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Abstract. Cytokine storm is one of the leading causes of 
death in patients with COVID‑19. Metformin has been shown 
to inhibit the action of a wide range of proinflammatory cyto‑
kines such as IL‑6, and TNF‑α which may ultimately affect 
cytokine storm due to Covid‑19. The present study analyzed 
the anti‑inflammatory effect of oral and intraperitoneal (IP) 
metformin administration routes in a mouse model of lipo‑
polysaccharide (LPS)‑induced cytokine storm. A total of 
60 female BALB/c mice were randomly assigned to one of 
six groups: i) Control; ii) LPS model; iii) oral saline + LPS; 
iv) oral metformin + LPS; v)  IP saline + LPS; and vi)  IP 
metformin + LPS. Metformin or saline were administered to 
the mice for 30 days, after which an IP injection of 0.5 mg/kg 
LPS induced a cytokine storm in the five treatment groups. 
Mice were sacrificed and serum cytokine levels were measured. 
Pretreatment of mice with either oral or IP metformin signifi‑
cantly reduced the increase in IL‑1, IL‑6 and TNF‑α following 
LPS injection. Both metformin administration routes signifi‑
cantly reduced IL‑1 and TNF‑α levels, although IP metformin 
appeared to be significantly more effective at reducing IL‑6 
levels compared with oral metformin. Neither the oral or IP 
route of administration of metformin demonstrated a signifi‑
cant effect on IL‑17 levels. Based on its ability to suppress the 
proinflammatory LPS‑induced cytokine storm, metformin 
may have future potential benefits in ameliorating human 
diseases caused by elevated cytokine levels.

Introduction

Severe acute respiratory syndrome coronavirus 2 
(SARS‑CoV‑2) was the causative agent of the Coronavirus 
disease 2019 (COVID‑19) pandemic. A number of drug 
treatments such as antiviral drugs; monoclonal antibodies; 
convalescent plasma and cytokine therapy targeting the 
SARS‑CoV‑2 immunopathological process have recently been 
either approved or tested to treat COVID‑19 (1,2). While a 
majority of the cases of SARS‑CoV‑2 infection are asymp‑
tomatic or associated with mild symptoms, 10‑20% of patients 
with COVID‑19 may encounter acute respiratory distress 
syndrome (ARDS), particularly patients who are elderly or 
have co‑morbidities (3). Recent studies have reported a fatal 
immunopathological process defined as a ‘cytokine storm’, 
which is a component of the macrophage activation syndrome, 
also known as secondary hemophagocytic lymphohistiocytosis 
that can lead to ARDS (4,5). Several cytokines, such as: IL‑1; 
IL‑5; IL‑7; IL‑9; IL‑10 and TNF‑α, were detected at higher 
concentrations in the serum of patients with a severe case 
of COVID‑19, compared with those who had milder infec‑
tions (6‑10). Further research assessing the cytokine profile 
changes and their mechanisms are necessary to comprehend 
how COVID‑19 infections can become severe, in addition to 
providing information that could be used to develop treatment 
options to control disease pathogenesis (11).

In order for the immune system to target an invading virus, 
antigen‑presenting cells (APCs) process and present viral anti‑
gens to other cells of the immune system. Viral antigens are 
recognized by CD8+ cytotoxic T lymphocytes and natural killer 
(NK) cells, activating both the innate and adaptive branches 
of the immune system. Apoptosis is induced by NK cells and 
CD8+ cytotoxic T cells to kill virus‑infected cells. To avoid the 
unnecessary initiation of cell death, APCs and CD8+ cytotoxic 
T cells are being eliminated through apoptosis after antigenic 
reactivity has ceased. However, defects in the cytotoxic activi‑
ties of lymphocytes, whether acquired or genetic, can result in a 
failure of CD8+ cytotoxic T cells and NK cells to lyse infected 
cells and activate APCs, which leads to exaggerated and 
prolonged interactions between adaptive and innate immune 
cells. High levels of serum proinflammatory cytokines, such 
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as IL‑1, IL‑6, IL‑17 and TNF‑α, are then released uncontrol‑
lably, resulting in a cytokine storm. Cytokine storm, ARDS, 
thrombotic tendency, disseminated intravascular coagulation, 
hepatic dysfunction and multi‑organ failure can result from 
this immunopathologic process (5,11,12). This life‑threatening 
phenomenon is regarded as the leading cause of death in 
patients with COVID‑19 (13,14).

Metformin is an anti‑diabetic medication with a well‑char‑
acterized safety profile. Previous studies have reported that 
metformin may have other physiological effects in addition to 
lowering blood glucose levels (15). It may influence the AMP 
kinase (AMPK)/mTOR signaling pathway, which in turn regu‑
lates a variety of proinflammatory cytokines, such as IL‑1; 
IL‑2: IL‑6; IL‑12 and TNF‑α (15). Metformin, an immuno‑
modulatory drug with high tolerability, is an add‑on drug in the 
treatment of certain malignant, autoimmune and aging‑related 
conditions, such as antiproliferative and antioxidant effects, 
T2D, obesity associated inflammation, autoimmune diseases 
and cardio and nephro‑protection (16‑23). In patients with 
chronic inflammation, metformin can be used as a protec‑
tive or therapeutic option (24,25), including conditions such 
as colitis‑associated colon cancer  (26), otitis media  (27) 
and airway inflammation  (28). Metformin has previously 
been reported to aid in the treatment of sepsis‑related brain 
injury by inhibiting neuroinflammation, oxidative stress and 
apoptosis (29).

The aim of the present study was to evaluate the anti‑inflam‑
matory effect of oral and intraperitoneal (IP) metformin in a 
mouse model of lipopolysaccharide (LPS)‑induced cytokine 
storm.

Materials and methods

Animal model. The present study included 60 female wild‑type 
BALB/c mice aged 5‑6 weeks and weighing ~25 g. The animal 
cages were well ventilated, and subjected to a 12‑h light/dark 
cycle. The relative humidity was kept at around 45‑55%. 
The rooms temperature was adjusted to a range of 22‑24˚C. 
Food and water were freely available to the animals. After 
2 weeks of acclimation, mice were randomly assigned to one 
of six groups (n=10/group): i) Control; ii) LPS model; iii) oral 
saline + LPS; iv) oral metformin + LPS; v) IP saline + LPS; 
and vi) IP metformin + LPS. The control group received no 
intervention other than the collection of blood samples at the 
end of the experiment to estimate the basal levels of serum 
cytokines. For 30 days, metformin or saline were adminis‑
tered to the mice via either the oral or IP route. Mice were 
administered metformin at a concentration of 250 mg/kg body 
weight diluted in 100 µl normal saline once daily via oral 
gavage or the IP route (28). Saline‑treated groups of mice were 
administered an equivalent volume of saline (100 µl) daily, 
either orally or via the IP route. The Jouf University Local 
Committee of Bioethics approved all experimental procedures 
(approval no. 07‑08‑42; Sakaka, Saudi Arabia).

Murine model of LPS‑induced cytokine storm. After 30 days 
of metformin or saline administration, LPS was administered 
to the five intervention groups of mice through IP injection 
at a concentration of 0.5 mg/kg body weight (from O111:B4 
Escherichia  coli; MilliporeSigma) to induce a cytokine 

storm. LPS was prepared in sterile PBS before use. At one 
hour following LPS was administration, mice were sacrificed 
by halothane at a lethal dose (5%) for 2‑3 min after which 
animals were confirmed to be dead based on their physical 
status (unable to walk and lacking response to manipulations). 
Then blood was collected from the heart (30). Serum separator 
tubes were used to collect blood samples. Blood samples were 
allowed to clot for 2 h at room temperature, then centrifuged 
at 3.74 x g for 15 min at 4˚C, before being stored at ‑80˚C.

Measurement of cytokines levels. Serum levels of IL‑1β, IL‑6, 
IL‑17 and TNF‑α were determined using ELISA kits according 
to the manufacturer's instructions (cat. nos. CSB‑E08054m, 
CSB‑E04639m, CSB‑E04608m and CSB‑E04741m, 
respectively; Cusabio Technology LLC). All experimental 
measurements were repeated in triplicates.

Statistical analysis. Data are presented as the mean ± standard 
error of the mean and were analyzed using SPSS (v22; IBM 
Corp.). One‑way ANOVA followed by Tukey's post hoc test 
was used to determine statistical significance between treat‑
ment groups. The correlation among the cytokine levels within 
each treatment group of mice was analyzed using Spearman's 
rank correlation coefficient analysis, and the results were 
presented as P‑ and rho values. P<0.05 was considered to 
indicate a statistically significant difference.

Results

Serum IL‑1β levels. There were no significant differ‑
ences in the body weight of the treatment groups of mice 
compared with the control group. LPS injection significantly 
increased the serum levels of IL‑1β in all treatment groups 
compared with the control (P<0.05; Fig. 1). Pretreatment 
with metformin, either orally or IP, significantly reduced this 
rise in IL‑1β levels (P<0.05), with no significant difference 
demonstrated between the efficacy of the two methods of 
metformin administration.

Serum IL‑6 levels. Compared with the control group, injection 
of LPS caused a significant elevation of IL‑6 levels in all the 
treatment groups (P<0.05; Fig. 2). Pretreatment with either 
oral or IP metformin significantly attenuated this increase in 
IL‑6 levels (P<0.05). IP metformin significantly decreased 
serum IL‑6 levels compared with the oral route of metformin 
administration (P<0.05).

Serum IL‑17 levels. Injection of LPS caused a significant 
increase in serum IL‑17 levels in all treatment groups 
compared with the control group (Fig. 3). However, serum 
levels of IL‑17 were not significantly impacted by the route of 
metformin administration.

Serum TNF‑α levels. Compared with the control, LPS injec‑
tion caused a significant increase in TNF‑α levels across all 
treatment groups (P<0.05; Fig. 4). Metformin pretreatment 
significantly decreased the TNF‑α levels in serum compared 
with the LPS + saline groups. There was no significant differ‑
ence demonstrated by the route of metformin administration 
on the reduction of serum TNF‑α levels.
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Correlation analysis. The results of the Spearman's correla‑
tion analysis among measured proinflammatory cytokines 
within each of the different subgroups demonstrated that 

certain correlations were statistically significant (Table I). The 
magnitude of the correlation coefficient indicated the strength 
of the relationship between the variables, with larger absolute 
values indicating stronger relationships.

Discussion

Effective drug treatments targeting the SARS‑CoV‑2 immu‑
nopathological process are of particular interest to reduce the 
disease burden caused by these infections (1). Metformin, a 
widely available drug treatment for diabetes, was previously 
reported to have a cytokine‑lowering effect in both diabetic 
and non‑diabetic patients (24). In patients with COVID‑19, 
this effect could be critical as the development of cytokine 
storm can lead to very lethal outcomes such as ARDS (31). 
The effect of metformin on the production of cytokines 
is reported to be caused by blocking the AMPK/mTOR 
cytokine receptor pathway, which results in a decrease in 
the expression of certain proinflammatory genes, such as 
IL‑1α, IL‑1β, IL‑2, IL‑6, IL‑12 and TNF‑α (15). Additional 
studies suggest that AMPK‑independent mechanisms, such 
as altering the gut microbiota, may also be involved in this 
process (32‑34).

Cytokine storm causes severe illness in patients with 
COVID‑19, thereby significantly increasing the morbidity 
and mortality rates by ~5% (31). The present study sought to 
assess the anti‑inflammatory effect of metformin in a mouse 
model of LPS‑induced cytokine storm. The present results 
demonstrated that LPS injection caused a significant increase 
in serum IL‑1β levels when compared with the control group. 
Oral and IP metformin significantly reduced the elevated 
IL‑1β levels in BALB/c mice 1 h after IP LPS injection, with 
no significant difference demonstrated in efficacy between 
the two routes of metformin administration. These findings 
support previous reports that metformin is a potent inhibitor of 
the chronic inflammatory response. For example, metformin 
therapy has been reported to reduce reactive oxygen species 
and hypoxia‑inducible factor‑1 (HIF‑1) levels, which in turn 
reduce the IL‑1β expression levels after prolonged exposure 
to proinflammatory LPS stimuli (29,35). Additionally, it has 

Figure 1. Serum IL‑1β levels of BALB/c mice (n=10/group) pretreated 
with either oral or IP met for 30 days. Mice were treated daily with met 
(250 mg/kg body weight). LPS (0.5 mg/kg body weight) was administered to 
initiate a cytokine storm. Data are presented as the mean ± standard error of 
the mean (n=3). *P<0.05 vs. control; #P<0.05 vs. corresponding LPS‑treated 
group. LPS, lipopolysaccharide; IP, intraperitoneal; met, metformin.

Figure 2. Serum IL‑6 levels of BALB/c mice (n=10/group) pretreated 
with either oral or IP met for 30 days. Mice were treated daily with met 
(250 mg/kg body weight). LPS (0.5 mg/kg body weight) was administered to 
initiate a cytokine storm. Data are presented as the mean ± standard error of 
the mean (n=3). *P<0.05 vs. control; #P<0.05 vs. corresponding LPS‑treated 
group; ◊P<0.05 vs. LPS + oral met‑treated group. LPS, lipopolysaccharide; IP, 
intraperitoneal; met, metformin.

Figure 4. Serum TNF‑α levels of BALB/c mice (n=10/group) pretreated 
with either oral or IP met for 30 days. Mice were treated daily with met 
(250 mg/kg body weight). LPS (0.5 mg/kg body weight) was administered to 
initiate a cytokine storm. Data are presented as the mean ± standard error of 
the mean (n=3). *P<0.05 vs. control; #P<0.05 vs. corresponding LPS‑treated 
group. LPS, lipopolysaccharide; IP, intraperitoneal; met, metformin.

Figure 3. Serum IL‑17 levels of BALB/c mice (n=10/group) pretreated with 
either oral or IP met for 30 days. Mice were treated daily with met (250 mg/kg 
body weight). LPS (0.5 mg/kg body weight) was administered to initiate a 
cytokine storm. Data are presented as the mean ± standard error of the mean 
(n=3. LPS, lipopolysaccharide; IP, intraperitoneal; met, metformin.
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been previously established that the IL‑1β mediated inflam‑
matory response is involved in COVID‑19 pathogenesis (36). 

Therefore, lowering IL‑1β levels could reduce inflammation 
and mortality in patients with COVID‑19 (37).

Table I. Spearman's correlation coefficient analysis between production of serum cytokines in a mouse model of LPS‑induced 
cytokine storm pretreated with oral or IP metformin.

A, Control

Cytokine	 IL‑6	 IL‑17	 TNF‑α

IL‑1	 0.027 (0.633)a	 0.103 (0.438)	 0.028 (0.632)a

IL‑6		  0.006 (0.774)a	 0.210 (0.287)
IL‑17			   0.067 (0.515)

B, LPS

Cytokine	 IL‑6	 IL‑17	 TNF‑α

IL‑1	 0.037 (0.596)a	 0.049 (0.559)a	 0.156 (0.358)
IL‑6		  0.125 (0.399)	 0.021 (0.663)a

IL‑17			   0.171 (0.334)

C, LPS + oral saline

Cytokine	 IL‑6	 IL‑17	 TNF‑α

IL‑1	 0.027 (0.636)a	 0.116 (0.418)	 0.077 (0.491)
IL‑6		  0.033 (0.612)a	 0.214 (0.285)
IL‑17			   0.089 (0.467)

D, LPS + oral metformin

Cytokine	 IL‑6	 IL‑17	 TNF‑α

IL‑1	 0.041 (0.584)a	 0.033 (0.612)a	 0.006 (0.770)a

IL‑6		  0.221 (0.274)	 0.035 (0.602)a

IL‑17			   0.002 (0.830)a

E, LPS + IP saline

Cytokine	 IL‑6	 IL‑17	 TNF‑α

IL‑1	 0.005 (0.782)a	 0.005 (0.782)a	 0.000 (0.915)a

IL‑6		  0.008 (0.758)a	 0.015 (0.697)a

IL‑17			   0.002 (0.830)a

F, LPS + IP metformin

Cytokine	 IL‑6	 IL‑17	 TNF‑α

IL‑1	 0.0014 (0.851)a	 0.0008 (0.879)a	 0.005 (0.782)a

IL‑6		  0.003 (0.815)a	 0.003 (0.815)a

IL‑17			   0.003 (0.818)a

Data are presented as P‑ and (rho) values. aP<0.05 (statistically significant). Spearman's rho values range from ‑1 to +1, where a value of ‑1 
indicates a perfect negative correlation, 0 indicates no correlation, and +1 indicates a perfect positive correlation. LPS, lipopolysaccharide; IP, 
intraperitoneal.
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The present study demonstrated that LPS injection resulted 
in a significant increase in serum IL‑6 levels in all treatment 
groups of animals tested. Pretreatment with either oral or IP 
metformin significantly reduced this increase in IL‑6 levels. IP 
metformin was significantly more effective at reducing IL‑6 
levels compared with oral metformin. Hyun et al (38) reported 
that metformin reduces IL‑1, IL‑6 and TNF‑α production at 
both the protein and mRNA level in a dose‑dependent manner. 
Similarly, Chao et al (36) reported that metformin reduces the 
LPS‑induced release of IL‑6 in mouse livers. Additionally, 
metformin inhibits the acute inflammatory response in two 
macrophage‑like cell lines by activating AMPK, but not HIF‑1 
or IL‑10 (39).

TNF‑α is an inflammatory cytokine produced in response 
to bacterial and viral infections and can elicit tissue damage 
and fibrosis (27). The present study demonstrated that serum 
TNF‑α levels were significantly increased after mice were 
injected with LPS compared with the controls. Oral or IP 
metformin were equally effective in attenuating the signifi‑
cantly elevated TNF‑α levels, with no significant differences 
demonstrated between either route of administration. 
Kim et al  (30) previously reported that oral administra‑
tion of metformin to mice treated with LPS reduced the 
plasma, spleen and lungs tissue levels of both TNF‑α and 
IL‑6 leading to a reduction in the effect of LPS‑induced 
inflammation.

Cho et al (27) investigated the anti‑inflammatory effects 
of metformin on LPS‑induced inflammation in human 
middle ear epithelial cell lines. LPS was found to elevate 
TNF‑α and cyclooxygenase‑2 levels. However, pretreatment 
with metformin reduced the production of these inflamma‑
tory factors. Metformin also decreased the production of 
sepsis‑induced brain injury in mice inflammatory cytokines, 
such as IL‑6, IL‑1 β and TNF‑α  (29). These findings are 
consistent with the findings of the present study.

The present study demonstrated a non‑significant increase 
in serum IL‑17 levels in mice pretreated with LPS. Neither 
IP nor oral metformin had a significant effect on serum 
IL‑17 levels. One possible explanation for these findings is 
that the effect of LPS is likely to be dose‑ or time‑depen‑
dent. Sun et al  (40) reported that IL‑17A is upregulated in 
LPS‑induced neuroinflammation and cognitive impairment 
in aged rats. Differences in the findings of the present study 
regarding IL‑17 levels could be due to the time frame of 
sample collection following LPS injection. It could be possible 
that 1 h may not be sufficient time to demonstrate a significant 
increase in serum IL‑17 levels. A previous study reported that 
whilst IL‑6 and TNF‑α levels peak within 1 h of LPS injec‑
tion in mice, changes in IL‑17 levels are slower and peak over 
8 h (41).

Age‑related increases in serum levels of IL‑17A, IL‑17F, 
IL‑21 and IL‑6 can be prevented by metformin treatment (42). 
In a mouse model of scleroderma treated with metformin, 
Moon  et  al  (42) reported a decrease in the production of 
the proinflammatory cytokine IL‑17 in dermal tissues and 
lymphocytes in a mice model of bleomycin‑induced sclero‑
derma. The pathophysiology of IL‑17 has been studied in 
mice challenged with LPS, and it was reported that increased 
amounts of IL‑17 are associated with excessive lung injury and 
inflammation (43). Neutralizing increased IL‑17 production 

using anti‑IL‑17 antibodies improves survival and reduces 
lung injury (43).

Low‑grade inflammation caused by microbiota dysbi‑
osis is thought to promote the occurrence of metabolic 
syndrome (44,45). The gut microbiota may be involved in the 
regulation of immunity, inflammation and autoinflammatory 
diseases such as multiple sclerosis and osteomyelitis (46,47). 
Several studies have reported that metformin can influence 
the composition of the intestinal microbiota in certain clinical 
situations such as dysbiosis, intestinal inflammations disor‑
ders, and T2D (48‑50). It has been reported that the ability of 
metformin to alleviate certain inflammatory diseases, such as 
inflammatory bowel disease is linked to its ability to modify 
the diversity of gut microbiota (51). By contrast, it has also 
been proposed that the ability of metformin to reduce indices 
of low‑grade inflammation in metabolic syndrome is indepen‑
dent of its effect on the gut microbiota (52,53).

A limitation of the present study is that further studies 
are required to determine whether metformin has a direct or 
indirect effect on cultured immune system cells, such as macro‑
phages and T cells. Investigating a potential dose‑dependent 
response of both LPS and metformin and longer time scales 
between LPS injection and sample collection could also 
further elucidate the impact of metformin in the mouse model 
used in the present study.

In the present study, a mouse model of LPS‑induced 
cytokine storm was pretreated with metformin, which was 
demonstrated to suppress the release of the pro‑inflammatory 
cytokines IL‑1β, IL‑6, IL‑17 and TNF‑α. Certain serum 
cytokine levels demonstrated a positive correlation with other 
cytokines in the mouse model. These findings may potentially 
suggest a future role for metformin in the treatment of human 
diseases associated with the cytokine storm.
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