
promote the growth and metastasis of CAA (10). AFAP1‑AS1 
expression was upregulated in CCA tumor samples and its 
knockdown reduced cell stress filament integrity, suggesting 
that it may be a diagnostic and prognostic biomarker for CCA. 
Another study indicated that the expression of lncRNA colon 
cancer‑associated transcript 1 (CCAT1) was significantly 
upregulated in CAA samples, and promoted cell migration and 
invasion by suppressing miR‑152 (11). Based on the aforemen-
tioned studies, it may be hypothesized that dysregulation of 
certain lncRNAs may promote CAA by regulating key path-
ways. Therefore, identification of a CAA‑associated ceRNA 
network may be useful for understanding the role of ceRNAs 
in the genesis of CAA and therapeutic outcomes (12). In the 
present study, a ceRNA network of CAA was constructed, 
including 16 lncRNAs, 55 miRNAs and 373 mRNAs. Based 
on the network, survival analysis of all genes suggested that 
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fucosyltransferase 4 (FUT4) and huntingtin‑interacting protein 
1 related (HIP1R) were associated with overall survival. These 
results provided further insight into the mechanisms of the 
pathogenesis of CAA, and may provide potential novel thera-
peutic markers for CAA treatment.

Materials and methods

Patients and The Cancer Genome Atlas (TCGA) data retrieval. 
The microarray data for 45 CCA samples were obtained from 
TCGA data portal (https://portal.gdc.cancer.gov/), with search 
results up to October 14th, 2018 included. The RNA and miRNA 
sequencing (seq) data were obtained from the IlluminaHiseq_
RNASeq and the IlluminaHiSeq_miRNASeq sequencing 
platforms. All data are open access and free to download. The 
sequencing data included the corresponding RNA‑seq and 
miRNA‑seq data. The human samples were divided into 2 groups: 
The CCA samples (n=36) and adjacent non‑tumor samples (n=9). 
All of the protocols were in accordance with the guidelines of 
TCGA and no further ethical approval was required, since all of 
the data were collected from TCGA (https://cancergenome.nih.
gov/publications/publicationguidelines).

Identification of differentially expressed (DE) lncRNAs, 
miRNAs and miRNAs. The raw data of the microarray datasets 
were preprocessed via background correction and normaliza-
tion. Prior to the analysis, all unexpressed RNAs were filtered 
out by using R language (version 3.2.5; https://cran.r‑project.
org/). According to the R language results, those genes with 
mean read count ≤1 were deleted. The lncRNAs and mRNAs 
were identified using the Ensembl database (version 89; 
http://www.ensembl.org/index.html). Subsequently, the DE 
mRNAs, lncRNAs and miRNAs of the two groups were 
obtained using edgeR software  (13). The false discovery 
rate (FDR) was used for multiple comparisons of statisti-
cally significant P‑values. The fold change (FC) was used for 
measuring the differential expression levels of genes, where 
|log2FC|≥2 and FDR adjusted to P<0.01 were considered to 
indicate a significant DE mRNA or lncRNA; the standard 
for miRNAs was a fold change ≥2.5 and an FDR adjusted 
to P<0.01. Finally, all of the DE RNAs were analyzed and a 
volcano map was generated using the R platform.

Generation of the ceRNA regulatory network of CCA. To 
investigate the association between ceRNAs in patients with 
CAA, the lncRNA‑miRNA‑mRNA regulatory network was 
constructed, which was established through the following 
procedures based on the results of the DE analysis. First, the 
regulatory interactions between lncRNAs and miRNAs were 
predicted using the miRcode database  (14). Subsequently, 
miRNA‑targeted mRNAs were extracted from the miRTar-
Base (15), miRDB (16) and TargetScan (17) databases. Finally, 
using Cytoscape 3.5.1 (http://www.cytoscape.org/), the ceRNA 
regulatory network was generated and visualized. 

Functional enrichment analysis. In order to better understand 
the mechanisms of CCA tumorigenesis, Gene Ontology (GO) 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway analyses of DE mRNAs were performed using 
the Database for Annotation, Visualization and Integrated 

Discovery (DAVID; http://www.david.abcc.ncifcrf.gov/). A 
GO term or KEGG pathway with FDR <0.05 was considered 
statistically significant. The enriched GO terms and pathways 
of the DE mRNAs with the most significant P‑values were 
ranked by their enrichment score (‑log P‑value).

Survival analysis. The R survival package (version 2.41‑3; 
https://CRAN.R‑project.org/package=survival) was used for 
the survival analysis. The Kaplan‑Meier method was used 
to estimate cumulative survival rates and the log‑rank test 
was then used to compare the differences in overall survival 
between the different groups. P<0.05 was considered to indi-
cate statistical significance.

Results

DE lncRNAs, mRNAs and miRNAs in CCA. The present 
study investigated the differential RNA expression in 36 
CCA tissues and 9 adjacent non‑tumor tissues. The integrated 
analysis identified 318 DE lncRNAs, 3,851 DE mRNAs and 
87 DE miRNAs using the edgeR package. Of the 318 DE 
lncRNAs, 205 were upregulated (64.5%) and 113 (35.5%) were 
downregulated. A total of 1,549 (40.2%) mRNAs were identi-
fied to be upregulated and 2,302 (59.8%) were downregulated 
out of the 3,851 DE mRNAs. For the 87 DE miRNAs, 41 
(47.1%) were upregulated and the remaining 46 (52.9%) were 
downregulated. The top 20 upregulated and downregulated 
lncRNAs, mRNAs and miRNAs are listed in Tables  I-III, 
respectively. In addition, the distributions of all DE mRNAs 
are presented in a volcano plot in Fig. 1. 

Construction of a ceRNA regulatory network in CCA. To 
better understand the characteristics of the lncRNAs and to 
further clarify the interactions between the lncRNAs and 

Figure 1. Volcano plot displaying the distribution of differentially expressed 
mRNAs. Green spots represent downregulated genes and red spots represent 
upregulated genes. FDR, false discovery rate.
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miRNAs, an lncRNA‑miRNA‑mRNA‑associated regulatory 
network was constructed. First, the 318 DE lncRNAs derived 

from the miRcode database were used; these were applied 
to the Perl program, which identified 56 pairs of interacting 

Table I. The top 20 up‑ and downregulated lncRNAs (ranked by P‑values).

A, Top 20 upregulated lncRNAs

Ensembl ID	 logFC	 P‑value	 FDR

ENSG00000261659	 3.198316385	 1.55x10‑11	 3.30x10‑10

ENSG00000253210	 2.985738665	 1.21x10‑10	 2.13x10‑09

ENSG00000261183	 4.001322806	 2.92x10‑10	 4.81x10‑09

ENSG00000228109	 3.369141828	 3.07x10‑10	 5.02x10‑09

ENSG00000265688	 3.446807939	 4.91x10‑10	 7.64x10‑09

ENSG00000261068	 4.766573772	 2.45x10‑09	 3.24x10‑08

ENSG00000172965	 2.575378258	 3.51x10‑09	 4.50x10‑08

ENSG00000273230	 2.560329476	 4.77x10‑09	 5.97x10‑08

ENSG00000234741	 2.018672373	 1.11x10‑08	 1.30x10‑07

ENSG00000261801	 3.691796251	 1.53x10‑08	 1.74x10‑07

ENSG00000285255	 4.217290775	 1.65x10‑08	 1.86x10‑07

ENSG00000226711	 2.650291782	 3.45x10‑08	 3.56x10‑07

ENSG00000261437	 4.32349391	 6.22x10‑08	 6.02x10‑07

ENSG00000277283	 1.914981951	 1.10x10‑07	 1.01x10‑06

ENSG00000243479	 5.595465468	 1.18x10‑07	 1.08x10‑06

ENSG00000244041	 1.90448619	 1.32x10‑07	 1.20x10‑06

ENSG00000269680	 3.185294307	 1.55x10‑07	 1.39x10‑06

ENSG00000273759	 2.435273695	 1.66x10‑07	 1.47x10‑06

ENSG00000257556	 2.979912742	 1.96x10‑07	 1.71x10‑06

ENSG00000255381	 1.597506825	 2.13x10‑07	 1.85x10‑06

B, Top 20 downregulated lncRNAs

Ensembl ID	 logFC	 P‑value	 FDR

ENSG00000225756	 ‑4.439300193	 5.12x10‑18	 6.55x10‑16

ENSG00000251165	 ‑5.214981183	 6.12x10‑17	 5.09x10‑15

ENSG00000261572	 ‑3.875298917	 1.23x10‑15	 6.95x10‑14

ENSG00000263400	 ‑4.480906234	 1.29x10‑15	 7.23x10‑14

ENSG00000215386	 ‑3.687757377	 1.76x10‑15	 9.49x10‑14

ENSG00000264575	 ‑2.497423285	 2.22x10‑15	 1.17x10‑13

ENSG00000267390	 ‑3.142413979	 2.31x10‑15	 1.20x10‑13

ENSG00000234456	 ‑3.123344646	 5.80x10‑15	 2.68x10‑13

ENSG00000261012	 ‑7.173215127	 6.10x10‑14	 2.19x10‑12

ENSG00000235609	 ‑2.872714774	 1.54x10‑13	 4.97x10‑12

ENSG00000261578	 ‑4.233216461	 1.78x10‑13	 5.66x10‑12

ENSG00000228794	‑ 1.905394222	 8.41x10‑13	 2.31x10‑11

ENSG00000259370	 ‑4.369092089	 3.65x10‑12	 8.74x10‑11

ENSG00000215256	 ‑2.110042475	 3.88x10‑12	 9.20x10‑11

ENSG00000223797	 ‑2.072567868	 5.02x10‑12	 1.17x10‑10

ENSG00000275494	 ‑2.27756684	 1.10x10‑11	 2.41x10‑10

ENSG00000269386	 ‑2.361574508	 2.36x10‑11	 4.81x10‑10

ENSG00000273616	 ‑2.942297335	 3.18x10‑11	 6.25x10‑10

ENSG00000267675	 ‑5.990122102	 5.41x10‑11	 1.03x10‑09

ENSG00000260274	 ‑1.989229751	 5.54x10‑11	 1.05x10‑09

lncRNA, long non‑coding RNA; ID, identification; FC, fold change; FDR, false discovery rate.
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lncRNAs and miRNAs. From the 87 DE miRNAs retrieved, 
it was predicted that 55 of them were able to interact with 
16 DE lncRNAs. mRNAs targeted by these 55 DE miRNAs 

were selected in all three databases (miRTarBase, miRDB and 
TargetScan). The targeted mRNAs with DE miRNAs retrieved 
from the miRcode database were cross‑checked. The 373 DE 

Table II. The top 20 up‑ and down‑regulated mRNAs (ranked by P‑values).

A, Top 20 upregulated mRNAs

Ensembl ID	 logFC	 P‑value	 FDR

ENSG00000067225	 4.055367983	 2.56996x10‑19	 6.10345x10‑17

ENSG00000167642	 3.701088077	 7.00796x10‑15	 3.17737x10‑13

ENSG00000166145	 4.613180178	 2.32377x10‑14	 9.14954x10‑13

ENSG00000080603	 1.181826005	 3.47222x10‑14	 1.28677x10‑12

ENSG00000129351	 1.139806521	 7.36096x10‑14	 2.57927x10‑12

ENSG00000127616	 1.503804232	 1.66381x10‑13	 5.31921x10‑12

ENSG00000102317	 1.536020573	 2.42826x10‑13	 7.47564x10‑12

ENSG00000186765	 3.918721626	 3.7811x10‑13	 1.11584x10‑11

ENSG00000149639	 2.497348198	 8.96987x10‑13	 2.46252x10‑11

ENSG00000272398	 3.551356872	 1.82259x10‑12	 4.72611x10‑11

ENSG00000179051	 1.650897428	 2.44245x10‑12	 6.15218x10‑11

ENSG00000112118	 1.902906765	 3.13164x10‑12	 7.63689x10‑11

ENSG00000164221	 2.428188979	 3.41876x10‑12	 8.25024x10‑11

ENSG00000139734	 4.246825211	 5.12237x10‑12	 1.18639x10‑10

ENSG00000166557	 2.635202192	 5.60838x10‑12	 1.28503x10‑10

ENSG00000106012	 2.659102098	 7.13445x10‑12	 1.60899x10‑10

ENSG00000034510	 2.598284344	 1.03483x10‑11	 2.27358x10‑10

ENSG00000115561	 1.462267513	 1.14603x10‑11	 2.51053x10‑10

ENSG00000187642	 3.168721529	 1.99786x10‑11	 4.13444x10‑10

ENSG00000130702	 2.181520136	 2.11404x10‑11	 4.35678x10‑10

B, Top 20 downregulated mRNAs

Ensembl ID	 logFC	 P‑value	 FDR

ENSG00000080709	 ‑5.686469859	 2.2178x10‑26	 3.31827x10‑22

ENSG00000105607	 ‑3.33705124	 1.59062x10‑24	 8.19986x10‑21

ENSG00000059769	 ‑3.096941246	 1.64414x10‑24	 8.19986x10‑21

ENSG00000155666	 ‑4.429426553	 2.5976x10‑24	 9.71631x10‑21

ENSG00000143257	 ‑7.106918488	 1.12249x10‑23	 3.35895x10‑20

ENSG00000091831	 ‑5.926384811	 2.4347x10‑23	 6.04595x10‑20

ENSG00000115841	 ‑2.951203464	 2.82861x10‑23	 6.04595x10‑20

ENSG00000160323	 ‑3.440732637	 4.13922x10‑23	 7.74137x10‑20

ENSG00000120158	 ‑3.801441126	 5.20254x10‑23	 8.64894x10‑20

ENSG00000205707	 ‑2.678156335	 6.41175x10‑23	 9.59327x10‑20

ENSG00000133027	 ‑3.608581255	 1.0559x10‑22	 1.43621x10‑19

ENSG00000119673	 ‑3.336686032	 1.26151x10‑22	 1.57289x10‑19

ENSG00000118777	 ‑4.659839514	 1.66311x10‑22	 1.91412x10‑19

ENSG00000179152	 ‑2.262072095	 1.86674x10‑22	 1.99501x10‑19

ENSG00000117009	 ‑6.093754472	 2.11114x10‑22	 2.1058x10‑19

ENSG00000213398	 ‑5.036902246	 2.55547x10‑22	 2.38968x10‑19

ENSG00000116761	 ‑5.616242901	 6.69097x10‑22	 5.88884x10‑19

ENSG00000109929	‑ 4.242818901	 8.11342x10‑22	 6.74406x10‑19

ENSG00000168306	 ‑6.910609036	 1.11334x10‑21	 8.76728x10‑19

ENSG00000124713	 ‑7.940751186	 1.28333x10‑21	 9.6006x10‑19

ID, identification; FC, fold change; FDR, false discovery rate.
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Table III. The top 20 up‑ and downregulated miRNAs (ranked by P‑values).

A, Top 20 upregulated miRNAs

miRNA	 logFC	 P‑value	 FDR

hsa‑miR‑183‑5p	 4.836903706	 6.38x10‑17	 1.40x10‑14

hsa‑miR‑182‑5p	 4.483302702	 6.43x10‑17	 1.40x10‑14

hsa‑miR‑21‑5p	 2.485307292	 6.28x10‑14	 6.52x10‑12

hsa‑miR‑96‑5p	 5.172417117	 1.81x10‑13	 1.31x10‑11

hsa‑miR‑27a‑3p	 1.975273987	 3.22x10‑13	 1.99x10‑11

hsa‑miR‑34c‑3p	 3.911770715	 2.54x10‑10	 4.76x10‑09

hsa‑miR‑222‑3p	 2.267762864	 3.08x10‑10	 5.34x10‑09

hsa‑miR‑23a‑3p	 1.494080752	 4.43x10‑10	 7.12x10‑09

hsa‑miR‑34c‑5p	 4.181782951	 1.10x10‑08	 1.45x10‑07

hsa‑miR‑92b‑3p	 2.769232681	 1.75x10‑08	 2.23x10‑07

hsa‑miR‑330‑5p	 1.866060112	 2.30x10‑08	 2.78x10‑07

hsa‑miR‑454‑3p	 1.608154597	 2.67x10‑08	 3.13x10‑07

hsa‑miR‑181d‑5p	 2.43995135	 3.65x10‑08	 4.17x10‑07

hsa‑let‑7e‑5p	 1.391443094	 4.99x10‑08	 5.42x10‑07

hsa‑miR‑221‑3p	 1.752600485	 8.05x10‑08	 8.27x10‑07

hsa‑miR‑181b‑5p	 1.952571231	 9.66x10‑08	 9.26x10‑07

hsa‑miR‑200b‑3p	 2.634730289	 9.82x10‑08	 9.26x10‑07

hsa‑miR‑24‑2‑5p	 1.597889448	 1.14x10‑07	 1.05x10‑06

hsa‑miR‑301a‑3p	 1.537288068	 2.14x10‑07	 1.94x10‑06

hsa‑miR‑99b‑3p	 1.648708541	 2.45x10‑07	 2.13x10‑06

B, Top 20 downregulated miRNAs

miRNA	 logFC	 P‑value	 FDR

hsa‑miR‑148a‑3p	‑ 2.8329	 5.07x10‑15	 7.33x10‑13

hsa‑miR‑4662a‑5p	 ‑3.27785	 7.51x10‑14	 6.52x10‑12

hsa‑miR‑101‑3p	‑ 2.08208	 4.85x10‑13	 2.63x10‑11

hsa‑miR‑505‑3p	‑ 2.01987	 2.01x10‑12	 9.68x10‑11

hsa‑miR‑378a‑3p	‑ 3.24209	 3.83x10‑12	 1.66x10‑10

hsa‑miR‑148a‑5p	 ‑2.53305	 7.56x10‑12	 2.98x10‑10

hsa‑miR‑378a‑5p	‑ 2.94829	 1.74x10‑11	 6.30x10‑10

hsa‑miR‑125b‑2‑3p	‑ 2.4123	 2.24x10‑11	 7.48x10‑10

hsa‑miR‑483‑3p	‑ 4.78428	 2.72x10‑11	 8.43x10‑10

hsa‑miR‑122‑3p	 ‑7.01304	 3.26x10‑11	 9.43x10‑10

hsa‑miR‑194‑3p	‑ 3.2353	 3.93x10‑11	 1.07x10‑09

hsa‑miR‑139‑3p	 ‑2.76339	 5.01x10‑11	 1.28x10‑09

hsa‑let‑7c‑5p	 ‑2.24221	 6.46x10‑11	 1.56x10‑09

hsa‑miR‑99a‑3p	‑ 2.34474	 8.98x10‑11	 1.97x10‑09

hsa‑miR‑675‑3p	 ‑5.17096	 9.09x10‑11	 1.97x10‑09

hsa‑miR‑139‑5p	‑ 3.13233	 1.08x10‑10	 2.24x10‑09

hsa‑miR‑378c	‑ 2.82711	 2.22x10‑10	 4.38x10‑09

hsa‑miR‑885‑5p	 ‑6.05348	 2.63x10‑10	 4.76x10‑09

hsa‑miR‑99a‑5p	 ‑2.41861	 3.84x10‑10	 6.42x10‑09

hsa‑miR‑483‑5p	‑ 4.28222	 4.93x10‑10	 7.65x10‑09

miR/miRNA, microRNA; hsa, Homo sapiens; FC, fold change; FDR, false discovery rate.
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targeted mRNAs were then selected. Finally, the ceRNA regu-
latory network for CCA was created by incorporating 16 DE 
lncRNAs, 55 DE miRNAs and 373 DE mRNAs (Fig. 2). 

Functional enrichment analysis. GO analysis revealed that 
there were 427 enriched GO terms with statistical significance 
in the category biological process (BP), 44 in the category 
cellular component (CC) and 105 in the category molecular 
function (MF). The top enriched terms for BP, CC and MF 
are small molecule catabolic process, mitochondrial matrix 
and coenzyme binding, respectively (Fig. 3). KEGG analysis 
revealed 49 pathways associated with mRNAs, including ‘cell 
metabolism’, ‘proliferation’ and ‘sustained angiogenesis’. The 
top 15 pathways are provided in Fig. 4 and most of them are 
associated with metabolism.

Survival analysis and the ceRNA network. To identify the 
prognostic characteristics of the ceRNA network, each gene 
of the 16 lncRNAs, 55 miRNAs and 373 mRNAs were 
analyzed using Kaplan‑Meier survival analysis separately. 
The results revealed that only two DE mRNAs in the network 
(FUT4 and HIP1R) were associated with overall survival. The 
Kaplan‑Meier survival analysis indicated that high levels of 
FUT4 (P<0.005) and HIP1R (P<0.001) were positively associ-
ated with overall survival (Fig. 5).

Discussion

CCA is the second most common type of primary liver malig-
nancy. Although surgical resection remains the only potential 
treatment, it is frequently unfeasible due to the advanced tumor 

stage at the initial diagnosis, with a 5‑year survival rate of 
<5‑10% (18). Diagnostic and therapeutic biomarkers are urgently 
required for patients with CCA. In recent years, accumulating 
evidence has indicated that lncRNAs have a key role in cancer. 
It has been suggested that lncRNAs may serve as sponges 
for miRNA, reducing their regulatory effect on mRNAs (19). 
This function introduces an extra layer of complexity in 
the miRNA‑target interaction network, the dysregulation of 
which may contribute to the development and progression of 
multiple diseases (19). Although recent studies have reported 
that certain lncRNAs, including AFAP1‑AS1, CCAT1, nuclear 
paraspeckle assembly transcript 1 and metastasis associated 
lung adenocarcinoma transcript 1, may be associated with CCA, 
it remains necessary to perform a more comprehensive analysis 
of the ceRNA regulatory networks in CCA (20). 

 The present study systematically analyzed and constructed 
a ceRNA regulatory network containing 16 DE lncRNAs, 55 
DE miRNAs and 373 DE mRNAs, in an attempt to better 
understand the pathogenesis of CCA. In this network, the 
lncRNAs primarily bound to Homo sapiens (hsa)‑miR‑16‑5p, 
hsa‑miR‑424‑5p, hsa‑miR‑130a‑3p, hsa‑miR‑130b‑3p 
and hsa‑miR‑454‑3p. In addition, hsa‑miR‑16‑5p and 
hsa‑miR‑424‑5p were the largest nodes that interacted with 
82 non‑coding and coding RNAs in the current network, 
suggesting that these two miRNAs may be critical to the patho-
genesis of CCA. The enriched GO terms of the DE mRNAs 
were strongly linked to metabolism and included ‘small mole-
cule catabolic process’, ‘organic acid catabolic process’ and 
‘carboxylic acid catabolic process’. Pathway analysis revealed 
that ‘carbon metabolism’, ‘peroxisome proliferator‑activated 
receptor (PPAR) signaling pathway’, ‘bile secretion’ and ‘fat 

Figure 2. Competing endogenous RNA regulatory network in cholangiocarcinoma. The squares represent long non‑coding RNAs, triangles indicate mRNAs 
and yellow circles represent miRs. Blue indicates downregulated RNAs and red represents upregulated RNAs. miR, microRNA; Hsa, Homo sapiens.



EXPERIMENTAL AND THERAPEUTIC MEDICINE  18:  4103-4112,  2019 4109

digestion’ were significantly enriched, and these have been 
reported to exert a pivotal influence on CCA (21,22).

 Of the 16 DE lncRNAs identified in the ceRNA network, 
the complementary mRNAs mainly bound to H19, F‑box and 
leucine rich repeat protein 19‑AS1, HLA complex group 18, 
PVT1 and small nucleolar RNA host gene 1. H19 and PVT1 
are the most widely studied lncRNAs among the 16 DE 
lncRNAs. A growing number of studies have highlighted the 
fact that the oncofetal lncRNA gene H19 is a critical factor 
in embryonic development, fibrosis and tumorigenesis (23,24). 
Accumulating evidence has revealed that the tumor suppressor 

protein and cell cycle regulator p53 negatively regulates H19 in 
tumor cells. Yang et al (25) reported that H19 was associated 
with p53 inactivation, which may contribute to suppression of 
apoptosis and increased cell proliferation in gastric cancer. 
Furthermore, it was reported that H19‑derived miR‑675 has 
an important role in inhibiting p53 and p53‑dependent protein 
expression in bladder cancer cells in vivo (26). H19 also has 
crucial roles in tumor metastasis through the regulation of 
epithelial to mesenchymal transition (EMT), by functioning 
as an miRNA sponge in colorectal cancer (27,28). A study has 
indicated that oxidative stress caused by infection is linked 

Figure 4. The top 15 KEGG pathways with the most significant P‑values. The x‑axis represents the number of differentially expressed mRNAs involved in the 
respective pathway. KEGG, Kyoto Encyclopedia of Genes and Genomes; PPAR, peroxisome proliferator‑activated receptor.

Figure 3. Functional enrichment analysis of differentially expressed mRNAs. The top 10 significantly enriched Gene Ontology terms in the categories BP, CC 
and MF are provided. BP, biological process; CC, cellular component; MF, molecular function.
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to inflammation and the occurrence of CAA (29). In addition, 
H19 is considered to be involved in the progression of CCA by 
causing partial inactivation of interleukin‑6 and downstream 
inflammatory responses triggered by oxidative stress (30). 
Similar to H19, overexpression of PVT1 has also been indi-
cated to be associated with poor prognosis in a variety of 
human malignancies (31). In non‑small cell lung cancer, PVT1 
contributes to lung adenocarcinoma cell proliferation, and 
knockdown markedly reduces cell proliferation and induces 
apoptosis in vitro and in vivo (32). This phenomenon may be 
partly mediated through enhancer of zeste 2 polycomb repres-
sive complex 2 subunit‑associated suppression of the large 
tumor suppressor kinase 2/MDM2/p53 pathway. PVT1 has 
been further observed to be involved in the regulation of EMT, 
which is a vital step in the progression, invasion and metastasis 
of esophageal cancer (33). Furthermore, PVT1 was reported 
to promote liver fibrosis by downregulating patched 1 expres-
sion via binding to miR‑152 and contributing to EMT (34). 
Huang et al (35) reported that increased expression of PVT1 is 
associated with tumor progression, and suggested that PVT1 
may be an independent prognostic factor for poor prognosis 
in pancreatic cancer patients. Furthermore, a meta‑analysis 
reported that increased PVT1 expression was significantly 

associated with factors of poor prognosis, including positive 
lymph node metastasis, positive distant metastasis, advanced 
tumor‑nodes‑metastasis stage and poor degree of differentia-
tion, suggesting that PVT1 may be a potential biomarker in 
various cancer types (36). However, studies on the association 
between H19 or PVT1 and CCA have rarely been performed. 

PPARs belong to the ligand‑inducible nuclear hormone 
receptor superfamily (37). By forming heterodimers with retinoid 
X receptor, PPARs modulate the expression of lipid metabo-
lism‑, adipogenesis‑, inflammation‑ and anti‑cancer‑associated 
genes in various human cancer types (37). In the present study, 
pathway analysis revealed that the PPAR signaling pathway was 
significantly enriched and exerted a pivotal influence in patients 
with CCA. Of all PPAR isoforms, PPARγ is considered to be 
most associated with tumors through the activation of different 
pathways. PPAR ligands have been reported to promote differ-
entiation and apoptosis in numerous malignancies, including 
CCA, breast cancer and ovarian cancer (38‑40). Han et al (41) 
reported that ligands of PPARγ inhibit the proliferation of CCA 
cells through p53‑dependent mechanisms. Furthermore, the 
PPARγ ligand 15‑deoxy‑δ‑12,14‑PGJ2 may induce apoptosis in 
CCA cell lines, although apoptosis‑associated protein expression 
varies between different cell lines (41). In addition, accumulating 

Figure 5. Kaplan‑Meier analysis of overall survival associated with the expression status of the mRNAs FUT4 and HIP1R from the competing endog-
enous RNA network of cholangiocarcinoma patients. Other RNAs in the network analyzed using K‑M methods with P<0.05 were not shown in the figure. 
FUT4, fucosyltransferase 4; HIP1R, huntingtin‑interacting protein 1 related.
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evidence suggests that the mechanisms of the EMT promote the 
occurrence of CCA (42). PPARγ is able to upregulate the expres-
sion of Sprouty 4 through Wnt7A/Fzs9 signaling, and suppresses 
EMT (42). On the contrary, ectopic PPARγ expression in CCA 
cell lines may promote cell proliferation via the Smad pathway, 
which is a vital step in EMT (43,44). Suzuki et al (45) reported 
on the administration of the PPARγ agonist pioglitazone in a 
73‑year‑old male patient diagnosed with diabetes, CCA and 
CCA‑induced cholangiohepatitis. In this case, not only the 
diabetes was controlled, but also the cholangiohepatitis, which 
was thought to be linked to CCA progression. Furthermore, 
Asukai et at (46) reported that pioglitazone had a synergistic 
effect with gemcitabine and alleviated gemcitabine resistance 
in CCA gemcitabine‑resistant cells by reducing miR‑130a‑3p 
expression in vitro. However, further studies of how PPARs are 
involved in CCA pathogenesis will be required. 

 The prognostic value of the ceRNA network was also 
analyzed. The results revealed that high expression of FUT4 
(P<0.005) and HIP1R (P<0.001) was positively correlated 
with overall survival. However, according to previous studies, 
increased FUT4 expression was observed to be associated 
with poor prognosis in breast cancer, lung adenocarcinoma 
and colorectal cancer, which was contrary to the present 
results (47‑49). Another study suggested that lower HIP1R 
protein expression is associated with a poor overall survival 
rate and progression‑free survival in patients with diffuse large 
B‑cell lymphoma (50). However, the opposite appears to be the 
case for prostate cancer: HIP1R was reported to increase the 
migratory and invasive properties of prostate cancer cells, and 
this may be suppressed by the miRNA‑23b/27b cluster (51). To 
the best of our knowledge, the roles of FUT4 or HIP1R in CCA 
have not been assessed by any previous study.

The present study had several limitations. In the present 
study, only the data from TCGA database were considered to 
create the network. Furthermore, the network was not vali-
dated by any other database or in vitro analysis. Therefore, 
further confirmation of key RNAs and investigation of the 
possible molecular biological mechanisms of CCA in human 
CCA tissues will be performed in the future. Furthermore, 
the ceRNA network established in the present study requires 
broad validation by future studies.

In conclusion, in the present study, an integrated analysis 
of DE lncRNAs, miRNAs and mRNAs in CCA as performed 
and a ceRNA network was constructed. This ceRNA network 
may provide novel insight for further mechanistic investigation 
and may lead to improvements in the survival and prognosis 
of patients with CAA. Further experimental verification is 
required. 
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