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Abstract. The aim of the present study was to investigate the 
function of long non‑coding RNA taurine‑upregulated gene 1 
(lncRNA TUG1) in chronic obstructive pulmonary disease and 
further assess the underlying molecular mechanisms. Flow 
cytometry analysis was performed to detect cell apoptosis of 
human pulmonary microvascular endothelial cells (HPMECs) 
treated with 1% cigarette smoke extract (CSE). The activity 
of caspase‑3 was measured using a Caspase‑3 Activity assay 
kit and the protein expression of cleaved caspase‑3, caspase‑3 
and Bcl‑2 like 11 (BCL2L11) were measured using western 
blotting. Reverse transcription‑quantitative PCR (RT‑qPCR) 
was performed to measure the expression of TUG1 mRNA 
levels in the treated cells. The association between TUG1, the 
miR‑9a‑5p/BCL2L11 axis and with miR‑9a‑5p were predicted 
and verified using a dual luciferase reporter assay system. 
The mRNA expression of miR‑9a‑5p and BCL2L11, and the 
transfection efficiency were measured by RT‑qPCR. The 
results showed that CSE induced cell apoptosis and increased 
lncRNA TUG1 expression in HPMECs. CSE significantly 
reduced the expression of miR‑9a‑5p in HPMECs compared 
with the control group. TUG1‑short hairpin RNA relieved 
cell apoptosis induced by CSE by upregulating miR‑9a‑5p 
in HPMECs. The present study predicted and verified that 
BCL2L11 is a direct target of miR‑9a‑5p. The mRNA expres‑
sion of BCL2L11 was increased in HPMECs following CSE 
treatment compared with the control group. miR‑9a‑5p mimic 
and BCL2L11‑plasmid markedly increased the expression 

of miR‑9a‑5p and BCL2L11, respectively. miR‑9a‑5p mimic 
reversed the increase in cell apoptosis induced by CSE by 
inhibiting BCL2L11 expression in HPMECs. To conclude, 
the present study demonstrated that lncRNA TUG1 exerted 
roles in cell apoptosis induced by CSE through modulating the 
miR‑9a‑5p/BCL2L11 axis.

Introduction

Chronic obstructive pulmonary disease (COPD), which is a 
progressive degenerative lung disease, is a preventable and 
treatable disease characterized by incomplete reversibility and 
airflow limitation, including emphysema and chronic bron‑
chitis (1‑3). It is currently the fourth leading cause of death 
worldwide, just behind ischemic heart disease and cerebro‑
vascular disease, and an increasing number of individuals are 
diagnosed with the disease (4). Therefore, new and effective 
treatment strategies targeting COPD are urgently needed. 
Patients with COPD have difficulty breathing and present with 
airflow obstruction, which is often accompanied by discom‑
forts, such as coughing and sputum production (5,6). However, 
the pathogenesis is not yet fully understood. The occurrence 
of COPD is the result of the combined effects of genetic and 
environmental pathogenic factors. Cigarette smoke is the 
most common risk factor for COPD. The rates of respiratory 
disease, lung function impairment and mortality of smokers 
are significantly higher compared with non‑smokers  (7,8). 
Smoking cessation has been shown to effectively delay the 
progressive decline of lung function.

Endothelial cells (ECs), as the basic unit of blood vessels, 
and play key roles in physiological metabolism. Under harmful 
conditions, the regulatory mechanisms become disrupted, 
which may be one of the main initiating factors for various 
diseases (9,10). The pathogenesis of acute lung injury includes 
alveolitis and tissue recovery, and the vascular response is the 
central link in the occurrence of inflammation (11). Previous 
data suggested that abnormal apoptosis serves as a significant 
factor contributing to the destruction of pulmonary tissue in 
COPD (12). Both animal and human studies confirmed that 
endothelial apoptosis plays a key role in the pathogenesis of 
COPD (13,14). It was reported that human pulmonary micro‑
vascular endothelial cells (HPMECs) play important roles in 
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the progression of COPD, and the present study further inves‑
tigated COPD using HPMECs as a model (15).

Long non‑coding RNAs (lncRNAs), a class of 
non‑coding RNAs that are >200  nucleotides in length, 
participate in the structure and function of chromatin, 
and promote a series of biological functions  (16,17). An 
increasing number of studies have suggested that lncRNAs 
are associated with a number of human diseases, such as 
cancer, cardiovascular diseases, gynecological diseases and 
inflammatory diseases (18,19). Studies have suggested that 
lncRNAs participate in regulating the process of COPD (20). 
Previously, taurine‑upregulated gene  1 (TUG1), one of 
the most commonly examined lncRNAs, was shown to be 
upregulated in patients with COPD, and TUG1 knockdown 
reduced inflammation and airway remodeling in an animal 
model and reversed inflammation and collagen deposition 
induced by cigarette smoke extract (CSE) in vitro (21,22). 
However, the mechanisms and roles of TUG1 in COPD 
remains unclear.

It was hypothesized that TUG1 may be involved in COPD 
pathogenesis through regulating EC apoptosis. The present 
study investigated whether TUG1 played a role in cell apop‑
tosis of HPMECs induced by CSE, and further studied its 
molecular mechanism in order to provide a more theoretical 
basis and novel strategies for the treatment of COPD.

Materials and methods

Cell culture. HPMECs were obtained from the American 
Type Culture Collection and cultured in DMEM (Gibco; 
Thermo Fisher Scientific, Inc.) containing 10% FBS (Gibco; 
Thermo Fisher Scientific, Inc.) and 1% penicillin/streptomycin 
at 5% CO2 and 37˚C.

CSE preparation. CSE preparation was performed as 
described previously (23). Smoke from 10 cigarettes (Chengdu 
Cigarette Factory) was bubbled through DMEM, and this solu‑
tion was considered 100% CSE. Then the 100% CSE solution 
was frozen and stored at ‑80˚C until required. CSE was diluted 
with DMEM medium to a final concentration of 1% for the 
present study.

Apoptosis assay. HPMECs were treated with 1% CSE for 24 h, 
and then collected by trypsinization, washed in PBS and resus‑
pended in 1X binding buffer at a density of 1x106 cells/ml. A 
total of 100 µl cell suspension was then transferred to a 5 ml 
tube, and stained with 5 µl Annexin V/FITC and PI solution, 
according to the manufacturer's protocol (BD Biosciences). 
Stained cells were analyzed by flow cytometry (FCM) using 
a BD FACSCalibur flow cytometer (BD Biosciences) within 
1 h. All the experiments were performed at least three times. 
Data were analyzed using FlowJo software (version 7.2.4; 
FlowJo LLC).

Western blot analysis. HPMECs were treated with 1% CSE 
for 24 h and dissolved in RIPA buffer (Beyotime Institute of 
Biotechnology) after washing in cold PBS. The supernatant 
was centrifuged at 10,000 x g at 4˚C for 15 min to obtain 
total protein. Protein concentration was measured using a 
BCA protein assay kit (Beyotime Institute of Biotechnology). 

Equal amounts of protein (40 µg/lane) were separated by 
10% SDS‑PAGE. Separated proteins were transferred to PVDF 
membranes (Thermo Fisher Scientific, Inc.), which were then 
blocked at room temperature for 1 h in PBS‑Tween‑20 (PBS‑T) 
solution containing 5% non‑fat milk. Subsequently, membranes 
were incubated with cleaved caspase‑3 (cat.  no.  ab32042; 
1:1,000; Abcam), caspase‑3 (cat.  no.  ab32351; 1:1,000; 
Abcam), Bcl‑2 like  11 axis (BCL2L11; cat.  no.  ab32158; 
1:1,000; Abcam) or GAPDH (cat.  no.  sc‑47724; 1:500; 
Santa Cruz Biotechnology, Inc.) antibodies at 4˚C overnight. 
Membranes were then washed three times with PBS‑T 
and incubated with the Goat Anti‑Mouse IgG Antibody 
(cat.  no.  bc‑0296G; 1:1,000; BIOSS) or Goat Anti‑Rabbit 
IgG Antibody (cat. no. bc‑0295G; 1:1,000; BIOSS) for 1 h at 
room temperature. ECL substrate (Thermo Fisher Scientific, 
Inc.) was used to visualize the protein bands according to the 
manufacturer's protocol. Band densities were quantified using 
Gel‑Pro Analyzer Densitometry software (version 6.3; Media 
Cybernetics, Inc.). All the experiments were performed at least 
three times.

RNA extraction and reverse transcription‑quantitative PCR 
(RT‑qPCR). Total cellular RNA was extracted using TRIzol® 
reagent (Invitrogen; Thermo Fisher Scientific, Inc.) and reverse 
transcribed into cDNA using a cDNA Synthesis kit according 
to the manufacturer's protocol (Invitrogen; Thermo Fisher 
Scientific, Inc.). The relative expression of genes was quantified 
using a Prism 7000 Real‑Time PCR system with SYBR qPCR 
MasterMix (Vazyme Biotech Co., Ltd.) in accordance with the 
manufacturer's protocol. Primers were purchased from Sangon 
Biotech Co., Ltd., and primer sequences were as follows: 
GAPDH forward, 5'‑CTT​TGG​TAT​CGT​GGA​AGG​ACT​C‑3' 
and reverse, 5'‑GTA​GAG​GCA​GGG​ATG​ATG​TTC​T‑3'; U6 
forward, 5'‑GCT​TCG​GCA​GCA​CAT​ATA​CTA​AAA​T‑3' and 
reverse, 5'‑CGC​TTC​ACG​AAT​TTG​CGT​GTC​AT‑3'; lncRNA 
TUG1 forward, 5'‑GAC​CGT​CCA​ATG​ACC​TTC​CT‑3' and 
reverse, 5'‑TGG​CTG​AAT​GCT​TCT​TGG​GT‑3'; miR‑9a‑5p 
forward, 5'‑GCG​GCG​GTC​TTT​GGT​TAT​CTA​G‑3' and 
reverse, 5'‑ATC​CAG​TGC​AGG​GTC​CGA​GG‑3'; and BCL2L11 
forward, 5'‑CAC​CAG​CAC​CAT​AGA​AGA​A‑3' and reverse, 
5'‑ATA​AGG​AGC​AGG​CAC​AGA‑3'. The following thermo‑
cycling conditions were used for qPCR: Initial denaturation 
for 5 min at 95˚C; followed by 35 cycles of 95˚C for 10 sec 
and 60˚C for 30 sec. U6 or GAPDH were used as the internal 
controls. The relative mRNA expression levels of lncRNA 
TUG1, miR‑9a‑5p and BCL2L11 were calculated using the 
2‑ΔΔCq method  (24). All samples were analyzed at least in 
triplicate.

miRNA target analysis and dual luciferase reporter assay. 
The association between miR‑9a‑5p and BCL2L11 was identi‑
fied using TargetScan version 7.1 (targetscan.org/vert_71). 
The 3'‑untranslated region products of BCL2L11 containing 
the target sequence of miR‑9a‑5p were obtained by RT‑qPCR 
and fused into a pmirGLO vector (Promega Corporation) 
to construct the BCL2L11‑wild‑type (BCL2L11‑WT) and 
BCL2L11‑mutated‑type (BCL2L11‑MUT) reporter vectors. 
The results showed that BCL2L11 is a potential target of 
miR‑9a‑5p. 293 cells (ATCC® CRL‑1573; ATCC), that were 
cultured >24  h, were transfected with BCL2L11‑WT or 
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BCL2L11‑MUT and miR‑9a‑5p mimic or mimic control using 
Lipofectamine® 2000 reagent (Invitrogen; Thermo Fisher 
Scientific, Inc.) for 48 h. Luciferase activity was measured 
using a dual luciferase reporter assay system (Promega 
Corporation) according to the manufacturer's instructions. 
Renilla luciferase activity was used as a control. All the 
experiments were performed at least three times.

Cell transfection. Normal HPMECs were inoculated in 
6‑well plates overnight and transfected with control‑small 
interfering RNA (siRNA), TUG1‑siRNA, inhibitor control, 
miR‑9a‑5p inhibitor, TUG1‑siRNA  +  inhibitor control, 
TUG1‑siRNA  +  miR‑9a‑5p inhibitor, mimic control, 
miR‑9a‑5p mimic, control‑plasmid, BCL2L11‑plasmid, 
miR‑9a‑5p mimic  +  control‑plasmid or miR‑9a‑5p 
mimic  +  BCL2L11‑plasmid (Shanghai GenePharma Co., 
Ltd.) using Lipofectamine®  2000 reagent (Invitrogen; 
Thermo Fisher Scientific, Inc.). A total of 48 h after transfec‑
tion, cells were collected, and the transfection efficiency was 
assessed using RT‑qPCR. For the in vitro analysis, 48 h after 
cell transfection, the cells were subjected to 1% CSE for 24 h. 
Cells without any treatment were used as the control.

Caspase‑3 activity assay. The activities of caspase‑3 were 
measured using a colorimetric assay kit (cat.  no.  C1115; 
Beyotime Institute of Biotechnology) in accordance with the 
manufacturer's instructions.

Statistical analysis. Data are presented as the mean ± stan‑
dard deviation of at least three independent tests. Statistical 
comparisons between groups were assessed using a Student's 

t‑test or a one‑way ANOVA followed by a Tukey's post hoc 
test. P<0.05 was considered to indicate a statistically signifi‑
cant difference.

Results

CSE influences HPMEC growth. Cell apoptosis of HPMECs 
treated with 1%  CSE for 24  h was detected by FCM. 
The results showed that CSE significantly induced cell 
apoptosis in HPMECs (Fig.  1A  and  B). Compared with 
the control group, 1% CSE markedly increased caspase‑3 
activity, cleaved caspase‑3 protein expression and the 
cleaved‑caspase‑3/caspase‑3 ratio (Fig.  1C‑E). Moreover, 
lncRNA TUG1 expression in HPMECs was significantly 
increased with 1% CSE treatment compared with the control 
group (Fig. 1F). The results confirmed that lncRNA TUG1 was 
significantly upregulated in 1% CSE induced HPMECs.

TUG1 negatively regulates miR‑9a‑5p expression in 
HPMECs. A previous study showed the presence of a 
binding site between TUG1 and miR‑9a‑5p (25) (Fig. 2A). 
In the present study, the targeted relationship between 
TUG1 and miR‑9a‑5p was verified using a dual luciferase 
reporter assay (Fig. 2B). Moreover, miR‑9a‑5p expression in 
HPMECs was significantly decreased following the 1% CSE 
treatment compared with the control group (Fig. 2C). To 
further assess the regulatory relationship between TUG1 
and miR‑9a‑5p, HPMECs were transfected with different 
plasmids, and the transfection efficiency was determined 
using RT‑qPCR. As shown in Fig. 2D and E, TUG1‑siRNA 
and miR‑9a‑5p inhibitor significantly reduced the expression 

Figure 1. CSE affects HPMEC apoptosis. (A and B) Cell apoptotic rates of HPMECs were detected using flow cytometry. (C) Caspase‑3 activity in HPMECs 
following CSE treatment was detected using a Caspase‑3 Activity assay kit. (D) Western blotting was performed to detect the relative protein expression 
of cleaved Caspase‑3 and Caspase‑3 in HPMECs. (E) Ratio of cleaved Caspase‑3/Caspase‑3. (F) Expression levels of lncRNA TUG1 in HPMECs were 
measured by reverse transcription‑quantitative PCR analysis. **P<0.01 vs. Control. Experiments were repeated three times. An unpaired Student's t‑test was 
used to analyze the data. CSE, cigarette smoke extract; HPMEC, human pulmonary microvascular endothelial cell; lncRNA TUG1, long non‑coding RNA 
taurine‑upregulated gene 1.
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of TUG1 and miR‑9a‑5p, respectively. Compared with the 
control‑siRNA group, TUG1‑siRNA significantly increased 
miR‑9a‑5p expression in HPMECs, which was reversed by 
co‑transfection with miR‑9a‑5p inhibitor (Fig. 2F). The data 
indicated that TUG1 negatively regulated miR‑9a‑5p expres‑
sion in HPMECs.

TUG1 inhibits cell apoptosis induced by CSE in HPMECs by 
regulating miR‑9a‑5p. As shown in Fig. 3A‑F, 1% CSE signif‑
icantly induced cell apoptosis, increased caspase‑3 activity, 
enhanced cleaved caspase‑3 protein expression, increased 
the cleaved caspase‑3/caspase‑3 ratio and downregulated 
miR‑9a‑5p expression in HPMECs. Moreover, compared with 

Figure 2. TUG1 negatively regulates miR‑9a‑5p in HPMECs. (A) The association between TUG1 and miR‑9a‑5p was predicted using bioinformatics software. 
(B) The association between TUG1and miR‑9a‑5p was verified using a dual luciferase reporter assay. (C) Levels of miR‑9a‑5p in HPMECs following CSE 
treatment were detected using RT‑qPCR. (D‑F) RT‑qPCR was used to quantify the mRNA expression levels of TUG1 and miR‑9a‑5p in transfected HPMECs. 
Experiments were repeated three times. A one‑way ANOVA with a post‑hoc Tukey's test or an unpaired Student's t‑test were used for analysis. **P<0.01 
vs. mimic control; ##P<0.01 vs. Control; &&P<0.01 vs. Control-siRNA; $$P<0.01 vs. inhibitor control; @@P<0.01 vs. TUG1-siRNA+inhibitor control. TUG1, 
taurine‑upregulated gene 1; miR, microRNA; CSE, cigarette smoke extract; HPMEC, human pulmonary microvascular endothelial cells; RT‑qPCR, reverse 
transcription‑quantitative PCR.
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the CSE + control‑siRNA group, TUG1‑siRNA significantly 
reduced cell apoptosis, caspase‑3 activity, cleaved caspase‑3 
protein expression and the cleaved caspase‑3/caspase‑3 
ratio, and upregulated miR‑9a‑5p expression in HPMECs. 
All these changes were reversed by miR‑9a‑5p inhibitor 
co‑transfection. The above results suggested that TUG1 
inhibited cell apoptosis induced by CSE in HPMECs by 
regulating miR‑9a‑5p.

BCL2L11 is a direct target gene of miR‑9a‑5p. TargetScan 
analysis showed the presence of a binding site between 
BCL2L11 and miR‑9a‑5p (Fig. 4A), which was verified by 
a dual luciferase reporter assay (Fig.  4B). Moreover, the 
mRNA expression of BCL2L11 in HPMECs was significantly 

increased with 1% CSE treatment compared with the control 
group (Fig. 4C). Further results showed that miR‑9a‑5p expres‑
sion in the miR‑9a‑5p mimic group was higher compared with 
the mimic control group (Fig. 4D). BCL2L11‑plasmid signifi‑
cantly increased BCL2L11 mRNA expression in HPMECs 
(Fig. 4E). Compared with the mimic control group, miR‑9a‑5p 
mimic significantly decreased BCL2L11 mRNA expression in 
HPMECs, which was reversed by the co‑transfection with the 
BCL2L11‑plasmid (Fig. 4F). Thus, it was shown that BCL2L11 
was the direct target gene of miR‑9a‑5p, and it was negatively 
regulated by miR‑9a‑5p.

miR‑9a‑5p inhibits cell apoptosis induced by CSE in 
HPMECs by regulating BCL2L11. Cells were treated 

Figure 3. TUG1 affects cell apoptosis induced by CSE in HPMECs by regulating miR‑9a‑5p. (A and B) Apoptotic rates of HPMECs were detected using flow 
cytometry analysis. (C) Caspase‑3 activity in HPMECs was detected using a Caspase‑3 Activity assay kit. (D) Western blot analysis was used to detect the rela‑
tive protein expression of cleaved Caspase‑3 and Caspase‑3 in HPMECs. (E) The ratio of cleaved‑Caspase‑3/Caspase‑3. (F) miR‑9a‑5p expression in HPMECs 
were measured by reverse transcription‑quantitative PCR analysis. Experiments were repeated three times. A one‑way ANOVA with a post‑hoc Tukey's test 
was used for analysis. **P<0.01 vs. Control; ##P<0.01 vs. CSE+control-siRNA; &&P<0.01 vs. CSE+TUG1-siRNA+inhibitor control. TUG1, taurine‑upregulated 
gene 1; miR, microRNA; CSE, cigarette smoke extract; HPMEC, human pulmonary microvascular endothelial cell.
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with 1%  CSE following transfection. Cell apoptosis, 
caspase‑3 activity, cleaved caspase‑3 expression, the cleaved 
caspase‑3/caspase‑3 ratio and BCL2L11 expression were 
detected. The results showed that CSE significantly induced 
cell apoptosis, increased caspase‑3 activity, cleaved caspase‑3 

expression and the cleaved caspase‑3/caspase‑3 ratio, and 
enhanced BCL2L11 protein and mRNA expression in 
HPMECs. Similarly, compared with the CSE + mimic control 
group, miR‑9a‑5p mimic inhibited cell apoptosis, decreased 
caspase‑3 activity, cleaved caspase‑3 expression and the 

Figure 4. miR‑9a‑5p directly targets BCL2L11. (A) Predicted wild‑type miR‑9a‑5p binding sites in the 3'‑UTR of BCL2L11. (B) Dual‑luciferase reporter 
assays were performed to verify the binding sites between miR‑9a‑5p and BCL2L11. (C) The mRNA levels of BCL2L11 in HPMECs following CSE treatment 
were detected using RT‑qPCR. (D‑F) RT‑qPCR was performed to quantify the mRNA expression levels of miR‑9a‑5p and BCL2L11 in transfected HPMECs. 
Experiments were repeated three times. A one‑way ANOVA with a post‑hoc Tukey's test or an unpaired Student's t‑test were used for analysis. **P<0.01 vs. 
mimic control; ##P<0.01 vs. Control; &&P<0.01 vs. Control-plasmid; $$P<0.01 vs.miR-9a-5p mimic+control-plasmid. miR, microRNA; CSE, cigarette smoke 
extract; HPMEC, human pulmonary microvascular endothelial cell; UTR, untranslated region; RT‑qPCR, reverse transcription‑quantitative PCR; BCL2L11, 
Bcl‑2 like 11.
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cleaved caspase‑3/caspase‑3 ratio, and reduced BCL2L11 
protein and mRNA expression in HPMECs. These changes 
were significantly reversed by BCL2L11‑plasmid co‑trans‑
fection (Fig.  5A‑F). In conclusion, miR‑9a‑5p inhibited 
cell apoptosis induced by CSE in HPMECs by regulating 
BCL2L11.

Discussion

COPD is a chronic lung disease characterized by incomplete 
reversible airflow limitation. Common complications include 
chronic respiratory failure, spontaneous pneumothorax and 
chronic pulmonary heart disease (4,26). The global incidence 

of COPD amongst individuals >40 years of age is 9‑10%. 
COPD not only causes respiratory impairment, but also 
affects circulatory function and can be life‑threatening in 
severe cases  (27). HPMEC growth is associated with the 
process of COPD. HPMECs were used in the present study, 
and it was found that 1% CSE induced cell apoptosis and 
increased lncRNA TUG1 expression in HPMECs, consistent 
with previous reports. The results showed that increased 
lncRNA TUG1 levels could be used as a diagnostic marker 
for COPD.

Furthermore, the present study investigated the mecha‑
nisms of lncRNA TUG1 in COPD. It was previously reported 
that there is a binding site between TUG1 and miR‑9a‑5p (25), 

Figure 5. miR‑9a‑5p affects HPMEC cell apoptosis induced by CSE via regulating BCL2L11 expression. (A and B) Apoptotic rates of HPMECs were detected 
by flow cytometry analysis. (C) Caspase‑3 activity in HPMECs was detected using a Caspase‑3 Activity assay kit. (D) Western blot analysis was performed 
to detect the relative protein expression levels of cleaved Caspase‑3, Caspase‑3 and BCL2L11 in HPMECs. (E) The ratio of cleaved Caspase‑3/Caspase‑3. 
(F) mRNA expression levels of BCL2L11 in HPMECs were measured using reverse transcription‑quantitative PCR analysis. Experiments were repeated three 
times. A one‑way ANOVA with a post‑hoc Tukey's test or an unpaired Student's t‑test were used for analysis. **P<0.01 vs. Control; ##P<0.01 vs. CSE+mimic 
control; &&P<0.01 vs. CSE+miR-9a-5p mimic+control-plasmid. miR, microRNA; CSE, cigarette smoke extract; HPMEC, human pulmonary microvascular 
endothelial cell; BCL2L11, Bcl‑2 like 11.
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and this association was verified in the present study. In 
addition, a negative regulatory mechanism was found 
between lncRNA TUG1 and miR‑9a‑5p in HPMECs. 
Endothelial apoptosis serves a key role in the pathogenesis of 
COPD (13,14). The lncRNA TUG1/miR‑9a‑5p axis has also 
been reported to serve a significant role in the regulation of 
cell apoptosis (25). Thus, it was hypothesized that TUG1 may 
be involved in COPD pathogenesis through regulating EC 
apoptosis. Therefore, whether TUG1 affected cell apoptosis 
in HPMECs via regulation of miR‑9a‑5p was determined, and 
several experiments in HPMECs were performed following 
knockdown of TUG1 or miR‑9a‑5p expression. FCM analysis 
indicated that knocking down TUG1 reduced cell apoptosis 
induced by CSE in HPMECs, and the effects were reversed 
by downregulating miR‑9a‑5p. Similarly, the present study 
predicted and verified that BCL2L11 is the direct target gene 
of miR‑9a‑5p. miR‑9a‑5p was found to negatively regulate 
BCL2L11 expression in HPMECs. BCL2L11, a member 
of the BCL‑2 family, is located in the outer membrane of 
mitochondria and it serves as an important regulator of 
apoptosis (28,29). Thus, miR‑9a‑5p may regulate HPMECs 
apoptosis via negatively regulating BCL2L11 expression. The 
FCM results showed that miR‑9a‑5p overexpression relieved 
cell apoptosis induced by CSE in HPMECs, and the effect 
was reversed by upregulating BCL2L11. The caspase family 
participates in mediating cell apoptosis, and caspase‑3 is a key 
regulatory molecule involved in numerous pathways in apop‑
totic signal transduction (30,31). The present study detected 
caspase‑3 activity and expression. The results indicated that 
TUG1, miR‑9a‑5p and BCL2L11 affected HPMEC apoptosis 
by regulating caspase‑3.

In conclusion, the present study found that lncRNA TUG1 
serves a role in cell apoptosis induced by CSE in HPMECs 
via modulating a miR‑9a‑5p/BCL2L11 axis; the mechanism 
identified in the present study is shown in Fig. S1. These find‑
ings suggested that TUG1 was a potential effective target for 
COPD treatment.
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