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Abstract. Emerging evidence indicates that exposure to 
fine particulate matter contributes to the onset of diabetes. 
The present study aimed to investigate the mechanism of 
particulate matters (PM)2.5 affecting glucose homeostasis 
in mice with type 1 diabetes mellitus. Male C57BL/6 mice 
were housed under filtered air (FA) or PM2.5 for 12 weeks and 
then received intraperitoneal injection of streptozotocin (STZ; 
40 mg/kg) or acetic buffer daily for 5 days. At 4 weeks after 
the last injection, fasting glucose was tested. In the plasma 
and liver, cholesterol levels were determined by cholesterol 
oxidase-peroxidase and triglyceride levels were determined by 
triglycerophosphate oxidase-peroxidase. Homeostasis model 
assessment of β cell function (Homa-β) was computed based 
on fasting insulin and glucose levels. Interleukin-1β (IL-1β) 
and tumor necrosis factor-α (TNFα) levels in plasma, visceral 
adipose tissues, RAW264.7 macrophages and MIN6 pancre-
atic β cells treated with PM2.5 (0-50 µg/ml) were quantified 
via ELISA. Before STZ injection, fasting blood glucose (FBG) 
levels were similar between FA and PM2.5 groups. After STZ 
injection, FBG levels were higher in mice pre-exposed to PM2.5 
compared with those pre-exposed to FA. When taking FBG 

levels ≥7 mmol/l as the criteria for impaired glucose level, 
its incidence was 53.3% and 77.8% in FA and PM2.5 groups, 
respectively. Independent of STZ injection, IL-1β levels in 
the adipose tissue were upregulated in mice pre-exposed to 
PM2.5 compared with FA. The addition of PM2.5 stimulated 
IL-1β and TNFα production in macrophages and pancreatic 
β cells, and inhibited the secretion of insulin from MIN6 cells 
in a dose-dependent manner. In conclusion, pre-exposure of 
PM2.5 impaired pancreatic β cells in mice upon STZ injec-
tion, partially via enhanced inflammation, and suppressed the 
secretion of insulin.

Introduction

Diabetes mellitus prevalence is increasing and becoming a 
common health problem worldwide; according to the report 
from The International Diabetes Federation, there were an 
estimated 382 million individuals with diabetes in 2013 and 
the number may rise to 592 million by 2035 worldwide (1). 
Similarly, the prevalence of diabetes mellitus in China was 
5.5% in 2001 and increased to 10.9% in 2013 (2). The early 
stages of type I diabetes mellitus (T1DM) are characterized 
by local autoimmune inflammation and progressive loss of 
insulin-producing pancreatic β cells, and β cells can respond 
to a pro-inflammatory environment and remodeling of the 
regulatory landscape in T1DM (3). As β cells fail to produce 
adequate amounts of insulin for glucose homeostasis, patients 
develop hyperglycemia (4). Thus, there is a need to determine 
how to repair impaired β cells in order to prevent diabetes 
progression.

Among all etiological factors that contribute to the onset of 
diabetes, air pollution has received considerable attention (5-7). 
Airborne particulate matters (PM) consist of airborne solid 
particles and liquid droplets (8). PM with a diameter <10 µm 
can deposit in the tracheobronchial tree (9). PM with a diam-
eter <2.5 µm, termed PM2.5, easily move down into the alveoli 
and enter the circulatory system (8). Epidemiological evidence 
has illustrated the positive association between ambient PM2.5 
and the extent of inflammation (10,11), as well as the inci-
dence of metabolic syndrome (12) and type 2 diabetes (13), in 
cross-sectional studies. In separate cohort studies, long-term 
exposure of PM2.5 increased the risk of diabetes in cohorts 
after 5.1 or 16 years of follow-up (12,14), indicating a link 
between PM2.5 and incidence of diabetes.
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When PM2.5 particles processed from the atmosphere 
are added to cultivated macrophages, they activate Toll-like 
receptor (TLR)2 and TLR4 signaling pathways, stimulating 
NF-κB transcription, and leading to interleukin-1β (IL-1β) 
and cyclooxygenase-2 production (15). In vivo, PM2.5 exposure 
in combination with a sustained high-fat diet enhances the 
infiltration of macrophages into adipose tissues and promotes 
tumor necrosis factor-α (TNFα) production in wild-type 
mice (16). Exposure to PM2.5 alone does not alter fasting blood 
glucose (FBG) levels despite increased macrophage infiltra-
tion into adipose tissues in wild-type mice (17). Environmental 
factors are involved in the development of T1DM, providing 
an opportunity to detect and prevent further autoimmune 
destruction of β cells via therapeutic intervention (18). As 
the role of inflammation in glucose homeostasis and β cell 
destruction has been established (19-21), it was hypothesized 
that mice with pre-exposure to PM2.5 may be prone to greater 
impairments in glucose tolerance and β cell function when 
challenged with diabetic triggers. Therefore, in the present 
study, wild-type mice were pre-exposed to an ambient PM2.5 
environment for 12 weeks and then administered an intraperi-
toneal streptozotocin (STZ) injection.

Materials and methods

Mice and treatment. All the animal experiments were 
approved by the Animal Care and Use Committee of Luhe 
Hospital, Capital Medical University (2020 LH-KS-020; 
Beijing, China) and conducted in accordance with the Guide 
for the Care and Use of Laboratory Animals of the National 
Institutes of Health (22). In the present study, 8-week-old male 
C57BL/6 mice (n=51; weight, 25-30 g) were purchased from 
Beijing Vital River Laboratory Animal Technology Co., Ltd.

Mice were randomly exposed to ambient PM2.5 (n=27) 
or filtered air (FA; n=24) from November 2016 to February 
2017. PM2.5 exposure (14-289 µg/m3) was performed using 
a ‘real-world’ versatile aerosol concentration enrichment 
system in Tongzhou District, Beijing, China as described by 
Sioutas et al  (23) and further modified by Chen et al  (24). 
During the exposure time, the dynamic daily concentration 
of ambient PM2.5 was monitored using an individual particle 
monitor (pDR1500; Thermo Fisher Scientific, Inc.). The FA 
mice were exposed to an identical environment with the excep-
tion of a highly efficient particulate air filter positioned in the 
inlet valve to remove PM2.5 in the air stream. The mice in the 
exposure chamber were fed regular chow and distilled water 
ad libitum, and raised under suitable temperature (22±2˚C) 
and relative humidity (40-60%) conditions with a 12:12-h 
light/dark cycle.

At 12 weeks after exposure, 18 mice in the PM2.5 group and 
15 mice in the FA group were intraperitoneally injected with 
STZ (40 mg/kg) in acetic buffer daily for 5 consecutive days. 
The rest of mice received an equivalent volume of the acetic 
buffer. At 4th week after the last injection, mice were weighed 
and plasma samples were collected from the tail and reading 
by Accu-check Performa glucometer (Roche Diagnostics) 
followed fasting overnight. To further dissect the impact of 
PM2.5 on the features of diabetic mice, STZ-injected mice 
with FBG levels ≥7 mmol/l were investigated in the following 
analysis (STZ-treated with FA, n=8; STZ-treated with PM2.5, 

n=14; acetic-treated with FA, n=9; and acetic-treated with 
PM2.5, n=9). All mice were euthanized via an intraperitoneal 
injection of 150 mg/kg pentobarbital, blood samples (1 ml) 
were collected from the inferior vena cava after euthanasia, 
and then fat and liver tissues were dissected and stored at 
-80˚C. Death was confirmed based on the absence of heart 
beat, breathing and reflexes. Blood samples were centrifuged 
at 1,000 x g at 4˚C for 10 min, and the plasma was collected 
for further analysis.

PM2.5 particle preparation. PM2.5 samples were collected regu-
larly in Tongzhou (Beijing, China) between November 2016 and 
February 2017. As described previously by Imrich et al (25), 
PM2.5 samples were collected on Teflon filters (diameter, 
47 mm; Whatman plc; Cytiva), then particles were isolated 
by putting the Teflon filters into 50-ml centrifuge tubes and 
probe-sonicating for 2 min at 40 kHz at room temperature in 
ultra-pure water before drying the filters in a drying oven. The 
final concentration of the PM2.5 particle extracts was 5 mg/ml. 
PM2.5 particles were stored at -80˚C for cell experiments.

Lipid measurement. Liver samples were homogenized using 
lysis buffer (cat. no. C1053; Applygen Technologies, Inc.) 
and quantified by BCA (Thermo Fisher Scientific, Inc.). 
Liver and plasma levels of triglyceride (cat. no. 0220) and 
cholesterol (cat. no. 0180) were measured using reagent kits 
(Biosino Bio-Technology & Science Inc.) by triglycerophos-
phate oxidase-peroxidase and cholesterol oxidase-peroxidase 
according to the manufacturer's instructions.

ELISA. The levels of IL-1β (cat. no. 432604) and TNFα (cat. 
no. 430904) in plasma, protein extracts from adipose tissues 
and cell media were determined via ELISA according to the 
manufacturer's instructions (both BioLegend, Inc.) and calcu-
lated as previously described (26). The levels of insulin in 
plasma and cell supernatant were evaluated via ELISA using 
a kit (cat. no. EZRMI-13K; EMD Millipore) according to the 
manufacturer's instructions.

Assessment of β cell function. Homeostasis model assess-
ment of β cell function (Homa-β) was performed using 
fasting insulin and glucose levels according to the formula: 
Homa-β = [(360 x insulin level)/(glucose (mg/dl - 63)] (27).

Cell culture and treatment. The mouse macrophage cell line 
RAW264.7 was purchased from American Type Culture 
Collection and cultured in Dulbecco's modified Eagle's 
medium (DMEM; Gibco; Thermo Fisher Scientific, Inc.) 
containing 10% fetal bovine serum (FBS; HyClone; Cytiva) 
and 1% penicillin-streptomycin. The mouse pancreatic β cell 
line MIN6 was a gift from Professor Yang (Peking University 
Health Science Center, Beijing, China) and cultured in DMEM 
(cat. no. C11995500BT; Gibco; Thermo Fisher Scientific, Inc.), 
supplemented with 15% FBS, 1% penicillin-streptomycin and 
5 µl/l β-mercaptoethanol. Cells were maintained in an incu-
bator at 37˚C with 5% CO2.

After reaching 100% confluence, cells were treated with 
PM2.5 particles (0, 0.5, 5 or 50 µg/ml) for 24 h. After harvesting, 
the cell and the supernatant were collected at 10,000 x g 
at 4˚C for 3 min. For insulin secretion, the MIN6 cell were 
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treated with PM2.5 for 24 h at 37˚C with 5% CO2, followed by 
one wash with prewarmed Krebs-Ringer bicarbonate buffer 
(KRB; Coolaber) without glucose, and then incubation in 
KRB without glucose at 37˚C with 5% CO2 for 1 h. Cells were 
then incubated in KRB with 0, 2.5 or 20 mmol/l glucose for 
1 h at 37˚C. After incubation, the supernatant was collected 
for ELISA.

Protein extraction. Proteins were extracted from adipose tissues 
using lysis buffer (cat. no. C1053; Applygen Technologies, Inc.) 
in a ratio of 1:1:100 (protein inhibitor: PMSF: RIPA lysis buffer, 
respectively) and then calibrated to a consistent concentration 
using a BCA protein assay kit (Thermo Fisher Scientific, Inc.) 
before being subjected to ELISA.

Statistical analysis. Data were expressed as the mean ± 
SEM. All cell experiments were repeated three times. In 
PM2.5-treated cell experiments, one-way ANOVA followed by 
Dunnett's post hoc test was used for data with normal distribu-
tion. When there were more than two experimental treatments, 
two-way ANOVA followed by Sidak's was used by comparing 
treated groups with the control. Both WHO1999 and ADA2003 

recommend cut points for IGT as 7.8-11.0 mmol/l measured at 
the 2 h time point of an OGTT (28). Since the T1DM model 
was used in the present study, FBG levels ≥7 mmol/l were used 
as the criteria for impaired glucose level. The incidence of mice 
with impaired glucose level was analyzed by Fisher's exact 
test, using FBG levels ≥7 mmol/l as the criteria for impaired 
glucose level. P<0.05 was considered to indicate a statistically 
significant difference. Statistical analysis was performed using 
GraphPad Prism version 7.00 (GraphPad Software, Inc.).

Results

Ambient PM2.5 levels in the exposure period. Throughout the 
study, mice were exposed to either FA or PM2.5 in a ‘real‑world’ 
ambient PM2.5 exposure system. During the exposure time, 
the dynamic daily concentration of ambient PM2.5 was moni-
tored using an individual particle monitor. The average daily 

concentration of ambient PM2.5 prior to STZ injection was 
presented in Fig. 1. Across the study, the average PM2.5 levels 
of the Beijing National Ambient Air Quality Standard and in 
the exposure system were 118.08 µg/m3 and 103.27 µg/m3, 
respectively. This result showed that it is ~1.1-fold lower than 
the average PM2.5 National Ambient Air Quality Standard in 
China (29).

Effects of PM2.5 pre-exposure on FBG and insulin levels. 
PM2.5 exposure did not increase FBG levels compared with the 
FA group. Additionally, at 4 weeks after STZ injection, there 
was no significant difference in FBG levels between mice pre-
exposed to PM2.5 and those in the FA group (Fig. 2A). Using 
FBG levels ≥7 mmol/l as the criteria for impaired glucose 
level, the incidence of impaired glucose level upon STZ injec-
tion was 53.3% (8/15) in the FA group and 77.8% (14/18) in the 
PM2.5 group, although this was not significant (data not shown). 
The data suggested that mice pre-exposed to PM2.5 may be 
prone to developing impaired glucose metabolism; however, 

Figure 1. Concentration of ambient PM2.5 during the exposure time. The 
mean daily concentration of ambient PM2.5 prior to streptozotocin injec-
tion is present. The red dotted line represents the average level of PM2.5 
(103.27 µg/m3) during the exposure time and the blue dotted line repre-
sents the average concentration of PM2.5 based on the NAAQS of Beijing 
(118.08 µg/m3). PM2.5, particulate matters, diameter <2.5 µm; NAAQS, 
National Ambient Air Quality Standard.

Figure 2. Effects of PM2.5 exposure on glucose metabolism. After 12 weeks 
of FA or PM2.5 exposure, mice were injected with STZ (40 mg/kg) or an 
equivalent dose of acetic buffer for 5 consecutive days. (A) At 4 weeks after 
the last injection, mice were fasted overnight for the fasting blood glucose 
test. (B) Insulin levels in the plasma were quantified via ELISA. (C) Homa-β. 
Data are presented as the mean ± SEM (control with FA, n=8; control with 
PM2.5, n=8; STZ-treated with FA, n=8; STZ-treated with PM2.5, n=14). FA, 
filtered air; PM2.5, particulate matters, diameter <2.5 µm; STZ, strepto-
zotocin; Homa-β, homeostasis model assessment of β cell function.
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no significant difference was observed. To further dissect the 
impact of PM2.5 on the features of diabetic mice, STZ-injected 
mice with FBG levels ≥7 mmol/l were investigated in the 
following analysis (STZ-treated with FA, n=8; STZ-treated 
with PM2.5, n=14). ELISA revealed that pre-exposure to PM2.5 
significantly reduced fasting insulin levels in mice after STZ 
injection; meanwhile, pre-exposure to PM2.5 also down-
regulated the insulin level; however, there was no significant 
difference in acetic buffer groups (Fig. 2B). Homa-β revealed 
that STZ injection similarly reduced β cell function in FA and 
PM2.5 mice (Fig. 2C). These data suggested that PM2.5 expo-
sure may contribute to the impairments in glucose metabolism 
and insulin levels after STZ injection.

Effects of PM2.5 pre-exposure on body weight and lipid 
profile. Compared with mice injected with acetic buffer, mice 
receiving STZ treatment exhibited significantly reduced body 
weights in the PM2.5 group (Fig. 3A). Compared with the FA 
group injected with acetic buffer, mice exposed to PM2.5 and 
STZ injection exhibited significantly elevated cholesterol 

levels in the plasma and liver (Fig. 3B and C). In the plasma, 
STZ injection significantly increased cholesterol levels in mice 
when exposed to PM2.5 (Fig. 3B). Furthermore, pre-exposure 
to PM2.5 increased both the plasma and liver cholesterol levels 
compared with FA and STZ injection (Fig. 3B and C).

For triglyceride profiles, compared with the FA injected 
with acetic buffer group, mice exposed to PM2.5 and STZ 
injection exhibited significantly elevated triglyceride levels in 
the plasma and liver (Fig. 3D and E). In plasma, STZ injec-
tion increased triglyceride levels in the FA group (Fig. 3D); 
and in the liver, STZ injection increased triglyceride levels in 
the PM2.5 group (Fig. 3E). These findings indicated that PM2.5 
exposure combined with STZ may affect lipid metabolism.

Effects of PM2.5 pre-exposure on inflammation. Accumulating 
evidence suggests that IL-1β and TNFα are involved in the 
incidence and progression of diabetes (30). ELISA revealed 
that PM2.5 exposure may increase IL-1β levels compared 
with FA exposure in the plasma of STZ-treated mice, whilst 
STZ exposure also elevated IL-1β levels compared with the 

Figure 3. Effects of PM2.5 on body weight and lipid profile. After 12 weeks of FA or PM2.5 exposure, mice were injected with STZ (40 mg/kg) or an equivalent 
dose of acetic buffer for 5 consecutive days. After 4 weeks, after overnight fasting, (A) body weights and cholesterol levels in the (B) plasma and (C) liver 
were obtained. Triglyceride levels in the (D) plasma and (E) liver were also measured. Data are presented as the mean ± SEM (n=8-14). FA, filtered air; PM2.5, 
particulate matters, diameter <2.5 µm; STZ, streptozotocin.
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control; however, there was no statistically significant differ-
ence (Fig. 4A). TNFα levels in plasma were elevated in mice 
in the PM2.5 group compared with the FA group (Fig. 4B). As 
adipose tissues are the main source of IL-1β and TNFα (31), 
the adipose tissues of mice were dissected for protein 
extraction. Compared with the FA group, PM2.5 exposure 
significantly increased IL-1β production in both acetic buffer- 
and STZ-treated adipose tissues (Fig.  4C); however, STZ 
significantly upregulated TNFα production in adipose tissues 
compared with the control independent of FA or PM2.5 expo-
sure (Fig. 4D). These data suggested that PM2.5 pre-exposure 
increased inflammation in mice treated with STZ in adipose 
tissue.

PM2.5 increases inflammation and decreases glucose-induced 
insulin secretion. Cytokines appear to be major regulators of 
adipose tissue metabolism, especially TNFα and IL-1β (32). 
The density of adipose tissue macrophages is associated with 
adipose tissue inflammatory markers and insulin resistance, 
and inflammation has been described as causally related to 
decreased insulin secretion from β-cells (33,34). Pancreatic 
β cells are the main source of insulin. Therefore, the effects 
of PM2.5 on IL-1β and TNFα production in macrophages 
and pancreatic β cells, as well as pancreatic β cell insulin 
secretion, were evaluated. Mouse RAW264.7 macrophage 
cells and mouse MIN6 pancreatic β cells were treated with 
PM2.5 at different concentrations (0-50 µg/ml) for 24 h, and 
the supernatant was collected. ELISA revealed that both 
RAW264.7 and MIN6 cells significantly increased release of 
TNFα and IL-1β levels following PM2.5 exposure in a dose-
dependent manner (Fig. 5A-D). Furthermore, PM2.5 exposure 

significantly decreased insulin secretion in response to 2.5 and 
20 mM glucose (Fig. 5E). These findings suggested that PM2.5 
exposure may aggravate β cell damage by increasing inflam-
mation and inhibiting insulin secretion.

Discussion

In the present study, the effect of pre-exposure to PM2.5 on 
β cell function in mice challenged with a diabetic trigger 
was investigated. The major findings are summarized as 
follows: i)  When pre-exposed to PM2.5, there was a non-
significant trend towards mice developing diabetes following 
STZ injection based on increased numbers of animals with 
IGT; ii) in STZ-injected mice, exposure to PM2.5 decreased 
the level of insulin, and elevated cholesterol levels in the 
blood, and cholesterol and triglyceride contents in the liver; 
iii) exposure to PM2.5 stimulated inflammation in the present 
study by increasing TNFα and IL-1β levels in macrophages 
and pancreatic β cells; and iv) exposure to PM2.5 decreased 
glucose-induced insulin secretory function. Collectively, the 
present study indicated that pre-exposure to PM2.5 may accel-
erate impairments to β cells upon STZ injection, which may be 
partially mediated via increased inflammation.

Studies have reported positive associations between PM10 
or PM2.5 exposure and cardiovascular injury (35), atheroscle-
rosis  (36) and ischemic stroke  (37). Consistent with these 
findings, exposure to PM2.5 increased diabetic prevalence in 
pregnant women (38), general populations (12,39) or elderly 
individuals (40). Aside from increased diabetic prevalence, 
long-term exposure to PM10 is associated with hyperglycemia, 
as reflected by FBG and hemoglobin A1c levels, and insulin 

Figure 4. PM2.5 exposure affects inflammatory responses in plasma and adipose tissues. After 12 weeks of FA or PM2.5 exposure, mice were injected with STZ 
(40 mg/kg) or an equivalent dose of acetic buffer for 5 consecutive days. Plasma levels of (A) IL-1β and (B) TNFα in mice after STZ injection. Expression of 
(C) IL-1β and (D) TNFα in adipose tissue protein homogenates after PM2.5 exposure and STZ injection. Data are presented as the mean ± SEM (control with 
FA, n=8; control with PM2.5, n=8; STZ-treated with FA, n=8; STZ-treated with PM2.5, n=14). FA, filtered air; PM2.5, particulate matters, diameter <2.5 µm; 
STZ, streptozotocin; IL-1β, interleukin-1β; TNFα, tumor necrosis factor-α.
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resistance (IR), as determined by the Homa-IR index, in 
patients with diabetes (41).

To explore the mechanism underlying the effects of PM2.5 
exposure on diabetes prevalence, mouse and rat models have 
been frequently used; in these models, animals are either 

exposed to PM2.5 alone or simultaneously in combination with 
a high-fat diet (42,43). Studies have found that PM2.5 is taken 
up by macrophages via TLR2 and TLR4 (44,45). Downstream 
of TLR2 and TLR4, adaptor protein myeloid differentiation 
primary response 88 mediates inflammatory responses and 

Figure 5. PM2.5 treatment stimulates inflammation and decreases glucose-induced insulin secretion. Mouse RAW264.7 macrophages and MIN6 β cells were 
treated with PM2.5 (0-50 µg/ml). (A) IL-1β and (B) TNFα levels in the supernatant of RAW264.7 cells were quantified via ELISA. (C) IL-1β and (D) TNFα 
levels in the supernatant of MIN6 cells were quantified via ELISA. (E) Insulin levels in the supernatant of MIN6 cells following glucose treatment were 
analyzed via ELISA. Data are presented as the mean ± SEM (n=3). PM2.5, particulate matters, diameter <2.5 µm; IL-1β, interleukin-1β; TNFα, tumor necrosis 
factor-α.



EXPERIMENTAL AND THERAPEUTIC MEDICINE  22:  832,  2021 7

activation of NF-κB transcription, both of which contribute to 
inflammatory cytokine production in alveolar and peripheral 
blood (46,47). Consistently, activation of TLR4/JNK-induced 
inflammation has been reported to result in impaired insulin 
secretion and apoptosis in MIN6 cells  (48,49). Following 
circulation, these inflammatory cytokines induce endoplasmic 
reticulum stress and deteriorate brown adipocyte activity by 
reducing uncoupling protein 1 expression in brown adipose 
tissues (50), exaggerate endothelial cell dysfunction (47) and 
promote monocyte infiltration into fat tissues (16). Additionally, 
PM2.5 exposure stimulates the transition of M2 macrophages 
into M1 macrophages and increases Th1/Th17 cell number 
in peripheral tissues (45,51), which further reinforces inflam-
mation and IR. However, whether long-term PM2.5 exposure 
prior to a diabetic trigger such as STZ injection could enhance 
IGT and IR has not been established. Therefore, the present 
study was performed to investigate this, and the findings 
validated the hypothesis that pre-exposure to PM2.5 promoted 
the onset of impaired glucose level in mice challenged with 
STZ. However, the observed reduction in insulin levels was 
comparable between STZ-injected mice pre-exposed to FA or 
PM2.5, whereas Homa-β was comparable between acetic buffer 
and STZ groups. Therefore, it appears that the adverse effect 
of PM2.5 was primarily in relation to insulin levels rather than 
insulin sufficiency.

The present study subsequently investigated how PM2.5 
may participate in the progression of impaired β cell func-
tion. Despite functioning via different mechanisms, IL-1β and 
TNFα signaling interferes with insulin signaling pathways, thus 
serving as fundamental pathogenic factors underlying IR (52). 
IL-1β downregulates insulin substrate receptor-1 (IRS-1) 
expression in adipocytes and hepatocytes  (19,20), whereas 
TNFα induces JNK phosphorylation that phosphorylates 
IRS-1 at Ser307 (53,54). Decreased IRS-1 protein expression 
and phosphorylation abrogate insulin signal transduction 
in peripheral cells (55). In addition, TNFα inhibits glucose 
transport in adipocytes (55). In the present study, increased 
IL-1β and TNFα production was observed in adipose tissues 
of mice exposed to PM2.5 and STZ injection. Macrophages 
and β cells were hypothesized to be the sources of increased 
IL-1β and TNFα production, as release of both factors was 
increased in both cell types when treated with PM2.5 particles. 
Following STZ injection, insulin levels were significantly 
decreased in PM2.5-exposed mice, but the levels of IL-1β in 
the peripheral blood did not increase further in PM2.5-exposed 
mice compared with FA-exposed ones. By contrast, IL-1β 
and TNFα expression were increased in adipose tissues from 
PM2.5-exposed mice compared with mice in the FA group 
following STZ injection, indicating enhanced inflammation 
by PM2.5-exposure and STZ in vivo. Subsequently, RAW264.7 
and MIN6 cells were treated with PM2.5 particles, and the 
levels of IL-1β and TNFα were significantly upregulated in a 
dose-dependent manner. The secretion of insulin from MIN6 
cells was similarly decreased following PM2.5-exposure.

The present study must be interpreted in the context of 
some potential limitations. First, macrophages are critical 
mediators in adipose tissues (56). The kinetics of IL-1β and 
TNFα production in macrophages residing in adipose tissues 
could not be evaluated in vivo. Instead, the release of inflam-
matory cytokines was studied at only one timepoint (24 h) 

in RAW264.7 and MIN6 mouse cell lines. Second, when 
compared with FA injected with acetic buffer, liver cholesterol 
and triglyceride levels demonstrated no significant change in 
FA injected with STZ. However, whether and how increased 
cholesterol and triglyceride in mice could facilitate impair-
ment of glucose levels was not studied, as it was not the main 
goal of the present study. Further experimental verification 
and in-depth exploration will be conducted in our subsequent 
research, including investigation of the TLR4/JNK signaling 
pathway in PM2.5-induced β cell injury.

In conclusion, the present study indicated that pre-exposure 
of PM2.5 impaired pancreatic β cells in mice upon STZ injec-
tion, which may be partially mediated via increased IL-1β and 
TNFα production in macrophages and adipose tissues.
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