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Abstract. Acute myelocytic leukemia (AML) is a frequent type 
of acute leukemia. The present study was performed to build a 
risk score system for the prognostic prediction of AML. AML 
RNA-sequencing data from samples from 111 children were 
downloaded from The Cancer Genome Atlas database. Using 
the DEseq and edgeR packages, the differentially expressed 
long non-coding RNAs (DE-lncRNAs) between bad and good 
prognosis groups were identified. A survival package was used 
to screen prognosis-associated lncRNAs and clinical factors. 
The optimal lncRNA combination was selected using the 
penalized package, and the risk-score system was built and 
evaluated. After the lncRNA‑mRNA expression correlation 
network was constructed, the potential pathways involving 
the key lncRNAs were enriched using Gene Set Enrichment 
Analysis. Among the 61 DE-lncRNAs, 48 lncRNAs were 
significantly associated with prognosis. Relapse was an inde-
pendent prognostic factor. The optimal 14-lncRNA risk score 
system was constructed. After 730 differentially expressed 
mRNAs were identified between the good and bad prognosis 
groups divided using a prognostic index, the lncRNA‑mRNA 
expression correlation network was constructed. Enrichment 
analysis showed that semaphorin-3C [SEMA3C; regulated by 
probable leucine-tRNA ligase, mitochondrial (LARS2-AS1)] 
and secreted frizzled-related protein 5 [SFRP5; mediated 
by WASH complex subunit 5 (WASHC5)-antisense RNA 1 
(AS1)] were involved in axon guidance and the Wnt signaling 
pathway, respectively. A 14‑lncRNA (including paired box 
protein Pax8-AS1 and MYB AS1) risk-score system might be 
effective in predicting the prognosis of AML. Axon guidance 
(involving SEMA3C and LARS2‑AS1) and the Wnt signaling 
pathway (involving SFRP5 and WASHC5‑AS1) might be two 
important pathways affecting the prognosis of AML.

Introduction

Acute myelocytic leukemia (AML) is a tumor derived from 
the myeloid line of blood cells, in which abnormal cells in 
the bone marrow and blood are rapidly generated (1). AML 
is characterized by the proliferation and abnormal differen-
tiation of cells of the hematopoietic system in bone marrow, 
blood and other tissues (2). The typical clinical symptoms of 
patients with AML are shortness of breath, fatigue, increased 
risk of infection, and easy bleeding and bruising (3). The risk 
factors of AML mainly include smoking, benzene exposure, 
myelodysplastic syndrome, and previous radiation therapy or 
chemotherapy (4,5). AML is more frequent in elderly men, 
and it progresses rapidly without immediate therapy (6). AML 
affects approximately one million individuals and resulted in 
147,000 deaths globally in 2015 (7). The pathogenesis of AML 
needs to be further investigated to decrease the prevalence and 
mortality of AML. 

Long non-coding RNAs (lncRNAs) are transcripts with 
a length >200 nucleotides. lncRNAs have no protein coding 
potential but are implicated in various biological functions, 
including cell cycle, apoptosis, epigenetic regulation and 
imprinting (8). lncRNA expression is closely associated with 
recurrent mutations, and some lncRNAs play important roles 
in the AML therapeutic response and clinical survival (9). 
HOX transcript antisense RNA expression is upregulated in 
de novo patients with AML, which is strongly associated with 
the clinicopathological prognosis of patients with AML (10,11). 
Insulin-like growth factor type I receptor (IGF1R) antisense 
imprinted non-protein coding RNA is associated with long 
range IGF1R DNA interactions and upregulation of the IGF 
pathway in AML, and is a potential tumor suppressor and 
therapeutic target for the disease (12). lncRNA H19 (imprinted 
maternally expressed transcript) is an independent prog-
nostic biomarker for patients with tumors, and its expression 
is significantly upregulated in AML and may play a role in 
AML cell proliferation (13). lncRNA RUNXOR [runt related 
transcription factor 1 (RUNX1) overlapping promoter‑derived 
noncoding RNA) is located in the RUNX1 locus (14). 
Overexpressed RUNXOR may serve as a tumor suppressor 
through RUNX1 and scaffolding mediated translocation of 
DNA correlated in AML (15). However, the lncRNAs associ-
ated with the prognosis of AML have not been fully reported.

In the present study, prognosis-associated lncRNAs 
were screened to construct a risk score system for AML. 
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Additionally, the potential functions of the key lncRNAs 
were predicted. The data could be valuable in clarifying the 
prognostic mechanisms of AML and could contribute to the 
prognostic prediction of the disease.

Materials and methods

Data source. All available RNA‑sequencing data of AML 
samples were searched using The Cancer Genome Atlas (TCGA) 
database (https://cancergenome.nih.gov/) on March 17, 2018. 
In total, 187 AML samples with RNA-sequencing data were 
obtained from TCGA (16,17). According to the age informa-
tion of the samples, 111 samples from patients under the age 
of 14 years were included. The 111 samples were randomly 
divided into two groups (56 samples in the training set and 55 
samples in the validation set). The clinical information of the 
samples in each group is presented in Table I.

Differential expression analysis. Among the 56 AML samples 
in the training set, the median survival time was 54.13 months. 
It was assumed that samples from patients with a short survival 
were high risk, and patients with longer survival being indica-
tive of relatively low risk. Combining these assumptions with 
the median survival time established 54.13±18 months as the 
cut‑off value to classify different prognostic samples. Samples 
with a survival time <36 months who had died were classified 
into the bad prognosis group (n=20). Samples with a survival 
time >72 months who were still alive were divided into the 
good prognosis group (n=21). The differentially expressed 
lncRNAs (DE-lncRNAs) between the two groups were selected 
using the DEseq package (version 1.30.0; https://bioconductor.
org/packages/release/bioc/html/DESeq.html) (18) and edgeR 
package (version 3.20.9; http://bioconductor.org/pack-
ages/release/bioc/html/edgeR.html) (19) in R, which were also 
used in other previous studies (20‑22). The false discovery 
rate (FDR) <0.05 and log fold change (FC) >1 were defined as 
the thresholds. By comparing the results of the two screening 
methods, the overlapped DE‑lncRNAs were taken as the final 
DE-lncRNAs. Based on the expressions of the DE-lncRNAs in 
the training set, the bidirectional hierarchical clustering using 
the pheatmap package in R (version 1.0.8; https://cran.r‑project.
org/web/packages/pheatmap/index.html) (23) was performed.

Identif ication of prognosis‑associated lncRNAs and  
clinical factors. Using the survival package in R  
(version 2.41.3; ht tps://cran.r‑project.org/web/pack-
ages/survival/index.html) (24), univariate and multivariate Cox 
regression analysis was conducted for the 56 AML samples in 
the training set to screen the prognosis-associated lncRNAs 
and clinical factors. The log‑rank P<0.05 was set as the 
threshold for the significant results.

Construction and evaluation of risk score system. Based on the 
prognosis-associated lncRNAs, the optimal lncRNA combination 
was selected using the Cox-Proportional Hazards (Cox-PH) model 
in R package penalized (version 0.9.50; https://cran.r‑project.
org/web/packages/penalized/index.html) (25). The optimal 
parameter ‘λ’ in the Cox-PH model was obtained through the 
cross‑validation likelihood (cvl) for 1,000 times. The risk score 
system was constructed for AML samples combined with the 

linear combination of the lncRNA expression with regression 
coefficient weighting. The formula for calculating the prognostic 
index (PI) of each sample was as follows:

PI=β lncRNA1 x exprlncRNA1 + β lncRNA2 x exprln-
cRNA2 + ··· + β lncRNAn x exprlncRNAn

The PI of each sample in the training set was calculated 
based on the aforementioned formula, and the median PI 
was utilized as the cut‑off value of the good and bad prog-
nosis samples. A Kaplan‑Meier (KM) curve (26) was used to 
calculate the survival time in the two groups when stratified 
by different prognostic factors, based on which to evaluate 
the prognosis difference between the good and bad prognosis 
groups using a certain prognostic factor, and an area under 
the receiver operating characteristic (AUROC) curve (27) was 
applied to assess the performance of prognostic prediction 
effectiveness using the risk score system. Then, the risk score 
system was used to evaluate the prognosis of the samples in 
the validation set.

Construction of the lncRNA‑mRNA expression correlation 
network. In the training set, the samples were divided into 
the good and bad prognosis groups according to their PIs 
in the predictive risk score system model. The differentially 
expressed mRNAs (DE-mRNAs) between the good and bad 
prognosis groups were analyzed using the edgeR package (19), 
with the thresholds of FDR <0.05 and log FC >1. Then, the 
Pearson correlation coefficients (PCCs) (28) of the DE‑mRNAs 
and the lncRNAs involved in the risk score system were calcu-
lated. Finally, the DE-mRNAs with PPC >0.5 were obtained 
for constructing the lncRNA-mRNA expression correlation 
network.

Pathway enrichment analysis. Based on Gene Set Enrichment 
Analysis (GSEA; http://software.broadinstitute.org/gsea/index.
jsp) (29), pathway enrichment analysis for the mRNAs in the 
network was performed to identify the significant pathways 
correlated with key lncRNAs. The pathways with nominal 
P<0.05 were considered as significant results.

Results

Differential expression analysis. After the AML samples in 
the training set were classified into the bad and good prog-
nosis groups, the DEseq package and edgeR package were 
used for the selection of DE-lncRNAs (Fig. 1A). A total of 
61 overlapped DE‑lncRNAs were obtained by comparing the 
results of the two screening methods (Fig. 1B). The clustering 
heatmap of the 61 DE-lncRNAs suggested the samples could 
be distinguished by these DE-lncRNAs (Fig. 1C).

Identification of prognosis‑associated lncRNAs and clinical 
factors. In the training set, 61 lncRNAs were subjected to 
univariate Cox regression analysis. A total of 48 lncRNAs 
were significantly associated with prognosis (P<0.05; data not 
shown). Univariate and multivariate Cox regression analysis 
indicated that relapse was significantly associated with prog-
nosis in the training set, the validation set and the entire set 
(Table II; P<0.05). Therefore, relapse was identified as an 
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independent clinical factor with prognostic significance. The 
KM curves of relapse and the overall survival (OS) of the 
samples in the training set, the validation set and the entire 
set are presented in Fig. 2A. The results showed that the AML 
samples without relapse had better clinical prognosis, which 
was consistent with the actual situation.

Construction and evaluation of the risk score system. Based 
on the expression matrix of the 48 prognosis-associated 
lncRNAs in the training set, the optimal lncRNA combination 
was analyzed using the Cox-PH model using the penalized 
package. After performing the 1,000 times cvl algorithm, 
the maximum cvl value was‑108.177 when the parameter ‘λ’ 
was set as 24.34156 (Fig. 2B). With the optimal parameter, 
the optimal lncRNA combination involving 14 lncRNAs 
[LINC00639, probable E3 ubiquitin‑protein ligase makorin‑3 
(MKRN3)-antisense RNA 1 (AS1), LINC02060, LINC02133, 
LINC01726, LINC00240, paired box protein Pax8 
(PAX8)‑AS1, zinc finger protein 32 (ZNF32)‑AS1, probable 
leucine-tRNA ligase, mitochondrial (LARS2)-AS1, Ras asso-
ciation domain family member 8 (RASSF8)-AS1, E74-like 
factor 3 (ELF3)-AS1, WASH complex subunit 5-antisense 
RNA 1 (WASHC5)-AS1, MYB-AS1 and FAR1 intronic tran-
script 1 (FAR1-IT1)] was screened (Fig. 2C; Table III) using 
the Cox-PH model. 

The risk score system was constructed and the formula 
for calculating PIs was: PI=(0.20989291) x ExpLINC00639+ 
(0.06638359) x Exp MKRN3‑AS1+(0.3139191) x ExpLINC02060 
+(0.42299789) x ExpLINC02133+(‑0.19338239) x ExpLINC01726 
+(‑0.2969476) x ExpLINC00240+(0.73636164) x ExpPAX8‑AS1+ 
(0.02132678) x ExpZNF32‑AS1+(0.1805946) x ExpLARS2‑AS1+ 

(0.53198533) x ExpRASSF8‑AS1+(0.41975344) x ExpELF3‑AS1+ 
(0.33392756) x ExpWASHC5‑AS1+(0.62016856) x 
ExpMYB-AS1+(0.02508178) x Exp FAR1-IT1.

Subsequently, the performance of the prognostic predic-
tion of the risk score system for the samples in the training set, 
the validation set and the entire set were evaluated using KM 
curves and AUROC curves (Fig. 3). The expression levels of the 
14 optimal lncRNAs in the aforementioned sets downloaded 
from TCGA are presented in Fig. 4, where all 14 lncRNAs 
exhibited distinct expression profiles between bad and good 
prognosis groups. The PIs, OS and expression heatmap of the 
14 lncRNAs in the training set, the validation set and the entire 
set are presented in Fig. 5.

Construction of the lncRNA‑mRNA expression correlation 
network. Based on the PIs of the samples in the training set, 
the samples were divided into the good and bad prognosis 
groups and 730 DE-mRNAs (718 upregulated and 12 down-
regulated) between the two groups were identified. The PCC 
of the expression level of each DE‑mRNA and PI was calcu-
lated, and then the top 100 DE-mRNAs with highest absolute 
values of PCC were used for sample clustering (Fig. 6). 
Furthermore, the PCCs between the DE-mRNAs and the 
14 optimal lncRNAs were calculated. The lncRNA-mRNA 
expression correlation network was constructed with the 
criterion of PCC <0.5 (Fig. 7).

Pathway enrichment analysis. Based on GSEA pathway 
enrichment analysis, axon guidance [involving semaphorin 
3C (SEMA3C), semaphorin 6D and netrin 4] and the Wnt 
signaling pathway [involving Dickkopf‑related protein 4, 

Table I. Clinical information of the samples in the training set, the validation set and the entire set.

Clinical characteristics Training set, n=56 Validation set, n=55 Entire set, n=111

Age, years, mean ± SD 5.99±4.26 5.81±4.32 5.91±4.27
Sex, male/female 32/24 31/24 63/48
WBC at diagnosis, 109/l, mean ± SD 64.56±74.03   97.09±113.96 80.67±96.86
Bone marrow leukemic blast percentage, %,  69.51±20.44 72.99±20.39 71.19±20.39
mean ± SD
Peripheral blasts, %, mean ± SD 49.61±28.76   57.7±30.09 53.62±29.58
CNS disease, yes/no 3/53 4/51 7/104
Chloroma, yes/no/‑ 3/53 6/48/1 9/101/1
FAB Category, M0/M1/M2/M3/M4/M5/M6/M7/‑ 0/3/9/0/18/12/1/6/7 3/11/14/0/ 3/14/23/0/
  10/11/1/1/4 28/23/2/7/11
FLT3/ITD mutation, yes/no 4/52 5/50 9/102
NPM mutation, yes/no/‑ 0/52/4 5/50/0 5/4/102
CEBPA mutation, yes/no/‑ 2/52/2 4/51 6/103/2
WT1 mutation, yes/no 2/50/4 4/51 6/101/4
Relapse, yes/no 37/19 40/15 77/34
Relapse free survival time, months, mean ± SD 33.01±34.84 31.52±32.42 32.27±33.52
Death, dead/alive 24/32 24/31 48/63
Overall survival time, months, mean ± SD 54.13±34.76 55.97±36.08 55.04±35.27

‑, data unavailable; WBC, white blood cell; CNS, central nervous system; FAB, French‑American‑British; FLT3, receptor‑type tyrosine‑protein kinase 
FTL3; ITD, internal tandem duplications; NPM, nucleophosmin; CEBPA, CCAAT enhancer binding protein α; WTM, Wilms' tumor gene 1.
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1-phosphatidylinositol 4,5-biphosphate phosphodiesterase 
β 4 and secreted frizzled-related protein 5 (SFRP5)] were 
separately associated with the lncRNAs LARS2-AS1 and 
WASHC5‑AS1, respectively (Table IV).

Discussion

In recent decades, bioinformatics methods have developed 
rapidly and are being applied for the analysis of gene 
expression profiles to determine the pathogenesis of human 
diseases (30). A total of six genes (triggering receptor 
expressed on myeloid cells like 2, solute carrier family 7 
member 11, NLR family pyrin domain containing 2, DNA 
damage inducible transcript 4, lymphocyte specific protein 1 
and C‑type lectin domain containing 11A) have been identi-
fied as prognostic indicators of AML combining TCGA data 
with a Gene Expression Omnibus dataset (31). In total, two 

lncRNAs (NONHSAT027612.2 and NONHSAT134556.2) 
have been implicated in the pathogenesis of childhood acute 
lymphoblastic leukemia (ALL) (32). However, the prognosis 
has not been investigated (32). In another previous study, 
although both lncRNAs and their relationships with prog-
nosis had been examined in AML, the authors focused on 
the competing endogenous RNAs regulation network (33). 
The predictive role of lncRNAs on the prognosis of AML 
remains obscure. 

In the present study, 61 DE-lncRNAs between the good and 
bad prognosis groups were obtained. Of these, 48 lncRNAs 
were significantly associated with prognosis. Cox regression 
analysis demonstrated that relapse was significantly associated 
with the prognosis of patients with AML and was an inde-
pendent prognostic factor. From the 48 prognosis-associated 
lncRNAs, the optimal lncRNA combination involving 14 
lncRNAs was screened to construct the risk score system. 

Figure 1. Differential expression analysis between good and bad prognosis groups. (A) Dysregulated lncRNAs identified separately by the DEseq package (top) 
and edgeR package (bottom). Red and green represent upregulated and downregulated lncRNAs in the good prognosis group, respectively. (B) Venn diagram 
for comparing the results of the two screening methods. (C) Clustering heatmap of the 61 intersected lncRNAs. Red and green indicate bad and good prognosis 
groups, respectively. FDR, false discovery rate; FC, fold change; lncRNA, long non‑coding RNA. 
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Subsequently, 730 DE‑mRNAs were identified for the good and 
bad prognosis groups divided by PIs, and the lncRNA‑mRNA 
expression correlation network was constructed. 

The Wilms' tumor gene 1 (WT1) is overexpressed in 
AML and functions as an oncogene (34). Therefore, it is a 
therapeutic target of AML. PAX8 is a physiological regulator 

Table II. Prognostic analysis of clinical factors for the samples in the training set, the validation set and the entire set. 

A, Training set, n=56

 Univariate analysis Multivariate analysis
 -------------------------------------------------- ------------------------------------------------
Variables HR P‑value HR P‑value

Age, years, mean ± SD 1.103 0.045 1.010 0.881
Sex, male/female 0.966 0.934 1.062 0.905
WBC at diagnosis, 109/l, mean ± SD 0.996 0.296 0.997 0.530
Bone marrow leukemic blast percentage, %, mean ± SD 1.011 0.321 1.020 0.245
Peripheral blasts, %, mean ± SD 0.987 0.077 0.992 0.527
Chloroma, yes/no/‑ 0.702 0.728 0.594 0.732
FAB Category, M0/M1/M2/M3/M4/M5/M6/M7/‑ 1.103 0.471 1.095 0.692
FLT3/ITD mutation, yes/no 2.480 0.130 1.297 0.840
WT1 mutation, yes/no 6.876 0.005 4.549 0.186
Relapse, yes/no 8.259 0.001 12.462 0.016

B, Validation set, n=55

 Univariate analysis Multivariate analysis
 -------------------------------------------------- ------------------------------------------------
Variables HR P‑value HR P‑value

Age, years, mean ± SD 0.864 0.008 0.766 0.003
Sex, male/female 1.018 0.966 1.249 0.691
WBC at diagnosis, 109/l, mean ± SD 1.001 0.409 0.998 0.608
Bone marrow leukemic blast percentage, % mean ± SD 0.992 0.417 0.961 0.217
Peripheral blasts, %, mean ± SD 1.001 0.879 1.029 0.057
Chloroma, yes/no/‑ 0.574 0.447 0.633 0.688
FAB Category, M0/M1/M2/M3/M4/M5/M6/M7/‑ 0.852 0.213 0.812 0.255
FLT3/ITD mutation, yes/no 2.412 0.145 9.222 0.073
WT1 mutation, yes/no 2.584 0.113 0.656 0.591
Relapse, yes/no 9.150 0.003 5.828 0.011

C, Entire set, n=111

 Univariate analysis Multivariate analysis
 -------------------------------------------------- ------------------------------------------------
Variables HR P‑value HR P‑value

Age, years, mean ± SD 0.981 0.566 0.943 0.173
Sex, male/female 0.991 0.976 1.031 0.929
WBC at diagnosis, 109/l, mean ± SD 1.001 0.959 0.998 0.537
Bone marrow leukemic blast percentage, %, mean ± SD 1.001 0.925 0.999 0.911
Peripheral blasts, %, mean ± SD 0.995 0.281 1.005 0.537
Chloroma, yes/no/‑ 0.619 0.416 0.462 0.301
FAB Category, M0/M1/M2/M3/M4/M5/M6/M7/‑ 0.967 0.705 1.072 0.528
FLT3/ITD mutation, yes/no 2.496 0.031 2.268 0.215
WT1 mutation, yes/no 3.388 0.007 2.019 0.185
Relapse, yes/no 9.227 <0.0001 11.048 0.001

HR, hazard ratio; WBC, white blood cell; FAB, French-American-British; FLT3, receptor-type tyrosine-protein kinase FTL3; ITD, internal 
tandem duplications; WTM, Wilms' tumor gene 1.
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Figure 2. Kaplan‑Meier curves and the selection of the optimal combination. (A) Kaplan‑Meier curves for relapse in the training set (left), the validation set 
(middle), and the entire set (right). (B) Curve for selecting the optimal parameter ‘λ’ using cvl (the junction of the red dashed lines indicates the value of lambda 
is 24.34156 when the maximum value‑108.177 is obtained for cvl). (C) Coefficient distribution diagram of the 14 optimal lncRNAs. cvl, cross‑validation 
likelihood; lncRNA, long non-coding RNA. 

Figure 3. KM curves and AUROC curves. (A) KM curves showing the OS (left) and RFS (middle), and the AUROC curve (right) for the training set. (B) KM 
curves showing the OS (left) and RFS (middle) and the AUROC curve (right) for the validation set. (C) KM curves showing the OS (left) and RFS (middle) 
and the AUROC curve (right) for the entire set. KM, Kaplan‑Meier; AUROC, area under the received operating characteristic; AUC, area under curve; OS, 
overall survival; RFS, relapse‑free survival.
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of WT1 that accounts for its upregulation (35). The lncRNA 
PAX8-AS1 located in the upstream region of the PAX8 gene 
regulates the expression of the gene (36). The rs4848320 and 
rs6726151 polymorphisms of PAX8-AS1 can significantly 
increase the risk of ALL (37). Therefore, PAX8-AS1 may 
act as a risk factor for childhood ALL (37). CREB-binding 
protein/P300 coactivation derived by MYB is necessary for 
ALL and AML, and MYB activity plays a critical role in 
maintaining AML (38). MYB expression is increased in T cell 
ALL, and the oncogene MYB could be a therapeutic target for 
the disease (39,40). These findings suggested that PAX8‑AS1 
and MYB-AS1 might be associated with the pathogenesis of 
patients with AML. 

LINC00240-Kruppel-like factor 3 crosstalk is medi-
ated by microRNA-26b-5p in esophageal squamous cell 
carcinoma (ESCC) and its loss may be involved in the onco-
genesis of ESCC (41). ZNF32 is a transcription factor closely 
associated with oxidative stress and protects tumor cells 
against oxidative stress‑induced cell death (42). Therefore, 
targeting ZNF32 may suppress multidrug resistance during 
chemotherapy and improve the clinical outcome of patients 
with lung adenocarcinoma (41,43). RASSF8 expression 
is negatively associated with lymph node metastasis and 
survival of patients with ESCC (44). Therefore, RASSF8 is 
a tumor suppressor and a candidate therapeutic target for 
the disease (44). The low expression of E74-like factor 3 
(ELF3) is significantly correlated with decreased survival of 
patients with ovarian cancer, and ELF3 is a favorable prog-
nostic biomarker for the tumor (45). Although LINC00240, 
ZNF32‑AS1, RASSF8‑AS1 and ELF3‑AS1 have not been 
reported to be related to AML, their roles in other tumors 
were identified. Based on the findings of the present study, 
they could be prognostic factors for AML. Therefore, 
LINC00240, ZNF32‑AS1, RASSF8‑AS1 and ELF3‑AS1 
might also influence the prognosis of AML. 

Dysregulated axon guidance molecules (AGMs) function 
as tumor suppressors or oncogenes in breast cancer, which 
may be promising targets for the prognosis and therapy of 
tumors (46). Some AGMs play roles in mediating cell migra-
tion and apoptosis in tumorigenic tissues, suggesting that 
promoting or inhibiting the activity of AGMs may be novel 
approaches for treating tumors (47). Semaphorins, which are 
one type of AGMs, serve as tumor suppressors (48). Of note, 
semaphorin 3B (SEMA3B) could act as a tumor inhibitor in the 
early stage of breast cancer, and could also promote metastasis 
during the late stage of the cancer (49). The role of SEMA3C 

Table III. Information of the 14 optimal lncRNAs.

lncRNA Coef HR (95% CI) P‑value

LINC00639 0.20989291 1.075 (1.023‑1.130) 0.0025
MKRN3‑AS1 0.06638359 1.054 (1.015‑1.096) 0.0038
LINC02060 0.3139191 1.069 (1.024‑1.117) 0.0014
LINC02133 0.42299789 1.152 (1.061‑1.250) <0.0001
LINC01726 ‑0.19338239 0.938 (0.898‑0.979) 0.0023
LINC00240 ‑0.2969476 0.945 (0.897‑0.996) 0.0302
PAX8‑AS1 0.73636164 1.093 (1.012‑1.179) 0.0224
ZNF32‑AS1 0.02132678 1.070 (1.023‑1.119) 0.0010
LARS2‑AS1 0.1805946 1.075 (1.019‑1.133) 0.0030
RASSF8‑AS1 0.53198533 1.128 (1.023‑1.244) 0.0142
ELF3‑AS1 0.41975344 1.223 (1.045‑1.431) 0.0205
WASHC5‑AS1 0.33392756 1.195 (1.030‑1.387) 0.0076
MYB-AS1 0.62016856 1.175 (1.038-1.330) 0.0247
FAR1-IT1 0.02508178 1.135 (1.017-1.267) 0.0325

Coef, coefficient; HR, hazard ratio; CI, confidence interval; lncRNA, 
long non-coding RNA.

Figure 4. Expression levels of the 14 optimal lncRNAs. (A) Expression levels 
of the 14 optimal lncRNAs in the training set. (B) Expression levels of the 
14 optimal lncRNAs in the validation set. (C) Expression levels of the 14 
optimal lncRNAs in the entire set. Green and red represent good and bad 
prognosis groups, respectively. *P<0.05; **P<0.01 and ***P<0.005 vs. respec-
tive good prognostic group. lncRNA, long non‑coding RNA. 
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Figure 6. Clustering heatmap for the top 100 differentially expressed mRNAs with higher absolute value of Pearson correlation coefficient.

Figure 5. PIs, OS and expression heatmap of the 14 optimal lncRNAs. (A) PIs (top), OS (middle) and expression heatmap (bottom) of the 14 optimal lncRNAs 
in the training set. (B) PIs (top), OS (middle) and expression heatmap (bottom) of the 14 optimal lncRNAs in the validation set. (C) PIs (top), OS (middle) and 
expression heatmap (bottom) of the 14 optimal lncRNAs in the entire set. PI, prognostic index; OS, overall survival; lncRNA, long non‑coding RNA.
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has not been fully reported, but it belongs to the AGMs that 
promote tumor metastasis (46). In the present study, SEMA3C 
was significantly enriched in the axon guidance pathway, and 
it was associated with the lncRNA LARS2-AS1, suggesting 
that expression of SEMA3C may be regulated by LARS2-AS1, 
and the alteration of the gene might disturb the pathway, which 
might affect the pathogenesis of AML. However, these regula-
tory regulations remain to be experimentally validated. 

The Wnt signaling pathway is overexpressed in most cases 
of AML and targeting the WNT/lymphoid enhancer‑binding 
factor 1 signaling cascade may be used for developing novel 
therapies for AML (50,51). The Wnt signaling pathway is 
directly mediated by several secreted antagonist families, such 
as the SFRP family (52). In AML, this pathway is mediated by 

methylation of Wnt antagonists (53). In the present study, SFRP5 
was significantly associated with the Wnt signaling pathway 
and was indirectly regulated by the lncRNA WASHC5-AS1 
in the interaction network, suggesting the interactions between 
them might influence the signaling pathway, and regulate the 
development of AML. Nonetheless, these interactions need to 
be experimentally validated. 

In the present study, relapse was identified as an inde-
pendent prognostic factor in both the training and validation 
datasets, suggesting that relapse could affect the prognostic 
risk using this 14‑lncRNA predictive system. However, more 
clinical evidence is required.

Although comprehensive bioinformatics analysis has been 
conducted, there were several limitations of the present study. 

Figure 7. lncRNA‑mRNA expression correlation network. Circles and squares represent mRNAs and lncRNAs, respectively. The colors ranging from light to 
dark indicate the increased degree of upregulation in the good prognosis group. lncRNA, long non-coding RNA; FC, fold change.

Table IV. Pathways significantly associated with LARS2‑AS1 and WASHC5‑AS1. 

A, LARS2-AS1

Name ES NES NOM P‑val Genes

Axon guidance 0.842324 1.775851 0.0081 SEMA3C, SEMA6D, NTN4

B, WASHC5-AS1

Name ES NES NOM P‑val Genes

Wnt signaling pathway ‑0.6971 ‑1.4588 0.0081 DKK4, PLCB4, SFRP5

ES, enrichment score; NES, normalized enrichment score; NOM P‑val, nominal P‑value; AS1, antisense 1; LARS2, probable leucine‑tRNA 
ligase, mitochondrial; WASHC5, WASH complex subunit 5; SEMA3C, semaphorin 3C; SEMA6D, semaphorin 6D; NTN4, netrin 4; DKK4, 
Dickkopf-related protein 4; PLCB4, 1-phosphatidylinositol 4,5-biphosphate phosphodiesterase β 4; secreted frizzled-related protein 5.
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The expressions of these lncRNAs and genes were not validated 
in vitro and the interactions were not confirmed. In addition, 
the predictions of prognostic roles of these lncRNAs also need 
the support of further clinical data. More experiments should 
be designed and conducted to support the present results.

In conclusion, a 14-lncRNA (including PAX8-AS1 and 
MYB‑AS1) risk score system might be effective for the 
prediction of AML prognosis. There were two pathways 
identified from the GSEA pathway enrichment analysis; axon 
guidance, which might involve SEMA3C and LARS2‑AS1, 
and the Wnt signaling pathway, which might include the 
interaction of SFRP5 and WASHC5-AS1. These two iden-
tified pathways might be important factors that affect the 
prognosis of childhood AML.
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