Genetic factors for obesity

YOSHIJI YAMADA^{1,2}, KIMIHIKO KATO³, TAKASHI KAMEYAMA⁴, KIYOSHI YOKOI³, HITOSHI MATSUO⁵, TOMONORI SEGAWA⁵, SACHIRO WATANABE⁵, SAHOKO ICHIHARA¹, HIDEMI YOSHIDA⁶, KEI SATOH⁶ and YOSHINORI NOZAWA²

¹Department of Human Functional Genomics, Life Science Research Center, Mie University, Tsu; ²Gifu International Institute of Biotechnology, Kakamigahara; Departments of ³Cardiovascular Medicine and

⁴Neurology, Gifu Prefectural Tajimi Hospital, Tajimi; ⁵Department of Cardiology, Gifu Prefectural Gifu Hospital, Gifu;
 ⁶Department of Vascular Biology, Institute of Brain Science, Hirosaki University School of Medicine, Hirosaki, Japan

Received May 29, 2006; Accepted July 20, 2006

Abstract. The purpose of the present study was to identify gene polymorphisms for the reliable assessment of genetic factors for obesity. The study population comprised 3906 unrelated Japanese individuals (2286 men, 1620 women), including 1196 subjects (677 men, 519 women) with obesity (body mass index of ≥ 25 kg/m²) and 2710 controls (1609 men, 1101 women). The genotypes for 147 polymorphisms of 124 candidate genes were determined with a method that combines the polymerase chain reaction and sequence-specific oligonucleotide probes with suspension array technology. Multivariable logistic regression analysis with adjustment for age, sex, and the prevalence of smoking revealed that the - $30G \rightarrow A$ polymorphism of *GCK*, the $-240A \rightarrow T$ polymorphism of ACE, and the -482C \rightarrow T polymorphism of APOC3 were significantly (P<0.01) associated with the prevalence of obesity, and the -1989T \rightarrow G polymorphism of ESR1 was almost significantly associated. A stepwise forward selection procedure demonstrated that ACE, GCK, and ESR1 genotypes significantly (P<0.01) and independently affected the prevalence of obesity. Combined genotype analysis for these three polymorphisms yielded a lowest odds ratio of 0.45 for the combined genotypes of AT or TT for ACE, GG for GCK, and GG for ESR1 in comparison with the combined genotypes of AA for ACE, GG for GCK, and TT or TG for ESR1. Genotypes for ACE, GCK, and ESR1 may prove reliable for the assessment of genetic factors for obesity. Determination of the combined genotypes for these genes may contribute to the personalized prevention of this condition.

Introduction

The prevalence of obesity, a multifactorial disease caused by an interaction of genetic factors with lifestyle and environmental factors (1), is rapidly increasing worldwide. A sedentary lifestyle, high-fat and high-energy diet, and genetic predisposition to obesity all contribute to the epidemic. Although genetic linkage analyses (2-5) and candidate gene approaches (6-9) have implicated several loci and candidate genes in predisposition to obesity, the genes that contribute to genetic susceptibility to this condition remain to be identified definitively. In addition, given the ethnic differences in lifestyle and environmental factors as well as in genetic background, it is important to examine gene polymorphisms related to obesity in each ethnic group.

We have now performed a large-scale association study for 147 candidate gene polymorphisms and obesity in 3906 Japanese individuals. The purpose of the present study was to identify gene polymorphisms for the reliable assessment of the genetic factors for obesity, and thereby to contribute to the personalized prevention of this condition.

Materials and methods

Study population. The study population comprised 3906 unrelated Japanese individuals (2286 men, 1620 women) who either visited outpatient clinics at or were admitted to one of the five participating hospitals (Gifu Prefectural Gifu Hospital, Gifu Prefectural Tajimi Hospital, Gifu Prefectural Gero Hotspring Hospital, Hirosaki University Hospital, and Reimeikyo Rehabilitation Hospital) between October 2002 and March 2005. Obesity was defined as a body mass index (BMI) of $\geq 25 \text{ kg/m}^2$ on the basis of the BMI criteria for Japanese and Asian populations (10). A total of 1196 individuals (677 men, 519 women) among the study population were thus classified as obese. The controls comprised a total of 2710 individuals (1609 men, 1101 women) who visited the outpatient clinics of the participating hospitals for an annual health checkup and who had a BMI of $<25 \text{ kg/m}^2$. The study protocol complied with the Declaration of Helsinki and was approved by the Committees on the Ethics of Human Research of Mie University School of Medicine, Hirosaki University

Correspondence to: Dr Yoshiji Yamada, Department of Human Functional Genomics, Life Science Research Center, Mie University, 1577 Kurima-machiya, Tsu, Mie 514-8507, Japan E-mail: yamada@gene.mie-u.ac.jp

Key words: obesity, genetics, polymorphism, angiotensinconverting enzyme, glucokinase, estrogen receptor α

Characteristic	Obesity	Controls
No. of subjects	1196	2710
Age (years)	63.0±10.2 ^a	65.7±11.1
Sex (male/female) (%)	56.6/43.4	59.4/40.6
Body mass index (kg/m ²)	27.4 ± 2.2^{a}	21.8±2.1
Current or former smoker (%)	18.8	18.2
Hypertension (%)	68.2 ^b	63.0
Systolic blood pressure (mmHg)	149±28 ^a	145±28
Diastolic blood pressure (mmHg)	82±15 ^a	79±16
Hypercholesterolemia (%)	50.7 ^a	43.0
Total cholesterol (mmol/l)	5.56±1.09 ^a	5.33±1.04
HDL-cholesterol (mmol/l)	1.31±0.47 ^a	1.39±0.36
Triglycerides (mmol/l)	1.85±1.25 ^a	1.53±1.05
Diabetes mellitus (%)	38.6°	34.7
Fasting plasma glucose (mmol/l)	7.32±3.96 ^b	6.93±3.58
Glycosylated hemoglobin (%)	6.4±1.9 ^d	6.2±1.8

Nonprevalence data are means \pm SD. HDL, high density lipoprotein. Smoker, ≥ 10 cigarettes daily. Hypertension, systolic blood pressure ≥ 140

mmHg or diastolic blood pressure ≥90 mmHg (or both), or taking

antihypertensive medication. Diabetes mellitus, fasting plasma glucose

 \geq 6.93 mmol/l or glycosylated hemoglobin \geq 6.5% (or both), or taking

antidiabetes medication. Hypercholesterolemia, serum total cholesterol \geq 5.72 mmol/l or taking lipid-lowering medication. ^aP<0.001, ^bP<0.005, ^cP

Table I. Characteristics of the 3906 study subjects.

Table II. Polymorphisms related (P<0.05) to obesity as evaluated by the Chi-square test.

Gene symbol	Polymorphism	Р
GCK	-30G→A	0.0079
ACE	-240A→T	0.0102
APOC3	-482C→T	0.0173
GCLC	-129C→T	0.0298
ESR1	-1989T→G	0.0302
STX1A	205T→C (Asp68Asp)	0.0336
IRS1	3931G→A (Gly972Arg)	0.0344
APOA1	-75G→A	0.0345
F12	46C→T	0.0462

biology, lymphocyte and leukocyte biology, coagulation and fibrinolysis systems and platelet function. We further selected 147 polymorphisms of these genes, most of which are located in the promoter region, exons, or splice donor or acceptor sites of introns and might therefore be expected to result in changes in the function or expression of the encoded protein (Supplementary Table I).

Genotyping of polymorphisms. Venous blood (7 ml) was collected in tubes containing 50 mmol/l EDTA (disodium salt), and genomic DNA was isolated with a kit (Genomix; Talent, Trieste, Italy). Genotypes of the 147 polymorphisms were determined (G&G Science, Fukushima, Japan) by a method that combines the polymerase chain reaction and sequence-specific oligonucleotide probes with suspension array technology (Luminex, Austin, TX). Primers, probes, and other conditions for genotyping are shown in Supplementary Table II. Detailed genotyping methodology was described previously (11).

Statistical analysis. Clinical data were compared between the subjects with obesity and the controls by the unpaired Student's t-test. Qualitative data were compared by the Chi-square test.

School of Medicine, Gifu International Institute of Biotechnology, and the participating hospitals, and written

informed consent was obtained from each participant.

<0.05, ^dP<0.01 versus controls.

Selection of polymorphisms. With the use of public databases, we selected 124 candidate genes that have been characterized and suggested to be associated with obesity on the basis of a comprehensive overview of: lipid and adipose tissue metabolism, insulin and glucose metabolism, other metabolic factors as well as the regulation of blood pressure and endocrine function, vascular biology, monocyte-macrophage

Table III. Multivariable logistic regression analysis of polymorphisms related to obesity.

Gene	Polymorphism	I	Dominant	R	ecessive	А	dditive 1	A	Additive 2
symbol		Р	OR (95% CI)						
GCK	-30G→A	0.0049	0.81 (0.70-0.94)	0.0477	0.64 (0.40-0.98)	0.0171	0.83 (0.71-0.97)	0.0268	0.60 (0.38-0.93)
ACE	-240A→T	0.0026	0.81 (0.70-0.93)	0.5651		0.0029	0.80 (0.69-0.93)	0.1038	
APOC3	-482C→T	0.0077	1.24 (1.06-1.45)	0.8496		0.0038	1.28 (1.08-1.51)	0.1491	
GCLC	-129C→T	0.5313		0.0119	1.89 (1.14-3.12)	0.2103		0.0157	1.85 (1.12-3.05)
ESR1	-1989T→G	0.3119		0.0106	0.76 (0.61-0.93)	0.8691		0.0135	0.75 (0.60-0.94)
STX1A	205T→C (Asp68Asp)	0.1103		0.0411	1.21 (1.01-1.46)	0.3279		0.0237	1.27 (1.03-1.55)
IRS1	3931G→A (Gly972Arg)	0.0119	1.46 (1.08-1.95)	0.9370		0.0109	1.47 (1.09-1.97)	0.9507	
APOA1	-75G→A	0.0369	0.85 (0.73-0.99)	0.0644		0.1020		0.0442	0.65 (0.42-0.98)
F12	46C→T	0.5399		0.0396	1.16 (1.01-1.33)	0.1738		0.8367	

OR, odds ratio; CI, confidence interval. Multivariable logistic regression analysis was performed with adjustment for age, sex, and the prevalence of smoking. P values of <0.01 are shown in bold.

Gene symbol Polymorphism Obesity Controls -30G→A GCK GG 70.5 66.0 GA 27.3 30.6 AA 2.2 3.4 ACE -240A→T AA 43.0 37.9 AT 43.7 48.2 TT 13.3 13.9 АРОСЗ -482C→T 24.5 28.5 CC CT 52.7 48.4 TT 22.8 23.1 -129C→T GCLC 76.6 75.8 CC CT 21.0 22.9 TT 2.4 1.3 ESR1 -1989T→G TT 43.9 42.2 TG 45.243.9 GG 10.9 13.9 STX1A 205T→C (Asp68Asp) TT 36.1 39.0 TC 46.7 46.8 CC 14.2 17.2IRS1 3931G→A (Gly972Arg) 93.4 95.4 GG GA 6.5 4.5 0.1 0.1 AA APOA1 -75G→A 70.9 GG 67.6 GA 26.6 28.7 AA 2.5 3.8 F12 46C→T CC 12.4 11.6

Allele frequencies were estimated by the gene counting method, and the Chi-square test was used to identify departures from Hardy-Weinberg equilibrium. In the initial screening, the genotype distribution of each autosomal polymorphism was compared between the subjects with obesity and the controls by the Chi-square test (3x2); for polymorphisms on the X chromosome, allele frequencies were compared by the Chi-square test (2x2). Polymorphisms related to obesity (P<0.05) were further examined by multivariable logistic regression analysis with adjustment for covariates, with obesity as a dependent variable and independent variables including age, sex (0, woman; 1, man), smoking status (0, nonsmoker; 1, smoker), and genotype of each polymorphism. Each genotype was assessed according to dominant, recessive, and additive (1 and 2) genetic models, and the P value, odds ratio, and 95% confidence interval were calculated. The

CT

TT

41.9

45.7

46.2 42.3

Table IV. Genotype distribution of polymorphisms related to obesity.

Table V. Effects of genotypes and other characteristics on obesity as determined by a stepwise forward selection procedure (P<0.05).

Variable	Р	\mathbb{R}^2
Age	<0.0001	0.0104
ACE (TT + AT versus AA)	0.0027	0.0019
GCK (AA + GA versus GG)	0.0052	0.0016
ESR1 (GG versus TT + TG)	0.0098	0.0014
APOC3 (TT + CT versus CC)	0.0110	0.0014
IRS1 (AA + GA versus GG)	0.0114	0.0013
GCLC (TT versus CC + CT)	0.0142	0.0012
F12 (TT versus CC + CT)	0.0376	0.0009
<i>STX1A</i> (CC versus TT + TC)	0.0446	0.0008

additive genetic model comprised two groups: heterozygotes versus wild-type homozygotes for the additive 1 model; and variant homozygotes versus wild-type homozygotes for the additive 2 model. For combined genotype analysis, multivariable logistic regression analysis was performed with obesity as a dependent variable and independent variables including age, sex, smoking status, and combined genotypes. Each genotype was assessed according to a dominant or recessive model based on statistical significance, and each combined genotype was compared to that which conferred the highest genetic risk for obesity. We also performed a stepwise forward selection procedure to examine the effects of genotypes as well as of other covariates on obesity. The levels for inclusion in and exclusion from the model were 0.25 and 0.1, respectively. Given the multiple comparisons of genotypes with obesity, we adopted a level of P<0.01 for statistical significance of association. For other clinical background data, a P value of <0.05 was considered statistically significant. Statistical significance was examined by two-sided tests, and statistical analyses were performed with JMP version 5.1 software (SAS Institute, Cary, NC).

Results

The characteristics of the 3906 study subjects are shown in Table I. Subjects with obesity were younger and exhibited a higher prevalence of hypertension, hypercholesterolemia, and diabetes mellitus compared with the controls. Systolic and diastolic blood pressure, the serum concentrations of total cholesterol and triglycerides, the fasting plasma concentration of glucose, and the serum level of glycosylated hemoglobin were higher, and the serum concentration of high density lipoprotein-cholesterol was lower, in the subjects with obesity than in the controls. Comparison of genotype distributions with the Chi-square test revealed that nine polymorphisms were related (P<0.05) to the prevalence of obesity (Table II). These polymorphisms were further analyzed for their possible association with obesity.

Multivariable logistic regression analysis with adjustment for age, sex, and the prevalence of smoking revealed that the -30G \rightarrow A polymorphism of the glucokinase gene (*GCK*, dominant model), the -240A \rightarrow T polymorphism of the

ACE (0=AA, 1=AT=TT)	GCK (0=GG, 1=GA=AA)	ESR1 (0=TT=TG, 1=GG)	No. of subjects (obesity/controls)	OR (95% CI)	Р
1	0	1	45/173	0.45 (0.31-0.64)	0.00001
1	1	1	23/76	0.51 (0.31-0.82)	0.00750
0	1	0	123/328	0.65 (0.50-0.83)	0.00070
1	1	0	189/479	0.68 (0.55-0.84)	0.00050
1	0	0	425/955	0.77 (0.65-0.92)	0.00480
0	1	1	18/39	0.80	0.44420
0	0	1	44/89	0.87	0.46600
0	0	0	329/571	1.00	

Table VI. Assessment of genetic risk for obesity with three combined genotypes.

OR, odds ratio; CI, confidence interval. Multivariable logistic regression analysis was performed with adjustment for age, sex, and the prevalence of smoking.

angiotensin-converting enzyme gene (*ACE*, dominant and additive 1 models), and the -482C \rightarrow T polymorphism of the apolipoprotein C-III gene (*APOC3*, dominant and additive 1 models) were significantly (P<0.01) associated with the prevalence of obesity (Table III). In addition, the -1989T \rightarrow G polymorphism of the estrogen receptor α gene (*ESR1*, recessive model) was almost significantly associated with obesity. The -482T allele of *APOC3* represented a risk factor for obesity, whereas the -30A allele of *GCK*, the -240T allele of *ACE*, and the -1989G allele of *ESR1* were protective against this condition. The genotype distributions of the nine identified polymorphisms were in Hardy-Weinberg equilibrium in both the controls and the subjects with obesity (Table IV).

We next performed a stepwise forward selection procedure to examine the effects of genotypes for these polymorphisms, age, sex, and smoking status on obesity (Table V). Age, *ACE* genotype (dominant model), *GCK* genotype (dominant model), and *ERS1* genotype (recessive model), in descending order of statistical significance (P<0.01), each independently affected the prevalence of obesity.

Finally, we calculated the odds ratio, 95% confidence interval, and P value for combined genotypes in assessment of the genetic risk for obesity. Combined genotype analysis of three polymorphisms (-240A \rightarrow T in ACE, -30G \rightarrow A in GCK, and -1989T \rightarrow G in ESR1) revealed that a lowest odds ratio of 0.45 was obtained for the combined genotype of AT or TT for ACE, GG for GCK, and GG for ESR1 in comparison with the combined genotype of AA for ACE, GG for GCK, and TT or TG for ESR1 (Table VI).

Discussion

We have examined the relations of 147 polymorphisms in 124 candidate genes to obesity. Our large-scale association study with 3906 subjects revealed that the $-240A \rightarrow T$ polymorphism of *ACE*, the $-30G \rightarrow A$ polymorphism of *GCK*, and the $-1989T \rightarrow G$ polymorphism of *ESR1* were significantly associated with the prevalence of obesity in a Japanese population. Combined genotype analysis of these three polymorphisms yielded a lowest odds ratio of 0.45 for the predisposition to obesity.

The renin-angiotensin system of adipose tissue plays an important role in adipocyte growth and differentiation through the action of angiotensin II (12,13). In addition, epidemiologic studies have demonstrated associations between the plasma concentration of angiotensinogen (14,15), plasma renin activity (16), or plasma ACE activity (17) with BMI. In adult white men, homozygosity for the D allele of an insertion/deletion (I/D) polymorphism in intron 16 of ACE was associated with a greater prevalence of age-related abdominal adiposity and with a greater tendency to become overweight during 20 years of follow-up, consistent with a role for the local renin-angiotensin system in adipose tissue metabolism and, more generally, with a genetic influence on the control of fat deposition (18). The I/D polymorphism of ACE was also associated with obesity and abdominal fat deposition in subjects with coronary heart disease; subjects with this condition and the D allele showed a higher prevalence of obesity and abdominal fat deposition as well as higher values for weight and waist circumference (19). A haplotype in the promoter region of ACE was transmitted preferentially from parents to offspring who became obese among black populations in both the United States and Nigeria, suggesting that ACE polymorphisms may influence the development of weight gain (20). We have now shown that the -240A \rightarrow T polymorphism of ACE was significantly associated with the prevalence of obesity, while the T allele protected against this condition. Our results are thus consistent with the previous observations that ACE polymorphisms are related to obesity.

Glucokinase is expressed in pancreatic β cells and hepatocytes, its expression being controlled by two tissue-specific promoters (21). Pancreatic glucokinase serves as the sensor for glucose in the regulation of insulin secretion (22). Mutations of *GCK* account for 10-50% of cases of maturityonset diabetes of the young (22). A-30G \rightarrow A polymorphism located in the β cell-specific promoter of *GCK* was shown to be associated with reduced β cell function and impaired glucose tolerance in Japanese (23,24). We have now shown that this polymorphism is associated with obesity, with the *A* allele being protective against this condition. The mechanisms responsible for the association of the *A* variant with reduced β cell function and impaired glucose tolerance (23,24) as well as with a reduced risk of obesity (our study) remain to be determined. It is possible that the -30G→A polymorphism of *GCK* is in linkage disequilibrium with other polymorphisms of nearby genes which are actually responsible for obesity.

A lack of ESR1 resulted in white adipocyte hyperplasia and hypertrophy, insulin resistance, and glucose intolerance in both sexes of mice (25). Estrogen-ESR1 signaling thus plays an important role in white adipose tissue of males and females; obesity in ESR1-deficient male mice resulted from reduced energy expenditure rather than increased energy intake. Two single nucleotide polymorphisms have been identified in the first intron of ESR1: a T \rightarrow C polymorphism that is recognized by the restriction endonuclease Pvu II and an A \rightarrow G polymorphism that is recognized by Xba I [A and G alleles correspond to the presence (x allele) and absence (Xallele) of the restriction site, respectively]. The GG (XX) genotype was found to be significantly more frequent among subjects with type 2 diabetes mellitus and android-type obesity than in healthy individuals (26). The GG(XX)genotype of the Xba I polymorphism was also shown to contribute to the development of android-type fat distribution in middle-aged and premenopausal Japanese women (27). We have now shown that the -1989T \rightarrow G polymorphism of ESR1 was significantly associated with the prevalence of obesity, with the G allele protecting against this condition. The -1989T \rightarrow G polymorphism is in linkage disequilibrium with the Xba I polymorphism in Japanese individuals, with the G allele of the former polymorphism being associated with the A(x) allele of the latter (28). The previous observations that the GG(XX) genotype is related to android-type obesity are thus consistent with our present results.

Given the multiple comparisons of genotypes with obesity in the present study, we adopted a strict criterion (P<0.01) for the statistical significance of association. It is not possible, however, to completely exclude potential statistical errors such as false positives. It is also possible that one or more of the polymorphisms associated with obesity in our study are in linkage disequilibrium with polymorphisms of other nearby genes that are actually responsible for the development of this condition. Furthermore, the relevance of the identified polymorphisms to gene transcription or to protein structure or function was not determined in the present study. Despite these limitations, our present results suggest that ACE, GCK, and ESR1 are susceptibility loci for obesity in the Japanese population. Determination of combined genotypes for these polymorphisms may prove informative for assessment of the genetic factors for obesity and may contribute to the personalized prevention of this condition.

Acknowledgments

This work was supported in part by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology of Japan (no. 15209021, to Y.Y.) as well as by a grant from Gifu Prefectural Science and Technology Promotion Center (to Y.Y.). In addition to the authors, the following investigators and Japanese institutions participated in the study: Y. Matsuno and M. Tomita (Gifu Prefectural Gifu Hospital, Gifu); T. Hibino and M. Oguri (Gifu Prefectural Tajimi Hospital, Tajimi); S. Tanihata (Gifu Prefectural Gero Hotspring Hospital, Gero); N. Metoki (Reimeikyo Rehabilitation Hospital, Minamitsugaru); and nursing and laboratory staff of the participating hospitals.

References

- 1. Comuzzie AG and Allison DB: The search for human obesity genes. Science 280: 1374-1377, 1998.
- 2. Hager J, Dina C, Francke S, *et al*: A genome-wide scan for human obesity genes reveals a major susceptibility locus on chromosome 10. Nat Genet 20: 304-308, 1998.
- 3. Lee JH, Reed DR, Li WD, *et al*: Genome scan for human obesity and linkage to markers in 20q13. Am J Hum Genet 64: 196-209, 1999.
- 4. Feitosa MF, Borecki IB, Rich SS, *et al*: Quantitative-trait loci influencing body-mass index reside on chromosomes 7 and 13: the National Heart, Lung, and Blood Institute Family Heart Study. Am J Hum Genet 70: 72-82, 2002.
- Stone S, Abkevich V, Hunt SC, et al: A major predisposition locus for severe obesity, at 4p15-p14. Am J Hum Genet 70: 1459-1468, 2002.
- 6. Montague CT, Farooqi IS, Whitehead JP, *et al*: Congenital leptin deficiency is associated with severe early-onset obesity in humans. Nature 387: 903-908, 1997.
- Jackson RS, Creemers JW, Ohagi S, *et al*: Obesity and impaired prohormone processing associated with mutations in the human prohormone convertase 1 gene. Nat Genet 16: 303-306, 1997.
 Clement K, Vaisse C, Lahlou N, *et al*: A mutation in the human
- Clement K, Vaisse C, Lahlou N, *et al*: A mutation in the human leptin receptor gene causes obesity and pituitary dysfunction. Nature 392: 398-401, 1998.
- 9. Vaisse C, Clement K, Guy-Grand B and Froguel P: A frameshift mutation in human MC4R is associated with a dominant form of obesity. Nat Genet 20: 113-114, 1998.
- Kanazawa M, Yoshiike N, Osaka T, Numba Y, Zimmet P and Inoue S: Criteria and classification of obesity in Japan and Asia-Oceania. Asia Pac J Clin Nutr 11: S732-S737, 2002.
- Itoh Y, Mizuki N, Shimada T, *et al*: High-throughput DNA typing of HLA-A, -B, -C, and -DRB1 loci by a PCR-SSOP-Luminex method in the Japanese population. Immunogenetics 57: 717-729, 2005.
- 12. Darimont C, Vassaux G, Ailhaud G and Negrel R: Differentiation of preadipose cells: paracrine role of prostacyclin upon stimulation of adipose cells by angiotensin-II. Endocrinology 135: 2030-2036, 1994.
- Jones BH, Standridge MK and Moustaid N: Angiotensin II increases lipogenesis in 3T3-L1 and human adipose cells. Endocrinology 138: 1512-1519, 1997.
- Umemura S, Nyui N, Tamura K, et al: Plasma angiotensinogen concentrations in obese patients. Am J Hypertens 10: 629-633, 1997.
- Cooper R, Forrester T, Ogunbiyi O and Muffinda J: Angiotensinogen levels and obesity in four black populations. ICSHIB Investigators. J Hypertens 16: 571-575, 1998.
- 16. Licata G, Scaglione R, Ganguzza A, *et al*: Central obesity and hypertension. Relationship between fasting serum insulin, plasma renin activity, and diastolic blood pressure in young obese subjects. Am J Hypertens 7: 314-320, 1994.
- 17. Cooper R, McFarlane-Anderson N, Bennett FI, *et al*: ACE, angiotensinogen and obesity: a potential pathway leading to hypertension. J Hum Hypertens 11: 107-111, 1997.
- Strazzullo P, Iacone R, Iacoviello L, et al: Genetic variation in the renin-angiotensin system and abdominal adiposity in men: the Olivetti Prospective Heart Study. Ann Intern Med 138: 17-23, 2003.
- Olivetti Prospective Heart Study. Ann Intern Med 138: 17-23, 2003.
 19. Riera-Fortuny C, Real JT, Chaves FJ, *et al*: The relation between obesity, abdominal fat deposit and the angiotensin-converting enzyme gene I/D polymorphism and its association with coronary heart disease. Int J Obes 29: 78-84, 2005.
- Kramer H, Wu X, Kan D, *et al*: Angiotensin-converting enzyme gene polymorphisms and obesity: an examination of three black populations. Obes Res 13: 823-828, 2005.
- Postic C, Shiota M, Niswender KD, *et al*: Dual roles for glucokinase in glucose homeostasis as determined by liver and pancreatic β cell-specific gene knock-outs using Cre recombinase. J Biol Chem 274: 305-315, 1999.
- Fajans SS, Bell GI and Polonsky KS: Molecular mechanisms and clinical pathophysiology of maturity-onset diabetes of the young. N Engl J Med 345: 971-980, 2001.

- 23. Stone LM, Kahn SE, Fujimoto WY, Deeb SS and Porte Jr D: A variation at position -30 of the β-cell glucokinase gene promoter is associated with reduced β-cell function in middle-aged Japanese-American men. Diabetes 45: 422-428, 1996.
- Yamada K, Yuan X, Ishiyama S, *et al*: Clinical characteristics of Japanese men with glucokinase gene B-cell promoter variant. Diabetes Care 20: 1159-1161, 1997.
- 25. Heine PA, Taylor JA, Iwamoto GA, Lubahn DB and Cooke PS: Increased adipose tissue in male and female estrogen receptor-α knockout mice. Proc Natl Acad Sci USA 97: 12729-12734, 2000.
- 26. Speer G, Cseh K, Winkler G, et al: Vitamin D and estrogen receptor gene polymorphisms in type 2 diabetes mellitus and in android type obesity. Eur J Endocrinol 144: 385-389, 2001.
- 27. Okura T, Koda M, Ando F, Niino N, Ohta S and Shimokata H: Association of polymorphisms in the estrogen receptor α gene with body fat distribution. Int J Obes Relat Metab Disord 27: 1020-1027, 2003.
- 28. Lu H, Higashikata T, Inazu A, *et al*: Association of estrogen receptor- α gene polymorphisms with coronary artery disease in patients with familial hypercholesterolemia. Arterioscler Thromb Vasc Biol 22: 817-823, 2002.

Supplementary Table I. The 147 polymorphisms examined in the present study.

Locus	Gene	Symbol	Polymorphism	dbSNP ^a
1p36.3	5,10-Methylenetetrahydrofolate reductase	MTHFR	677C→T (Ala222Val)	rs1801133
1p36.2	Natriuretic peptide precursor A	NPPA	664G→A (Val7Met)	rs5063
1p36	Urotensin II	UTS2	347G→A (Ser89Asn)	rs2890565
1p34.2	Polycystic kidney disease 1-like	PKD1-like	G→A (Gly243Asp)	rs1635712
1p34.1-p32	Proprotein convertase, subtilisin/kexin-type, 9	PCSK9	23968A→G (Glu670Gly)	rs505151
1p22-p21	Coagulation factor III	F3	-603A→G	rs1361600
1p22.1	Glutamate-cysteine ligase, modifier subunit	GCLM	-588C→T	(U72210)
1q21-q23	C-reactive protein, pentraxin-related	CRP	1444C→T	rs1130864
1q23-q25	Selectin E	SELE	561A→C (Ser128Arg)	rs5361
1q23-q25	Selectin P	SELP	G→T (Val640Leu)	rs6133
1q25	Tumor necrosis factor ligand superfamily, member 4	TNFSF4	A→G	rs3850641
1q31-q32	Interleukin 10	IL10	-819T→C	rs1800871
1q31-q32	Interleukin 10	IL10	-592A→C	rs1800872
1q42-q43	Angiotensinogen	AGT	-6G→A	rs5051
2q14	Interleukin 1-ß	IL1B	-511C→T	rs16944
2q36	Insulin receptor substrate 1	IRS1	3931G→A (Gly972Arg)	rs1801278
2q37.3	Calpain 10	CAPN10	4852G→A	rs3792267
3pter-p21	Chemokine, CX3C motif, receptor 1	CX3CR1	926C→T (Thr280Met)	rs3732378
3p25	Peroxisome proliferator-activated receptor-y	PPARG	-681C→G	rs10865710
3p25	Peroxisome proliferator-activated receptor- γ	PPARG	34C→G (Pro12Ala)	rs1801282
3p22	Transforming growth factor-β receptor, type II	TGFBR2	1167C→T (Asn389Asn)	rs2228048
3p22-p21.3	Phospholipase C, δ -1	PLCD1	864G→A (Arg257His)	rs933135
3p21.3	Glutathione peroxidase	GPX1	C→T (Pro198Leu)	rs1050450
3p21	Chemokine, CC motif, receptor 2	CCR2	190G→A (Val64Ile)	rs1799864
3p21	Chemokine, CC motif, receptor 5	CCR5	59029G→A	rs1799987
3q21-q25	Angiotensin receptor 1	AGTR1	1166A→C	rs5186
3q21-q25	Angiotensin receptor 1	AGTR1	G→A (Ala163Thr)	rs12721226
3q24-q25	Purinergic receptor P2Y, G protein-coupled, 12	P2RY12	744T→C	(NC_000003)
3q26.1-q26.2	Butyrylcholinesterase	BCHE	1615G→A (Ala539Thr)	rs1803274
3q26.3-q27	Thrombopoietin	THPO	5713A→G	rs6141
3q27	Adipocyte, C1Q, and collagen domain containing	ACDC	-11377C→G	rs266729
3q28	Adaptor-related protein complex 2, MU-1 subunit	AP2M1	62G→T	rs1501299
4p15.1	Peroxisome proliferator-activated receptor- γ , coactivator 1	PPARGC1	1564G→A (Gly482Ser)	rs8192678
4q22-q24	Microsomal triglyceride transfer protein, 88-kD	MTP	-493G→T	rs1800591
4q26-q28	Annexin A5	ANXA5	-1C→T	rs11575945
4q28	Fibrinogen, B ß polypeptide	FGB	-455G→A	rs1800790
4q28	Fibringen, B ß polypeptide	FGB	8059G→A (Arg448Lys)	rs4220
4q28-q31	Fatty acid-binding protein 2	FABP2	2445G→A (Ala54Thr)	rs1799883
4q31	Uncoupling protein 1	UCP1	-112A→C	rs10011540
4q31.22	Endothelin receptor, type A	EDNRA	-231A→G	rs1801708
5q12	Phosphodiesterase 4D, cAMP-specific	PDE4D	TAAA→-(3'-UTR)	rs3839219
5q13	Thrombospondin IV	THBS4	1186G→C (Ala387Pro)	rs1866389
5q13	Phosphatidylinositol 3-kinase, regulatory, 1	PIK3R1	1020G→A (Met326Ile)	rs3730089
5q23-q31	Integrin, α-2	ITGA2	1648A→G (Lys505Glu)	rs10471371
5q32-q34	B-2-adrenergic receptor	ADRB2	46A→G (Arg16Gly)	rs1042713
5q32-q34	ß-2-adrenergic receptor	ADRB2	79C→G (Gln27Glu)	rs1042714
. –				

Supplementary Table I. Continued.

Locus	Gene	Symbol	Polymorphism	dbSNP ^a
5q33-qter	Factor XII	F12	46C→T	rs17876008
6p24-p23	Endothelin 1	EDN1	5665G→T (Lys198Asn)	rs5370
6p21.3	Lymphotoxin-a	LTA	804C→A (Thr26Asn)	rs2229093
6p21.3	Tumor necrosis factor	TNF	-863C→A	rs1800630
6p21.3	Tumor necrosis factor	TNF	-850C→T	rs1799724
6p21.3	Tumor necrosis factor	TNF	-238G→A	rs361525
6p21.3	Advanced glycosylation end product-specific receptor	AGER	$268G \rightarrow A$ (Glv82Ser)	rs2070600
$6n^{21} 2 n^{21} 1$	Peroxisome proliferator-activated receptor-	PPARD	294T→C	rs2016520
6p21.2 p21.1	Phospholipase A2 group VII	PI A2G7	994G T (Val279Phe)	rs16874954
6p21.2-p12	Solute carrier family 26 (sulfate transporter) member 8	SI C2648	$\Delta = G$ (Ile639Val)	rs2205852
6p12	Glutamete systeme ligaça, estalutia subunit	CCLC	120C T	rs17883001
6p12	Vacaular and thalial growth factor	VECE	-129C-1	ro2025020
6~22 ~22	Vascular endomenar growth factor	VEGF ENDD1	$950C \rightarrow 1$	183023039
6q22-q25	Ectonucleotide pyrophosphatase/phosphodiesterase 1		9/A→C (Lys121GIII)	181044498
6q25.1	Estrogen receptor 1	ESRI	-19891→G	rs20/1454
6q27	Thrombospondin II	THBS2	39491→G	rs8089
7p21	Interleukin 6	IL6	-572G→C	rs1800796
7p15-p13	Glucokinase	GCK	-30G→A	rs1799884
7q11.2	Syntaxin 1A	STX1A	205T→C (Asp68Asp)	rs2293485
7q11.2	CD36 antigen	CD36	30294G→C	rs1049673
7q11.23-q21.11	Protein phosphatase 1, regulatory subunit 3A	PPP1R3A	2647G→T (Ser883Arg)	(X78578)
7q11.23-q21.11	Protein phosphatase 1, regulatory subunit 3A	PPP1R3A	2711G→T (Tyr905Asp)	rs1799999
7q21.3	Paraoxonase 1	PON1	-162G→A	rs705381
7q21.3	Paraoxonase 1	PON1	532A→G (Arg160Gly)	rs13306698
7q21.3	Paraoxonase 1	PONI	584G→A (Gln192Arg)	rs662
7q21.3	Paraoxonase 2	PON2	475C→G (Ala148Gly)	rs11545941
7q21.3-q22	Plasminogen activator inhibitor 1	PAII	-668/4G→5G	rs1799768
7g21.3-g22	Plasminogen activator inhibitor 1	PAI1	A→G (Tvr243Cvs)	rs13306846
7q32	Paired box gene 4	PAX4	567C→T (Arg121Trp)	(AF043978)
7a36	Nitric oxide synthese 3	NOS3	-786T→C	rs2070744
8n22	Lipoprotein linase	LPL	1595C→G (Ser447Stop)	rs328
8p21-n12	Enpoprotein inpuse Enoxide hydrolase 2 cytosolic	EPHX2	$G \rightarrow A$ (Arg287Gln)	rs751141
8p12	Plasminogen activator, tissue	PI AT	-7351C-T	rs2020918
8p12 p11 2	ß 3 adrenergie recentor	ADRB3	$190T_{\rm vC}$ (Trp64 Årg)	rs/00/
8p12-p11.2	BacO protain like 2	RECOLD	$47765T \cdot C (Cucl_{267} \Lambda rg)$	rs1346044
$0_{a}22_{a}21$	ATD hinding accepte subfamily A member 1	APCA1	$1051C \land (Arg210 yrg)$	131340044
9q22-q31	ATP-binding cassette, subfamily A, member 1	ABCAI	1051G→A (Arg219Lys)	182230800
9q22-q31	A IP-binding cassette, subfamily A, member 1	ABCAI	$2583A \rightarrow G$ (He823Met)	rs4149313
9q34.1	Endoglin	ENG	1691C→G (Asp366His)	rs1800956
9q34.2-q34.3	Prostaglandin D2 synthase, brain	PIGDS	4111A→C	rs6926
10q11.2	Arachidonate 5-lipoxygenase	ALOX5	G→A (Glu254Lys)	rs2228065
10q24-q26	B-1-adrenergic receptor	ADRBI	1165G→C (Gly389Arg)	rs1801253
11p15.5	Insulin	INS	-23T→A	rs689
11p15.1	Potassium channel, inwardly rectifying, subfamily J, member 11	KCNJ11	276A→G (Glu23Lys)	rs5219
11p15.1	ATP-binding cassette, subfamily C, member 8	ABCC8	3857G→A (Arg1273Arg)	rs4148643
11q13	Uncoupling protein 2	UCP2	-866G→A	rs659366
11q13	Uncoupling protein 3	UCP3	-55C→T	rs1800849
11q22.2-q22.3	Matrix metalloproteinase 12	MMP12	-82A→G	rs2276109
11q22-q23	Matrix metalloproteinase 1	MMP1	-1607/1G→ 2G	rs1799750
11q23	Apolipoprotein A-I	APOA1	-75G→A	rs670
11q23	Apolipoprotein A-I	APOA1	84T→C	rs5070
1q23	Apolipoprotein A-V	APOA5	-1131T→C	rs662799
11a23	Apolipoprotein C-III	APOC3	-482C→T	rs2854117
11a23	Apolipoprotein C-III	APOC3	1100C→T	rs4520
11a23	Matrix metalloproteinase 3	MMP3	-1171/5464	rs3025058
11a23	Matrix metalloproteinase 3	MMD?	$A = G \left(I = y e^{45C^{1}y} \right)$	re670620
11022.2 ~25	Host shock 70 kD protoin 8	USDAQ	$A \rightarrow O(Lys+JOIU)$	rs1009429
11q23.3-q23	Cuorina nucleatida hindina mateira 0.2	CND2	-11UA→C	181008438
12p13	Guanne nucleotide-binding protein, B-3	GNB3	$\delta_{23} \subset I$ (splice variant)	rs5443
12p13-p12	Low density lipoprotein, oxidized, receptor 1	OLRI	501G→C (Lys16/Asn)	rs11053646
13q12.1	Insulin promoter factor 1	IPFI	-108/3G→4G	(\$82168)

Supplementary Table I. Continued.

Locus	Gene	Symbol	Polymorphism	dbSNP ^a
13q14.11	Carboxypeptidase B2, plasma	CPB2	529G→A (Ala147Thr)	rs3742264
13q14.11	Carboxypeptidase B2, plasma	CPB2	T→C (Ile347Thr)	rs1926447
13q34	Factor VII	F7	11496G→A (Arg353Gln)	rs6046
13q34	Protein Z	PROZ	79G→A	rs3024735
14q11.2	Cathepsin G	CTSG	2108A→G (Asn125Ser)	(J04990)
14q32.1	α-1-antichymotrypsin	AACT	50G→A (Ala15Thr)	rs4934
14q32.1-q32.2	Bradykinin receptor B2	BDKRB2	C→T (Arg14Cys)	rs1046248
15q21-q23	Lipase, hepatic	LIPC	-250G→A	rs2070895
16q13	Matrix metalloproteinase 2	MMP2	-1306C→T	rs243865
16q21	Cholesteryl ester transfer protein, plasma	CETP	-629C→A	rs1800775
16q21	Cholesteryl ester transfer protein, plasma	CETP	1061A→G (Ile405Val)	rs5882
16q24	Cytochrome b (-245), α subunit	СҮВА	242C→T (His72Tyr)	rs4673
17pter-p12	Glycoprotein Ib, platelet, α polypeptide	GP1BA	-5T→C	rs2243093
17pter-p12	Glycoprotein Ib, platelet, α polypeptide	GP1BA	1018C→T (Thr145Met)	rs6065
17p13	Chemokine, CXC motif, ligand 16	CXCL16	C→T (Ala181Val)	rs2277680
17p11.2	Sterol regulatory element-binding transcription factor 1	SREBF1	-36G→ -	(AX977070)
17q11.2-q12	Chemokine, CC motif, ligand 5	CCL5	-28C→G	rs2280788
17q11.2-q12	Chemokine, CC motif, ligand 5	CCL5	-403G→A	rs2107538
17q21.1-q21.2	Chemokine, CC motif, ligand 11	CCL11	G→A (Ala23Thr)	rs3744508
17q23	Angiotensin I- converting enzyme	ACE	-240A→T	rs4291
17q23	Platelet-endothelial cell adhesion molecule 1	PECAM1	1454C→G (Leu125Val)	rs668
17q23-qter	Apolipoprotein H	APOH	341G→A (Ser88Asn)	rs1801692
18q21.1	Lipase, endothelial	LIPG	584C→T (Thr111Ile)	rs2000813
19p13.3-p13.2	Intercellular adhesion molecule 1	ICAM1	1462G→A (Glu469Lys)	rs5498
19p13.2	Insulin receptor	INSR	7067365C→A	rs2860172
19p13.2	Low density lipoprotein receptor	LDLR	1184G→A (Ala370Thr)	rs11669576
19q13.1	Transforming growth factor, B-1	TGFB1	-509C→T	rs1800469
19q13.2	Apolipoprotein E	APOE	-219G→T	rs405509
19q13.2	Apolipoprotein E	APOE	3932T→C (Cys112Arg)	rs429358
19q13.2	Apolipoprotein E	APOE	4070C→T (Arg158Cys)	rs7412
19q13.3	Glycogen synthase 1	GYS1	260A→G (Met416Val)	rs5447
19q13.4	Glycoprotein VI, platelet	GP6	13254T→C (Ser219Pro)	rs1613662
20p11.2	Thrombomodulin	THBD	2136C→T (Ala455Val)	rs1042579
20q11.2-q13.1	Matrix metalloproteinase 9	MMP9	855G→A (Arg279Gln)	rs2664538
20q13.11-q13.13	Prostaglandin I2 synthase	PTGIS	1117C→A	rs6095558
20q13.31	Phosphoenolpyruvate carboxykinase 1, soluble	PCK1	-232C→G	rs2071023
21q22.3	Integrin, ß-2	ITGB2	1323C→T	rs235326
22q11.2	Catechol-O-methyltransferase	COMT	G→A (Val158Met)	rs4680
22q12	Heme oxygenase 1	HMOX1	-413T→A	rs2071746
22q12	Heme oxygenase 1	HMOX1	99G→C (Asp7His)	rs2071747
22q12-q13	Lectin, garactoside-binding, soluble, 2	LGALS2	3279C→T (intron 1)	rs7291467
Xq22-q23	Angiotensin II receptor, type 2	AGTR2	1675G→A	rs1403543
Xq22-q23	Angiotensin II receptor, type 2	AGTR2	3123C→A	rs11091046

^aIn the event that rs numbers in dbSNP were not detected, NCBI GenBank accession numbers are shown in parentheses.

Supplementary Table II. Primers, probes, and other PCR conditions for genotyping	
Supplementary Table II. Primers, probes, and other PCR conditions for geno	typing
Supplementary Table II. Primers, probes, and other PCR conditions for	geno
Supplementary Table II. Primers, probes, and other PCR conditions	foi
Supplementary Table II. Primers, probes, and other PCR	conditions
Supplementary Table II. Primers, probes, and other P0	CR
Supplementary Table II. Primers, probes, and other	P
Supplementary Table II. Primers, probes, and	other
Supplementary Table II. Primers, probes, a	and
Supplementary Table II. Primers,	probes, a
Supplementary Table II.	Primers,
Supplementary Table	Π.
Supplementary	Table
	Supplementary

Gene Symbol	Polymorphism	Sense primer	Antisense primer	Probe 1	Probe 2	Annealing (°C)	Cycles (times)
GCK	-30G→A	ATggTCAgCCCTgCTgAggC	ggCATTTCCTgCTCCAgCCAg	AggCTTACTgTgCTCCTgA	AggCTTACTgTgTTCCTgA	60	50
ACE	-249A→T	gCTCgggTgTTCCggCAAACT	ggCTCCCgCAgAggAAgCTg	ggTCCCCATCTTCAAAAgAgAgAg	CTCCTCTTTAgAAgATggg	09	50
APOC3	-482C→T	AggggCTgTgAgAgCTCAgC	AgggCTTCTTCAgACTTgAgA	ggCACAgAAgACCAggCATCA	gCCACTgATgCCCggTCTTC	09	50
GCLC	-129C→T	gCATTTTgATATgTCgCgTTTgC	CggAggCgTggCCTgAAgC	CTCAACTgCgACCCAATCA	gggTgATTgggTCACAgTTgAg	09	50
ESRI	-1989T→G	CCgAATCCCTgCCATTCCACC	ggAAggAATgTgCTCgCATgT	ACATCCACACACTCTCTgC	${\tt TAggCAgAgAgCgTgTgg}$	09	50
STXIA	205T→C (Asp68Asp)	AAgCggAAgCACAgTgCCATC	gAggCTTgTgggggCCTgAAAC	CACACTCACTCTCATCggg	CCAACCCCgACgAgAgTgA	09	50
IRSI	3931G→A (Gly972Arg)	AggAgGACACTgggggTCgAg	ggACAACTCATCTgCATggTCAT	TgCTAgCAgCCCCgggAgg	CTgCACCTCCCAgggCTgCTA	09	50
APOAI	-75G→A	ggACAgAgCTgATCCTTgAACT	gCAgggCCTATTTATgTCTgCA	TAAgCCCAgCCCCggCCCT	TAAgCCCAgCCCTggCCCT	09	50
F12	46C→T	ggCAgCTTgACCAATCTCTATT	TCCTggTTCCCACAgCACTCA	CAACggACggACgCCATgAg	AgCCCTCATggCATCCgTCC	09	50