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Abstract. The effects of aging on axon regeneration currently 
remain unclear. In addition, the up‑regulated expression of 
neurotrophic factors that occurs within one week of periph‑
eral nerve injury has been shown to play an important role 
in the axon regeneration. To investigate the effects of aging 
on axon regeneration, the expression of nerve‑specific proteins 
immediately after peripheral nerve injury were compared 
between young and aged mice. A mouse peripheral nerve 
injury model was prepared using the sciatic nerve compression 
method. In each group, Luxol fast blue staining and immuno‑
fluorescence staining were performed to assess the degree of 
Wallerian degeneration in the sciatic nerve, and to evaluate 
the expression of repressor element 1‑silencing transcription 
factor (REST)/neuron‑restrictive silencer factor (NRSF), 
brain‑derived neurotrophic factor (BDNF), neurotrophin 
3 (NT3), nerve growth factor (NGF), and semaphorin 3A 
(Sema3A) in the dorsal root ganglion, respectively. Wallerian 
degeneration was observed in both young and aged mice after 
peripheral nerve injury. Significant increases were observed in 
the expression of REST/NRSF (P<0.0001), NT3 (P=0.0279), 
and Sema3A (P=0.0175) following peripheral nerve injury 
in young mice, while that of BDNF (P=0.5583) and NGF 
(P=0.9769) remained unchanged. On the other hand, no 
significant differences were noted in the expression of these 

nerve‑specific proteins in aged mice. Based on the results of 
the present study, compensatory changes induced by periph‑
eral nerve injury were initiated by the up‑regulated expression 
of REST/NRSF in young mice, but not in aged mice.

Introduction

In the central nervous system, repressor element‑1 
silencing transcription/neuron‑restrictive silencer factor 
(REST/NRSF) maintains homeostasis by suppressing the 
apoptosis of neurons (1‑3). Its expression increases with 
age and protects nerves against aging stress (3). We previ‑
ously reported the up‑regulated expression of REST/NRSF 
in neurons in the peripheral and central nervous systems 
with aging (4). However, the effects of REST/NRSF on axon 
regeneration following peripheral nerve injury currently 
remain unclear.

The ability to regenerate axons damaged by peripheral 
nerve injury decreases with age (5,6). Our previous find‑
ings, obtained using a mouse peripheral nerve injury model, 
suggested that axon regeneration was significantly slower in 
aged mice than in young mice (7). Moreover, ‘angiogenesis’ 
and ‘Schwann cell migration’, the processes required for axon 
regeneration immediately after peripheral nerve injury, were 
impaired in aged mice (7).

The up‑regulated expression of neurotrophic factors that 
occurs within one week of peripheral nerve injury has been 
shown to play an important role in Schwann cell migration and 
myelination during axon regeneration (8,9). Based on these 
findings, the expression of nerve‑specific proteins immediately 
after peripheral nerve injury needs to be examined in order to 
obtain more detailed insights into axon regeneration.

A peripheral nerve injury model in young and aged mice 
was used to investigate the effects of aging on axon regenera‑
tion in the present study. The degree of Wallerian degeneration 
and the expression of nerve‑specific proteins immediately after 
peripheral nerve injury were compared between these groups. 
Furthermore, the effects of REST/NRSF on axon regeneration, 
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which currently remain unclear, were discussed based on the 
expression of nerve‑specific proteins.

Materials and methods

Animal Model. The present study was approved by the Animal 
Care Committee of Juntendo University, Tokyo, Japan (regis‑
tration no. 1555; approval no. 2021312).

Forty male C57BL/6 mice (Young group: 10‑week‑old 
mice, n=20; Aged group: 70‑week‑old mice, n=20) purchased 
from Japan SLC, Inc. (Shizuoka, Japan) were used. Mice were 
housed at 5 animals/cage in a sterile environment controlled 
at a temperature of 22±2˚C, humidity of 40‑60%, and 12‑h 
light and dark cycle, and were given water that was CRF‑1 
gamma‑ray irradiated at 15 kGy (Oriental Yeast Co., Ltd.) 
ad libitum. There are some reports that low estrogen affects 
peripheral neuropathy (10,11). Because estrogen decrease with 
age (12,13), males with less estrogen fluctuations and suscep‑
tible to estrogen were used in this study.

Peripheral nerve injury model. The Young group (n=20) and 
Aged group (n=20) were divided into Control and Crush groups 
to create four groups (A: Young control (n=10), B: Young crush 
(n=10), C: Aged control (n=10), and D: Aged crush (n=10)). 
Chronic constriction injury (CCI) is a partial nerve injury that 
is mostly used in rodents and is performed using a hemostatic 
forceps (14). It induces incomplete nerve injury. In the present 
study, this CCI model was used and defined as the peripheral 
nerve injury group (Crush group).

Under general anesthesia with isoflurane inhalation 
anesthetic solution (4% isoflurane for induction and 2% for 
maintenance) (7), a skin incision was made on the lateral side 
of the right hindlimb. A light microscope (Zeiss, Axioskop2, 
magnification, x40) was used to manipulate the sciatic nerve. 
The sciatic nerve was dissected from the surrounding tissues 
(Fig. 1A) and crushed for 30 sec using the hemostatic forceps 
with sufficient strength to flatten the sciatic nerve to caused 
Wallerian degeneration (Fig. 1B and C), according to a previ‑
ously reported method (14). The postoperative activity of 
mice was not limited, and they were maintained in the same 
environment as that before the procedure. Under general anes‑
thesia, the right sciatic nerve and L3‑5 dorsal root ganglion 
(DRG) of each group were harvested (15). Control group were 
only harvested the samples, and samples from the Crush group 
were harvested one week after surgery. Mice were sacrificed 
by cervical dislocation on the day the sciatic nerves and DRG 
were harvesting. The harvested sciatic nerve and DRG were 
fixed in 4% paraformaldehyde at room temperature for 72 h 
and paraffin blocks were prepared.

Histochemical assessment of the degree of Wallerian degener-
ation in peripheral nerves. Luxol fast blue (LFB) staining was 
performed to assess the degree of Wallerian degeneration after 
peripheral nerve injury (16). Tissue sections were prepared by 
cutting the sciatic nerve in the longitudinal axis at a thickness 
of 3 µm.

Tissue sections of the sciatic nerve in the longitudinal axis 
were divided into three areas (the crushed site, proximal to the 
crushed site, and distal to the crushed site) in the Crush groups. 
Similarly, tissue sections of the sciatic nerve were divided into 

three areas in the Control group without peripheral nerve 
injury. The area distal to the crushed site was used in the 
present study because this was the site at which Wallerian 
degeneration occurred. Using a light microscope (Carl Zeiss, 
KS400), the percentage of the area stained by LFB to the total 
nerve fiber area was calculated in both groups (16,17).

Histochemical assessment of the expression of nerve‑specific 
proteins after peripheral nerve injury. Immunofluorescence 
staining was performed to assess the expression of nerve‑specific 
proteins after peripheral nerve injury, as described previous 
by Goto et al (4). Tissue sections were prepared by cutting 
the DRG at a thickness of 3 µm. Samples were deparaffinized 
and autoclaved at 121˚C for 10 min for antigen retrieval. After 
a treatment with True View™ (SP‑8400, Vector) to suppress 
autofluorescence, samples were blocked using 2% bovine 
serum albumin (A2153; Sigma‑Aldrich; Merck KGaA) in 
PBS containing 0.05% Tween‑20 (PBS‑Tween) for 30 min. 
Samples were then reacted with antibodies against the target 
proteins at 4˚C for 15 h. After washing with PBS‑Tween, a 
goat anti‑mouse IgG antibody labeled with Alexa Fluor 488 
(A11001; Thermo Fisher Scientific, Inc.) was used as a 
secondary antibody, and a rabbit IgG monoclonal antibody as 
a negative control. The intensity of fluorescence in each section 
was quantified in the photon counting mode using a fluores‑
cence imaging microscope (Leica, TCSSP5). The antibodies 
used in the present study were against REST/NRSF, a tran‑
scription factor that regulates the expression of nerve‑specific 
proteins, neurotrophin 3 (NT3), brain‑derived neurotrophic 
factor (BDNF), and nerve growth factor (NGF), which are 
neurotrophic factors, and semaphorin 3A (Sema3A), an axon 
guidance factor. The following antibodies were obtained from 
commercial sources: rabbit polyclonal anti‑REST/NRSF 
(1:200, 22242‑1‑AP; ProteinTech), rabbit polyclonal anti‑NT3 
(1:50, 12369‑1‑AP; ProteinTech), rabbit polyclonal anti‑BDNF 
(1:1,000, GTX132621; GNT), rabbit polyclonal anti‑NGF 
(1:50, ab6199; Abcam), and rabbit polyclonal anti‑Sema3A 
(1:50, ab23393; Abcam).

In the photon counting mode, fluorescence intensity was 
measured at 20 randomly selected sites from the perikaryon in 
a region of interest (ROI) set in a fluorescence‑emitting area, 
and mean fluorescence intensity was calculated. Fluorescence 
intensity measured using each antibody was compared 
between the four groups.

 Statistical analysis. Data are presented as the mean ± standard 
deviation (SD) and were analyzed for significant differences 
using a two‑way ANOVA with age and nerve injury set as two 
independent variables (Prism 7; GraphPad Software). After 
the two‑way ANOVA, Turkey's multiple comparisons test was 
used as a post hoc test. Differences were considered to be 
significant at P<0.05.

Results

In the sciatic nerve, the percentage of the area of the myelin 
sheath to the total nerve fiber area has been used to assess 
Wallerian degeneration in peripheral nerve injury (16). LFB 
stains the myelin sheath blue and is used to assess the degree of 
its degeneration (Fig. 2A‑D) (17). The percentages of the area 
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of the myelin sheath to the total nerve fiber area were 85.7±2.6 
and 74.0±4.5% in the Young control and Aged control groups, 
respectively, and did not significantly differ (P=0.1891). 
Following peripheral nerve injury, sciatic nerve fiber swelling, 
decreased staining by LFB, and vacuolation were observed in 
both the Young and Aged crush groups (Fig. 2B and D). The 
percentages of the area of the myelin sheath to the total nerve 
fiber area were 39.9±22.1 and 41.2±7.8% in the Young and 
Aged crush groups, respectively, and were significantly lower 
in the Crush groups than in the Control groups in the Young 
and Aged groups (Young group: P<0.0001, Aged group: 
P<0.0001) (Fig. 2B, D and E).

The expression of nerve‑specific proteins in DRG was 
quantified by immunofluorescence staining. The fluorescence 
intensity of REST/NRSF was significantly higher in the 
Aged control group (147.8±15.8) than in the Young control 
group (110.2±9.5) (P<0.0001) (Table I, Fig. 3A and C). 
Following peripheral nerve injury, the fluorescence inten‑
sity of REST/NRSF significantly increased in the Young 
group (Young crush group: 175.7±11.5, P<0.0001), but not in 
the Aged group (Aged crush group: 157.7±16.7, P=0.5739) 
(Fig. 3B, D and E). We then investigated the expression of the 
neurotrophic factors NT3, BDNF, and NGF. The fluorescence 
intensity of NT3 was 116.3±24.8 in the Young control group 
and 91.7±30.9 in the Aged control group (Fig. 4A and C), 
with no significant difference (P=0.2618) (Table I). Following 
peripheral nerve injury, the fluorescence intensity of NT3 
significantly increased in the Young group (Young crush 
group: 155.0±27.1, P=0.0279), but not in the Aged group (Aged 
crush group: 104.3±28.3, P=0.7740) (Fig. 4B, D and E). The 
fluorescence intensity of BDNF was 123.3±39.6 in the Young 
control group and 116.4±38.5 in the Aged control group 
(Fig. 5A and C), with no significant difference (P=0.9836) 
(Table I). Following peripheral nerve injury, the fluorescence 
intensity of BDNF did not significantly differ in the Young 
group (Young crush group: 148.6±48.0, P=0.5583) or Aged 

group (Aged crush group: 123.8±35.9, P=0.9802) (Fig. 5B, 
D and E). The fluorescence intensity of NGF was significantly 
higher in the Young control group (135.1±17.2) than in the Aged 
control group (68.1±13.7) (P<0.0001) (Table I, Fig. 6A and C). 
On the other hand, following peripheral nerve injury, the 
fluorescence intensity of NGF did not significantly differ in 
the Young group (Young crush group: 132.0±19.5, P=0.9769) 
or Aged group (Aged crush group: 73.3±15.1, P=0.9094) 
(Fig. 6B, D and E). Furthermore, the fluorescence intensity of 
Sema3A, an axon guidance factor, was significantly higher in 
the Young control group (147.0±12.0) than in the Aged control 
group (126.5±16.1) (P=0.0266) (Table I, Fig. 7A and C). 
Following peripheral nerve injury, the fluorescence intensity 
of Sema3A significantly increased in the Young group (Young 
crush group: 168.5±11.3, P=0.0175), but remained unchanged 
in the Aged group (Aged crush group: 135.1±16.8, P=0.7631) 
(Fig. 7B, D and E).

Discussion

In the present study, we investigated whether the degree of 
Wallerian degeneration after peripheral nerve injury was 
affected by aging using a mouse peripheral nerve injury 
model. In peripheral nerves, the number and density of axons 
decrease with age (6,18,19). However, LFB staining in the 
present study showed that the percentage of the area of the 
myelin sheath to the total nerve fiber area did not significantly 
differ between the Young and Aged control groups, and aging 
did not markedly affect the myelination of peripheral nerves. 
Furthermore, following peripheral nerve injury, sciatic nerve 
fiber swelling, decreased staining by LFB, and vacuolation 
were observed in both the Young and Aged groups, and the 
percentage of the area of the myelin sheath was significantly 
lower in the Crush group than in the Control group in both 
the Young and Aged groups. In other words, Wallerian degen‑
eration after peripheral nerve injury was detected in both the 

Figure 1. Surgical procedure to create the peripheral nerve injury model. (A) Mouse right sciatic nerve was dissected from the surrounding tissue. (B) The 
sciatic nerve was crushed for 30 sec using a hemostatic forceps. (C) The chronic constriction injury was made by a hemostatic forceps.
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Table I. Comparison of the expression of the nerve‑specific proteins between Young and Aged group.

Nerve‑specific proteins Young Aged P‑value

REST/NRSF (gray values) 110.2±9.5 147.8±15.8 P<0.0001
NT3 (gray values) 116.3±24.8 91.7±30.9 P=0.2618
BDNF (gray values) 123.3±39.6 116.4±38.5 P=0.9836
NGF (gray values) 135.1±17.2 68.1±13.7 P<0.0001
Sema3A (gray values) 147.0±12.0 126.5±16.1 P=0.0266

REST/NRSF, repressor element 1‑silencing transcription/neuron‑restrictive silencer factor; NT3, neurotrophin‑3; BDNF, brain‑derived neuro‑
trophic factor; NGF, nerve growth factor; Sema3A, semaphorin 3A.

Figure 2. Histochemical assessment of the degree of Wallerian degeneration in the peripheral nerve by LFB staining. LFB assesses the degree of degeneration 
of the myelin sheath. The longitudinal axis of the sciatic nerves in the Young group (10 weeks) and Aged group (70 weeks) were examined. (A) Young control 
group; (B) Young crush group; (C) Aged control group; (D) Aged crush group; (E) Comparison of the degree of Wallerian degeneration after peripheral nerve 
injury in the Young and Aged groups. Scale bar, 200 µm. LFB, Luxol fast blue.
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Young and Aged groups. However, the effects of aging on axon 
regeneration after peripheral nerve injury currently remain 
unknown (20‑22).

Peripheral nerve injury always induces inflammation. It is 
a complex series of molecular and cellular events through the 
recruitment of circulating proteins and leukocytes to the injury 

Figure 3. Histochemical assessment of the expression of REST/NRSF in the DRG by immunofluorescence staining. The expression of nerve‑specific proteins 
was quantified by immunofluorescence staining using a REST/NRSF antibody. DRG in the Young group (10 weeks old) and Aged group (70 weeks old) 
were used and fluorescence intensity was compared. REST/NRSF stained green; DAPI stained blue; scale bar, 20.0 µm. (A) Young control group. (B) Young 
crush group. (C) Aged control group. (D) Aged crush group. (E) The fluorescence intensity of REST/NRSF. DRG, dorsal root ganglion; REST, repressor 
element 1‑silencing transcription factor; NRSF, neuron‑restrictive silencer factor.
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site within hours to days after peripheral nerve injury (23). These 
reactions associated with inflammation are thought to have a 
significant effect on axon regeneration (24,25). To investigate 
the effects of aging on axon regeneration after peripheral nerve 

injury, we quantified the expression of nerve‑specific proteins 
in young and aged mice with similarly degenerated peripheral 
nerves. In peripheral nerve injury, the expression of most of 
the genes required for axon regeneration and synaptogenesis is 

Figure 4. Histochemical assessment of the expression of NT3 in DRG by immunofluorescence staining. The expression of nerve‑specific proteins was quanti‑
fied by immunofluorescence staining using a NT3 antibody. In the present study, DRG in the Young group (10 weeks old) and Aged group (70 weeks old) were 
used and fluorescence intensity was compared (NT3 stained green; DAPI stained blue; scale bar, 20.0 µm). (A) Young control group. (B) Young crush group. 
(C) Aged control group. (D) Aged crush group. (E) The fluorescence intensity of NT3. NT3, neurotrophin 3; DRG, dorsal root ganglion.
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regulated by REST/NRSF (26‑28), and REST/NRSF possesses 
a wide number of functions through its regulation of more than 
1000 target genes (3,29‑31). In the central nervous system, the 
expression of REST/NRSF was shown to increase with age, 
and maintained homeostasis by suppressing the apoptosis 

of neurons (1‑3). We also previously demonstrated that the 
expression of REST/NRSF increased with age in peripheral 
nerves (4). In the present study, the expression of REST/NRSF 
was significantly higher in the Aged control group than in the 
Young control group, consistent with the previous studies. 

Figure 5. Histochemical assessment of BDNF expression in DRG by immunofluorescence staining. The expression of nerve‑specific proteins was quantified 
by immunofluorescence staining using a BDNF antibody. In the present study, DRG in the Young group (10 weeks) and Aged group (70 weeks) were used and 
fluorescence intensity was compared (BDNF stained green; DAPI stained blue; scale bar, 20.0 µm). (A) Young control group. (B) Young crush group. (C) Aged 
control group. (D) Aged crush group. (E) The fluorescence intensity of BDNF. BDNF, brain‑derived neurotrophic factor; DRG, dorsal root ganglion.
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The up‑regulated expression of REST/NRSF after peripheral 
nerve injury has also been demonstrated (32‑35), and indicates 
the initiation of axon regeneration in the injured peripheral 
nerve (32). In the peripheral nerve injury model used in the 
present study, the expression of REST/NRSF was significantly 
increased in the Young group, but not in the Aged group, 
suggesting that axon regeneration was initiated immediately 
after peripheral nerve injury in the Young group, but not in the 
Aged group.

The expression of neurotrophic factors has been shown to 
play an important role in axon regeneration after peripheral 
nerve injury (8,9). NT3 is a necessary factor for Schwann cell 
survival and differentiation in the absence of axons (9,36), 
BDNF maintains peripheral nerve homeostasis by regulating 
neuron survival maintenance, neurite outgrowth promotion, 
and synaptogenesis (9,37‑40), and NGF promotes axon elonga‑
tion in peripheral nerves (41‑44). Therefore, the neurotrophic 
factors investigated in the present study are markers for 

Figure 6. Histochemical assessment of the expression of NGF in DRG by immunofluorescence staining. The expression of nerve‑specific proteins was quanti‑
fied by immunofluorescence staining using a NGF antibody. In the present study, DRG in the Young group (10 weeks) and Aged group (70 weeks) were used 
and fluorescence intensity was compared (NGF stained green; DAPI stained blue; scale bar, 20.0 µm. (A) Young control group. (B) Young crush group. 
(C) Aged control group. (D) Aged crush group. (E) The fluorescence intensity of NGF. NGF, nerve growth factor; DRG, dorsal root ganglion.
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Schwann cell migration (NT3), myelination (BDNF), and 
axon elongation (NGF). To investigate the effects of aging on 
the expression of these neurotrophic factors, their expression 
was compared between the Young and Aged control groups. 
The results obtained showed no significant differences in the 
expression of NT3 or BDNF between these groups, while 

the expression of NGF was significantly lower in the Aged 
control group than in the Young control group, suggesting 
that Schwann cell migration may not be affected by aging 
in the Control group in the presence of axons. Furthermore, 
the results on the expression of BDNF suggest that myelina‑
tion was not affected by aging. However, the results on the 

Figure 7. Histochemical assessment of the expression of Sema3A in DRG by immunofluorescence staining. The expression of nerve‑specific proteins was 
quantified by immunofluorescence staining using a Sema3A antibody. In the present study, DRG in the Young group (10 weeks) and Aged group (70 weeks) 
were used and fluorescence intensity was compared (Sema3A stained green; DAPI stained blue; scale bar, 20.0 µm. (A) Young control group. (B) Young crush 
group. (C) Aged control group. (D) Aged crush group. (E) The fluorescence intensity of Sema3A. Sema3A, semaphorin 3A; DRG, dorsal root ganglion.
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expression of NGF indicate that axon elongation decreased 
with aging. These results are consistent with our previous find‑
ings showing that the ability to regenerate axons in peripheral 
nerve is decreased with age (7). Moreover, we investigated 
changes in the expression of neurotrophic factors character‑
ized by age‑related changes in the Young and Aged groups 
following peripheral nerve injury. In comparisons with the 
respective Control groups, the expression of BDNF and NGF 
did not significantly differ between the Young and Aged crush 
groups, while the expression of NT3 significantly increased in 
the Young group, but not in the Aged group. In other words, 
Wallerian degeneration occurred and axons were absent in 
injured peripheral nerves, axon regeneration was initiated by 
the increased expression of REST/NRSF, and the migration 
of Schwann cells, which is the initial stage of axon regenera‑
tion, was induced by the upregulation of NT3 in the Young 
group. However, based on the results for the expression of 
REST/NRSF and NT3, axon regeneration was not initiated 
in the Aged group following peripheral nerve injury. The 
expression of BDNF and NGF, which have been suggested to 
play a role in myelination and axon elongation after Schwann 
cell migration for axon regeneration, was not increased in the 
Young or Aged group one week after peripheral nerve injury 
in the present study.

There are several limitations in this study. First, in creating 
the CCI model for peripheral nerve injury, the compression 
method with a hemostatic forceps was used, so the degree 
of nerve injury may be different with each mice. It has been 
reported that the expression of neurotrophic factor varies 
depending on the degree of nerve injury (Neurapraxia, 
Axonotmesis, Neurotmesis) (9). However, there were no 
complication (death, disability, etc). Next, in this study, we 
performed evaluation the expression of nerve‑specific proteins 
such as REST/NRSF and discussed how they affect axon 
regeneration. On the other hand, although inflammatory 
cytokines are up‑regulated with aging or nerve injury (45,46), 
age‑related differences in inflammatory cytokine levels after 
peripheral nerve injury are unclear (47). However, the degree 
of inflammation after nerve injury was not investigated in 
this sturdy. In a future study, to investigate the degree of 
inflammation and age‑related differences in inflammatory 
cytokine levels after peripheral nerve injury may provide a 
more detailed understanding of the effects of aging on axon 
regeneration. Moreover, we also investigated the expression 
of nerve‑specific proteins in the cytoplasm and the nucleus in 
the perikaryon of DRG, but there was no significant differ‑
ence among them. Therefore, the fluorescence intensity of 
the whole cell was measured by the method of this study. 
Therefore, since all DRG samples were used by histochemical 
assessment in this study, the quantification of nerve‑specific 
proteins by western blot were not able to be performed. This is 
the limitation of this study and a future issue. Last, since this 
study is a fixed‑point observation one week after peripheral 
nerve injury, it only evaluates the effect of peripheral nerve 
injury and aging in a limited manner. It has been reported 
that the expression of nerve‑specific proteins varies greatly 
depending on the time after nerve injury (9,48‑51). We believe 
that it may be possible to evaluate the effect of peripheral nerve 
injury and aging in more detail by evaluating with time course. 
However, in assessment of the axon regeneration process, it 

is highly meaningful to investigate the expression of these 
nerve‑specific proteins at one week after peripheral nerve 
injury. Because the up‑regulated expression of neurotrophic 
factors and Schwann cell migration, an early stage of axon 
regeneration, occur within one week after nerve injury (52). 
Therefore, in this study, we performed evaluation at one week 
after peripheral nerve injury and discussed it.

Based on the results of present study, while compensa‑
tory changes for peripheral nerve injury were initiated by the 
upregulation of the REST/NRSF, followed by Schwann cell 
migration in the Young group, these compensatory changes did 
not occur in the Aged group. The regulation of REST/NRSF 
expression appears to be essential for axon regeneration 
when peripheral nerves are exposed to stress. In peripheral 
nerves, aging‑associated functional and electrophysiological 
disorders have been reported in clinical study (6). This study 
and our previous study showed the REST/NRSF expression is 
increased with age (4), and the expression is also increased by 
nerve injury according to the results of this study. Therefore, 
focusing on the expression of REST/NRSF is expected to 
elucidate the pathology of nerve injury, and is also expected 
to contribute significantly to the treatment of age‑related 
peripheral nerve injury.

In conclusion, the present results suggested that Wallerian 
degeneration occurred after peripheral nerve injury in the 
Young and Aged groups. On the other hand, compensatory 
changes for peripheral nerve injury and Schwann cell migration 
were initiated in the Young group, but not in the Aged group.
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