Genetic risk for atherothrombotic cerebral infarction in individuals stratified by sex or conventional risk factors for atherosclerosis

SACHIYO YAMAGUCHI¹, YOSHIJI YAMADA^{1,2}, NORIFUMI METOKI³, HIDEMI YOSHIDA⁴, KEI SATOH⁴, SAHOKO ICHIHARA¹, KIMIHIKO KATO⁵, TAKASHI KAMEYAMA⁵, KIYOSHI YOKOI⁵, HITOSHI MATSUO⁶, TOMONORI SEGAWA⁶, SACHIRO WATANABE⁶ and YOSHINORI NOZAWA²

¹Department of Human Functional Genomics, Life Science Research Center, Mie University, Tsu;

²Gifu International Institute of Biotechnology, Kakamigahara, Japan; ³Department of Internal Medicine,

Hirosaki Stroke Center, Hirosaki; ⁴Department of Vascular Biology, Institute of Brain Science,

Hirosaki University School of Medicine, Hirosaki; ⁵Department of Cardiovascular Medicine and Department of Neurology,

Gifu Prefectural Tajimi Hospital, Tajimi; ⁶Department of Cardiology, Gifu Prefectural Gifu Hospital, Gifu, Japan

Received May 22, 2006; Accepted July 20, 2006

Abstract. The aim of the present study was to assess the genetic risk for atherothrombotic cerebral infarction (ACI) in men and women separately as well as in individuals with or without conventional risk factors for atherosclerosis and thereby to contribute to the personalized prevention of ACI. The study population comprised 2705 unrelated Japanese individuals (1244 men, 1461 women), including 636 subjects (372 men, 264 women) with ACI. Subjects with ACI and controls either had or did not have conventional risk factors for atherosclerosis, including hypertension, hypercholesterolemia, and diabetes mellitus. The genotypes for 202 polymorphisms of 152 candidate genes were determined by a method that combines polymerase chain reaction and sequence-specific oligonucleotide probes with suspension array technology. Multivariable logistic regression analysis and a stepwise forward selection procedure revealed that 11 different polymorphisms were significantly (P<0.005) associated with ACI in women or men or in individuals with or without hypertension, hypercholesterolemia, or diabetes mellitus: the 584C \rightarrow T polymorphism of *LIPG*, 5665G \rightarrow T of *EDN1*, and G \rightarrow A of CCL11 in women; 677C \rightarrow T of MTHFR, 1323C \rightarrow T of ITGB2, 3932T→C of APOE, and -231A→G of EDNRA in men; -572 G \rightarrow C of *IL6* in hypertensive individuals; -403G \rightarrow A of CCL5 and $G \rightarrow A$ of COMT in individuals with hypercholesterolemia; and 3932T \rightarrow C of APOE and A \rightarrow G of TNFSF4 in diabetic individuals. Polymorphisms associated with ACI may thus differ between women and men as well as among individuals with different risk factors. Stratification of subjects on the basis of sex or conventional risk factors for atherosclerosis may therefore be important in order to achieve the personalized prevention of ACI with the use of genetic information.

Introduction

Stroke is the third most common cause of death after cancer and heart disease and is the leading cause of acquired disability in adults (1). In the United States, approximately 700,000 individuals suffer a new or recurrent stroke and nearly 160,000 die from stroke-related causes each year. The total number of individuals who have experienced a stroke is 5.5 million (2). In Japan, the prevalence of stroke is 1.4 million, with nearly 132,000 deaths from this condition occurring each year (Ministry of Health, Labor, and Welfare of Japan).

Ischemic stroke, which accounts for approximately 80% of all strokes, is a complex disorder. The main cause of ischemic stroke is atherothrombosis, with the principal and treatable risk factors including hypertension, hypercholesterolemia, and diabetes mellitus (3). In addition to these conventional risk factors, genetic variants are important in the pathogenesis of ischemic stroke (4,5). Recent genetic epidemiological studies have thus identified several genes related to the prevalence of stroke, including those for interleukin-6 (6,7), methylenetetrahydrofolate reductase (8,9), paraoxonase (10), phosphodiesterase 4D (11), 5-lipoxygenase activating protein (12), and cyclooxygenase 2 (13). However, the genetic determinants of ischemic stroke remain largely unknown.

We hypothesized that gene polymorphisms related to atherothrombotic cerebral infarction (ACI) might differ between women and men as well as among individuals with or without conventional risk factors for atherosclerosis. We have therefore performed an association study of 202

Correspondence to: Dr Yoshiji Yamada, Department of Human Functional Genomics, Life Science Research Center, Mie University, 1577 Kurima-machiya, Tsu, Mie 514-8507, Japan E-mail: yamada@gene.mie-u.ac.jp

Key words: polymorphism, genetics, ischemic stroke, atherothrombotic cerebral infarction, atherosclerosis, risk factor

		Women		Men				
Characteristic	ACI	controls	Р	ACI	controls	Р		
No. of subjects	264	1197		372	872			
Age (years)	68.6±12.2	62.8±12.0	< 0.0001	66.3±10.2	61.7±12.0	<0.0001		
BMI (kg/m ²)	23.7±3.5	23.5±3.2	0.3200	23.0±2.8	23.3±2.8	0.0780		
Smoking (%)	1.9	3.2	0.2400	22.6	32.5	0.0004		
Hypertension (%)	72.7	35.8	< 0.0001	66.9	45.3	<0.0001		
Hypercholesterolemia (%)	39.4	32.3	0.0275	30.9	23.1	0.0068		
Diabetes mellitus (%)	33.7	15.9	< 0.0001	42.7	22.4	< 0.0001		

Table I. Characteristics of male and female subjects with ACI and controls.

polymorphisms and ACI for women and men separately as well as for individuals with or without hypertension, hypercholesterolemia, or diabetes mellitus. Our aim was to assess the genetic risk for ACI in men and women as well as in individuals with or without conventional risk factors for atherosclerosis and thereby to contribute to the personalized prevention of ACI.

Materials and methods

Study population. The study population comprised 2705 unrelated Japanese individuals (1244 men, 1461 women) who either visited outpatient clinics of or were admitted to one of the participating hospitals (Gifu Prefectural Gifu, Tajimi, and Gero Hot Spring Hospitals; Hirosaki University Hospital; Reimeikyo Rehabilitation Hospital; and Yokohama General Hospital) between October 2002 and March 2005. A total of 636 consecutive subjects (372 men, 264 women) with ACI was enrolled in the study. The diagnosis of ischemic stroke was based on the occurrence of a new and abrupt focal neurological deficit, with neurological symptoms and signs persisting for more than 24 h; it was confirmed by positive findings in computed tomography or magnetic resonance imaging (or both) of the head. The type of stroke was determined according to the Classification of Cerebrovascular Diseases III (14). Individuals with cardiogenic embolic infarction, lacunar infarction, transient ischemic attack, hemorrhagic stroke, cerebrovascular malformations, brain tumors, or traumatic cerebrovascular diseases were excluded from the study, as were those with atrial fibrillation in the absence or presence of valvular heart disease.

The 2069 control subjects (872 men, 1197 women) visited outpatient clinics of the participating hospitals for an annual health checkup. They had no history of ischemic or hemorrhagic stroke or other cerebral diseases; of coronary heart disease, peripheral arterial occlusive disease, or other atherosclerotic diseases; or of other thrombotic, embolic, or hemorrhagic disorders.

Subjects with ACI and controls either had or did not have conventional risk factors for atherosclerosis, including hypertension (systolic blood pressure of \geq 140 mmHg or diastolic blood pressure of \geq 90 mmHg, or both), hypercholesterolemia (serum total cholesterol of \geq 5.72 mmol/l), diabetes mellitus (fasting blood glucose of \geq 6.93 mmol/l or hemoglobin A_{1c} of \geq 6.5%, or both), obesity [body mass index (BMI) of \geq 25 kg/ m²], and cigarette smoking (\geq 10 cigarettes daily). The study protocol complied with the Declaration of Helsinki and was approved by the Committees on the Ethics of Human Research of Mie University School of Medicine, Hirosaki University School of Medicine, Gifu International Institute of Biotechnology, and participating hospitals. Written informed consent was obtained from each participant.

Selection of polymorphisms. With the use of public databases, we selected 152 candidate genes that might be associated with ACI on the basis of a comprehensive overview of vascular biology; platelet function; leukocyte, lymphocyte, and monocyte-macrophage biology; coagulation and fibrinolysis cascades; neurological factors; as well as lipid, glucose, and homocysteine metabolism and other metabolic factors. We further selected 202 polymorphisms of these genes, most located in the promoter region, exons, or splice donor or acceptor sites of introns, that might be expected to result in changes in the function or expression of the encoded protein (15).

Genotyping of polymorphisms. Venous blood (7 ml) was collected into tubes containing 50 mmol/l EDTA (disodium salt), and genomic DNA was isolated with a kit (Genomix; Talent, Trieste, Italy). Genotypes of the 202 polymorphisms were determined (G&G Science, Fukushima, Japan) by a method that combines the polymerase chain reaction and sequence-specific oligonucleotide probes with the use of suspension array technology (Luminex 100; Luminex, Austin, TX). Detailed methodology for genotyping was described previously (16).

Statistical analysis. Clinical data were compared between subjects with ACI and controls by the unpaired Student's t-test. Qualitative data were compared by the Chi-square test. Allele frequencies were estimated by the gene counting method, and the Chi-square test was used to identify departure from Hardy-

		Dominant		Recessive		1	Additive 1	Additive 2	
Gene	Polymorphism	Р	OR (95% CI)	Р	OR (95% CI)	Р	OR (95% CI)	Р	OR (95% CI)
LIPG	584C→T (Thr111Ile)	0.0005	1.66 (1.25-2.21)	0.1356		0.0012	1.63 (1.21-2.19)	0.0335	1.93 (1.03-3.50)
CCL11	G→A (Ala23Thr)	0.0008	0.53 (0.36-0.76)	0.2374		0.0016	0.54 (0.37-0.78)	0.1944	
EDN1	5665G→T (Lys198Asn)	0.0003	1.69 (1.27-2.25)	0.1755		0.0008	1.67 (1.24-2.25)	0.0288	1.81 (1.05-3.04)
AKAP10	A→G (Ile646Val)	0.0080	0.66 (0.49-0.90)	0.0537		0.0276	0.70 (0.51-0.96)	0.0333	0.32 (0.09-0.82)
UTS2	G→A (Ser89Asn)	0.0175	1.42 (1.06-1.89)	0.2085		0.0058	1.15 (1.13-2.03)	0.3707	
IL6	-572G→C	0.2590		0.0033	1.56 (1.16-2.10)	0.7415		0.1198	
PTGDS	4111A→C	0.4035		0.0164	0.70 (0.52-0.94)	0.1808		0.5660	
ANXA5	-1C→T	0.1830		0.7426		0.3885		0.7417	
KCNJ11	A→G (Glu23Lys)	0.0058	1.93 (1.23-3.16)	0.0932		0.0154	1.83 (0.51-0.96)	0.0040	2.08 (1.28-3.48)

Table II. Multivariable logistic regression analysis of polymorphisms related to ACI in women.

OR, odds ratio; CI, confidence interval. Multivariable logistic regression analysis was performed with adjustment for age, BMI, and the prevalence of smoking, hypercholesterolemia, and diabetes mellitus. P values of <0.005 are shown in bold.

Weinberg equilibrium. In the initial screen, the genotype distribution of each autosomal polymorphism was compared by the Chi-square test (3x2) between subjects with ACI and controls. For gene polymorphisms located on the X chromosome, allele frequencies were compared by the Chi-square test (2x2). Polymorphisms related (P<0.05) to ACI were further examined by multivariable logistic regression analysis with adjustment for covariates (with the exception of that used for stratification of subjects), with ACI as a dependent variable and independent variables including age, sex (0: woman; 1: man), BMI, smoking status (0: nonsmoker; 1: smoker), metabolic variables (0: no history of hypertension, diabetes mellitus, or hypercholesterolemia; 1: positive history), and genotype of each polymorphism. Each genotype was assessed according to dominant, recessive, and additive (additive 1 and 2) genetic models, and the P value, odds ratio, and 95% confidence interval were calculated. Additive genetic models comprised two groups: heterozygotes versus wild-type homozygotes for the additive 1 model, and variant homozygotes versus wild-type homozygotes for the additive 2 model. We also performed a stepwise forward selection procedure to examine the effects of genotypes as well as of other covariates on ACI. Given the multiple comparisons of genotypes with ACI, we adopted the criterion of P<0.005 for significant association. For other clinical background data, a P value of <0.05 was considered statistically significant. Statistical significance was examined by two-sided tests, and statistical analyses were performed with JMP software version 5.1 (SAS Institute, Cary, NC).

Results

Association of polymorphisms with ACI in women or men. Characteristics of female and male subjects are shown in Table I. Among women, age and the prevalence of hypertension, hypercholesterolemia, and diabetes mellitus were greater in subjects with ACI than in controls. Among men, age and the prevalence of hypertension, hypercholesterolemia, and diabetes mellitus were greater, whereas the prevalence of smoking was lower, in subjects with ACI than in controls. The Chi-square test revealed that nine and 16 polymorphisms were related (P<0.05) to ACI in women and men, respectively (Supplementary Table I). These polymorphisms were further analyzed for their possible association with ACI. Multivariable logistic regression analysis with adjustment for age, BMI, and the prevalence of smoking, hypertension, hypercholesterolemia, and diabetes mellitus revealed that the 584C→T polymorphism of LIPG (dominant and additive 1 models), the G \rightarrow A polymorphism of CCL11 (dominant and additive 1 models), the 5665G-T polymorphism of EDN1 (dominant and additive 1 models), the -572G \rightarrow C polymorphism of *IL6* (recessive model), and the $A \rightarrow G$ polymorphism of KCNJ11 (additive 2 model) were significantly (P<0.005) associated with ACI for woman (Table II). For men, the 677C→T polymorphism of MTHFR (recessive and additive 2 models), the 1323C \rightarrow T polymorphism of *ITGB2* (dominant model), the T \rightarrow G polymorphism of THBS2 (additive 1 model), the $3932T \rightarrow C$ polymorphism of APOE (dominant and additive 1 models), and the -231A→G polymorphism of EDNRA (recessive model) were significantly associated with ACI (Table III). We also performed a stepwise forward selection procedure to examine the effects of genotypes for the genes related to ACI as well as of age, BMI, smoking, hypertension, hypercholesterolemia, and diabetes mellitus on the prevalence of ACI (Table IV). Each genotype was examined according to a dominant or recessive model on the basis of statistical significance in the multivariable logistic regression analysis. In descending order of statistical significance, hypertension, age, LIPG genotype (dominant model), EDN1 genotype (dominant model), CCL11 genotype (dominant model), and diabetes mellitus significantly and independently (P<0.005) affected the prevalence of ACI in women. In men, diabetes mellitus, age, hypertension, MTHFR genotype (recessive model), ITGB2 genotype (dominant model), APOE genotype (dominant model), and EDNRA genotype (recessive model) significantly and independently affected the prevalence of ACI.

		1	Dominant		Recessive	A	Additive 1	Additive 2	
Gene	Polymorphism	Р	OR (95% CI)	Р	OR (95% CI)	Р	OR (95% CI)	Р	OR (95% CI)
MTHFR	677C→T (Ala222Val)	0.5927		0.0002	1.85 (1.33-2.55)	0.4220		0.0030	1.73 (1.20-2.48)
ITGB2	1323C→T	0.0016	1.51 (1.17-1.95)	0.0882		0.0051	1.46 (1.12-1.91)	0.0218	1.83 (1.08-3.06)
THBS2	T→G (3' UTR)	0.0120	1.52 (1.09-2.09)	0.4171		0.0049	1.61 (1.15-2.25)	0.5019	
ALOX5	G→A (Glu254Lys)			0.0512		0.0512			
IPF1	-108/3G→4G	0.0115	0.69 (0.51-0.92)	0.6660		0.0114	0.67 (0.49-0.91)	0.0699	
APOE	3932T→C (Cys112Arg)	0.0021	1.62 (1.19-2.20)	0.6337		0.0024	1.62 (1.19-2.22)	0.5415	
APOE	-219G→T	0.0121	2.02 (1.19-3.60)	0.2617		0.0203	1.96 (1.13-3.56)	0.0112	2.07 (1.20-3.73)
KCNJ11	A→G (Glu23Lys)	0.0480	0.70 (0.50-1.00)	0.0251	0.74 (0.57-0.96)	0.2051		0.0134	0.62 (0.42-0.91)
ACDC	-11,377C→G	0.0286	1.33 (1.03-1.72)	0.0453	1.66 (1.00-2.73)	0.0950		0.0211	1.82 (1.09-3.03)
APOA1	84T→C	0.0505		0.0101	1.98 (1.17-3.32)	0.2100		0.0057	2.11 (1.24-3.59)
APOH	341G→A (Ser88Asn)			0.1745		0.1745			
SELE	561A→C (Ser128Arg)	0.0236	1.73 (1.07-2.91)	0.1020		0.0573		0.0964	
TNFSF4	A→G	0.4555		0.0053	3.94 (1.51-10.67)	0.9612		0.0053	3.94 (1.51-10.71)
F7	11,496G→A (Arg353Gln)	0.3265		0.0898		0.1606		0.0985	
UCP3	-55C→T	0.5552		0.1807		0.2658		0.3490	
EDNRA	-231A→G	0.2303		0.0027	0.65 (0.48-0.86)	0.8513		0.0146	0.63 (0.44-0.91)

Table III. Multivariable logistic regression analysis of polymorphisms related to ACI in men.

OR, odds ratio; CI, confidence interval. Multivariable logistic regression analysis was performed with adjustment for age, BMI, and the prevalence of smoking, hypercholesterolemia, and diabetes mellitus. P values of <0.005 are shown in bold.

Table IV.	Effects of	f genotypes	and othe	r character	stics o	n ACI	for	women	or m	en as	determined	by a	stepwise	forward
selection p	rocedure.													

Women			Men					
Variable	Р	R ²	Variable	Р	R ²			
Hypertension	<0.0001	0.0876	Diabetes mellitus	<0.0001	0.0337			
Age	< 0.0001	0.0158	Age	< 0.0001	0.0210			
LIPG (CC versus $TT+CT$)	0.0002	0.0102	Hypertension	< 0.0001	0.0133			
EDN1 (GG versus $TT+GT$)	0.0002	0.0099	MTHFR (CC+CT versus TT)	0.0003	0.0087			
CCL11 (GG versus AA+GA)	0.0003	0.0094	ITGB2 (CC versus TT+CT)	0.0019	0.0064			
Diabetes mellitus	0.0014	0.0074	APOE (TT versus $CC+TC$)	0.0021	0.0062			
AKAP10 (AA versus GG+AG)	0.0060	0.0055	EDNRA ($AA+AG$ versus GG)	0.0045	0.0053			
UTS2 (GG versus AA+GA)	0.0062	0.0054	Smoking	0.0060	0.0050			
KCNJ11 (AA versus GG+AG)	0.0068	0.0053	APOA1 (TT+TC versus CC)	0.0078	0.0047			
IL6 (GG+GC versus CC)	0.0070	0.0053	TNFSF4 (AA+AG versus GG)	0.0083	0.0046			
PTGDS (AA+AC versus CC)	0.0101	0.0048	KCNJ11 (AA+AG versus GG)	0.0165	0.0038			
			THBS2 (TT versus $GG+TG$)	0.0173	0.0037			
			APOE (GG versus $TT+GT$)	0.0233	0.0034			
			<i>IPF1</i> (<i>3G3G</i> versus <i>4G4G</i> + <i>3G4G</i>)	0.0296	0.0031			
			BMI	0.0361	0.0029			
			ACDC (CC versus GG+CG)	0.0449	0.0027			
R ² , contribution rate.								

Association of polymorphisms with ACI in the absence or presence of hypertension. Characteristics of individuals with

or without hypertension are shown in Table V. Among normotensive individuals, age and the prevalence of diabetes mellitus

		Hypertension (-)		Hypertension (+)			
Characteristic	ACI	Controls	Р	ACI	Controls	Р	
No. of subjects	195	1245		441	824		
Age (years)	66.8±12.9	60.1±12.2	< 0.0001	67.4±10.3	65.6±11.0	0.0040	
BMI (kg/m ²)	23.3±2.5	23.3±2.8	0.9680	23.3±0.2	23.6±0.1	0.1480	
Smoking (%)	13.3	15.9	0.3487	14.3	14.9	0.7584	
Hypercholesterolemia (%)	14.9	22.5	0.0124	43.1	37.7	0.0647	
Diabetes mellitus (%)	20.0	10.8	0.0006	47.4	30.3	< 0.0001	
Data for age and BMI are means $\pm S$	SD.						

Table V. Characteristics of subjects with ACI and controls according to the absence or presence of hypertension.

Table VI. Multivariable logistic regression analysis of polymorphisms related to ACI in hypertensive individuals.

		Dominant			Recessive	1	Additive 1	Additive 2	
Gene	Polymorphism	Р	OR (95% CI)	Р	OR (95% CI)	Р	OR (95% CI)	Р	OR (95% CI)
IL6	-572G→C	0.4823		0.0021	1.47 (1.14-1.87)	0.8442		0.2282	
SLC26A8	A→G (Ile639Val)	0.0270	1.31 (1.03-1.66)	0.8149		0.0167	1.35 (1.06-1.74)	0.7254	
GP6	13,254T→C (Ser219Pro)	0.0231	1.90 (1.09-3.31)			0.0231	1.90 (1.09-3.32)		
THBS2	T→G (3' UTR)	0.0262	1.41 (1.04-1.89)	0.2138		0.0476	1.37 (1.00-1.86)	0.1785	
TNFSF4	A→G	0.2489		0.0224	3.28 (1.22-9.75)	0.5264		0.0205	3.35 (1.24-9.96)
PCSK9	23,968A→G (Glu670Gly)	0.0172	1.67 (1.09-2.54)	0.5640		0.0106	1.75 (1.14-2.69)	0.5925	
IPF1	-108/3G→4G	0.0217	0.72 (0.55-0.95)	0.5605		0.0263	0.72 (0.53-0.96)	0.0700	
CCR5	59,029G→A	0.5091		0.0329	1.32 (1.02-1.71)	0.1409		0.4913	
SELE	561A→C (Ser128Arg)	0.4518		0.7091		0.7499		0.7089	
HNF4A	A→G	0.9618		0.0226	1.33 (1.04-1.69)	0.4980		0.6268	

OR, odds ratio; CI, confidence interval. Multivariable logistic regression analysis was performed with adjustment for age, sex, BMI, and the prevalence of smoking, hypercholesterolemia, and diabetes mellitus. P values of <0.005 are shown in bold.

Table VII. Effects of genotypes and other characteristics on ACI in the absence or presence of hypertension as determined by a stepwise forward selection procedure.

Hypertensi	on (-)		Hypertension (+)		
Variable	P R^2		Variable	Р	R ²	
Age	<0.0001	0.0432	Diabetes mellitus	<0.0001	0.0215	
Sex	< 0.0001	0.0383	IL6 (GG+GC versus CC)	0.0016	0.0061	
Smoking	0.0032	0.0076	SLC26A8 (AA versus GG+AG)	0.0081	0.0043	
SAH (AA versus $GG+AG$)	0.0082	0.0061	Age	0.0112	0.0039	
Diabetes mellitus	0.0123	0.0055	HNF4A (AA+AG versus GG)	0.0120	0.0039	
MTHFR (CC+CT versus TT)	0.0131	0.0054	TNFSF4 (AA+AG versus GG)	0.0133	0.0038	
AGTR1 (AA+AC versus CC)	0.0166	0.0050	Sex	0.0168	0.0035	
			THBS2 (TT versus $GG+TG$)	0.0200	0.0033	
			GP6 (TT versus CC+TC)	0.0201	0.0033	
			IPF1 (3G3G versus 4G4G+3G4G)	0.0264	0.0030	
			PCSK9 (AA versus $GG+AG$)	0.0340	0.0028	
			CCR5 (GG+GA versus AA)	0.0493	0.0024	

CI C	ontrols	Р	ACI	Controls	Р
7	1478		219	591	
±11.6 62	2.0±12.3	< 0.0001	65.6±10	.1 62.6±11.3	< 0.0001
±2.9 23	3.3±3.0	0.4270	23.6±3.5	23.7±3.2	0.5510
.6	16.6	0.3191	12.8	12.7	0.9712
.2	34.7	< 0.0001	86.8	52.6	< 0.0001
.7	15.0	< 0.0001	56.6	27.8	< 0.0001
	7 ⊧11.6 62 ⊧2.9 23 .6 .2 .7	7 1478 7 1478 ± 11.6 62.0 ± 12.3 ± 2.9 23.3 ± 3.0 .6 16.6 .2 34.7 .7 15.0	7 1478 7 1478 ± 11.6 62.0 ± 12.3 <0.0001 ± 2.9 23.3 ± 3.0 0.4270 .6 16.6 0.3191 .2 34.7 <0.0001 .7 15.0 <0.0001	7 1478 219 ± 11.6 62.0 ± 12.3 <0.0001 $65.6 \pm 10.$ ± 2.9 23.3 ± 3.0 0.4270 23.6 ± 3.5 .6 16.6 0.3191 12.8 .2 34.7 <0.0001 86.8 .7 15.0 <0.0001 56.6	71478219591 ± 11.6 62.0 ± 12.3 <0.0001 65.6 ± 10.1 62.6 ± 11.3 ± 2.9 23.3 ± 3.0 0.4270 23.6 ± 3.5 23.7 ± 3.2 .6 16.6 0.3191 12.8 12.7 .2 34.7 <0.0001 86.8 52.6 .7 15.0 <0.0001 56.6 27.8

Table VIII. Characteristics of subjects with ACI and controls according to the absence or presence of hypercholesterolemia.

Table IX. Multivariable logistic regression analysis of polymorphisms related to ACI in individuals with hypercholesterolemia.

			Dominant		Recessive		Additive 1		Additive 2
Gene	Polymorphism	Р	OR (95% CI)						
ENG	C→G (Asp366His)	0.7932		0.1058		0.7824		0.7954	
AGTR2	1675G→A	0.0128	0.61 (0.41-0.90)	0.0388	0.69 (0.48-0.98)	0.1502		0.0115	0.59 (0.39-0.88)
CCL5	-28C→G	0.0138	1.60 (1.10-2.32)	0.0285	3.22 (1.13-9.42)	0.0505		0.0178	3.57 (1.25-10.51)
AGTR2	3123C→A	0.0667		0.0312	1.55 (1.04-2.31)	0.6131		0.0272	1.59 (1.05-2.40)
IL6	-572G→C	0.9547		0.0051	1.66 (1.17-2.36)	0.4095		0.5815	
FABP2	2445G→A (Ala54Thr)	0.0321	1.46 (1.04-2.08)	0.0166	1.73 (1.10-2.70)	0.1697		0.0063	1.98 (1.21-3.22)
HNF4A	A→G	0.6508		0.0253	1.50 (1.05-2.14)	0.1949		0.9900	
IPF1	-108/3G→4G	0.0054	0.57 (0.38-0.85)	0.6411		0.0057	0.55 (0.36-0.84)	0.0408	0.61 (0.37-0.98)
CCL5	-403G→A	0.0634		0.0011	2.15 (1.36-3.39)	0.4078		0.0009	2.35 (1.42-3.89)
ADRB2	46A→G (Arg16Gly)	0.9249		0.0051	1.71 (1.17-2.50)	0.3534		0.0935	
RECQL2	T→C (Cys1367Arg)	0.1417		0.7649		0.0712		0.7670	
<i>F</i> 7	11,496G→A (Arg353Gln)	0.1143		0.7775		0.1967		0.7764	
ACDC	$G \rightarrow T$ in intron 2	0.0211	0.67 (0.47-0.94)	0.7404		0.0116	0.63 (0.44-0.90)	0.7245	
COMT	G→A (Val158Met)	0.0012	0.57 (0.40-0.80)	0.3936		0.0018	0.56 (0.39-0.80)	0.0724	

OR, odds ratio; CI, confidence interval. Multivariable logistic regression analysis was performed with adjustment for age, sex, BMI, and the prevalence of smoking, hypertension, and diabetes mellitus. P values of <0.005 are shown in bold.

were greater, whereas the prevalence of hypercholesterolemia was lower, in subjects with ACI than in controls. Among hypertensive individuals, age and the prevalence of diabetes mellitus were greater in subjects with ACI than in controls. The Chi-square test revealed that five and 10 polymorphisms were related to ACI in normotensive or hypertensive individuals, respectively (Supplementary Table II). Multivariable logistic regression analysis with adjustment for age, sex, BMI, and the prevalence of smoking, hypercholesterolemia, and diabetes mellitus revealed that no polymorphism was associated with ACI among normotensive individuals (Supplementary Table III). Among hypertensive individuals, the -572G \rightarrow C polymorphism of *IL6* (recessive model) was significantly associated with ACI (Table VI). A stepwise forward selection procedure revealed that, in descending order of statistical significance, age, sex, and smoking status significantly affected the prevalence of ACI in normotensive individuals (Table VII). For hypertensive individuals, diabetes mellitus and IL6 genotype (recessive model) significantly affected the prevalence of ACI (Table VII).

Association of polymorphisms with ACI in the absence or presence of hypercholesterolemia. Characteristics of subjects with or without hypercholesterolemia are shown in Table VIII. Among individuals with or without hypercholesterolemia, age and the prevalence of hypertension and diabetes mellitus were greater in subjects with ACI than in controls. The Chisquare test revealed that 12 and 14 polymorphisms were related to ACI in the absence or presence of hypercholesterolemia, respectively (Supplementary Table IV). Multivariable

Hypercholester	olemia (-)		Hypercholesterolemia (+)					
Variable	Р	R ²	Variable	Р	\mathbb{R}^2			
Hypertension	<0.0001	0.0433	Hypertension	<0.0001	0.0931			
Age	< 0.0001	0.0253	Diabetes mellitus	< 0.0001	0.0332			
Sex	< 0.0001	0.0164	AGTR2 (GG versus AA+GA)	0.0016	0.0106			
AGT (GG versus AA+GA)	0.0027	0.0045	CCL5 (GG + GA versus AA)	0.0020	0.0101			
Diabetes mellitus	0.0041	0.0041	ADRB2 (AA+AG versus GG)	0.0036	0.0090			
PCSK9 (AA versus GG+AG)	0.0086	0.0035	COMT (GG versus AA+GA)	0.0037	0.0089			
F7 (GG+GA versus AA)	0.0095	0.0034	IPF1 (3G3G versus 4G4G+3G4G)	0.0051	0.0083			
MTHFR (CC+CT versus TT)	0.0109	0.0032	HNF4A (AA+AG versus GG)	0.0077	0.0075			
<i>ITGB2</i> (<i>CC</i> versus <i>TT</i> + <i>CT</i>)	0.0126	0.0031	IL6 (GG+GC versus CC)	0.0081	0.0074			
Smoking	0.0449	0.0020	Sex	0.0177	0.0060			
			ACDC (GG versus $TT+GT$)	0.0397	0.0045			
			Age	0.0418	0.0044			

Table X. Effects of genotypes and other characteristics on ACI in the absence or presence of hypercholesterolemia as determined by a stepwise forward selection procedure.

Table XI. Characteristics of subjects with ACI and controls according to the absence or presence of diabetes mellitus.

	D	viabetes mellitus (-	D	Diabetes mellitus (+)			
Characteristic	ACI	Controls	Р	ACI	Controls	Р	
No. of subjects	388	1684		248	385		
Age (years)	66.7±12.1	61.6±12.1	< 0.0001	68.1±9.3	65.6±11.2	0.0030	
BMI (kg/m ²)	23.3±2.9	23.4±2.9	0.3450	23.4±3.4	23.6±3.6	0.6200	
Smoking (%)	13.1	14.9	0.3862	15.3	18.4	0.3075	
Hypertension (%)	59.8	34.1	< 0.0001	84.3	64.9	<0.0001	
Hypercholesterolemia (%)	24.5	25.4	0.7207	50.0	42.6	0.0680	
Data for age and BMI are means ± S	SD.						

logistic regression analysis with adjustment for age, sex, BMI, and the prevalence of smoking, hypertension, and diabetes mellitus revealed that no polymorphism was associated with ACI among individuals without hypercholesterolemia (Supplementary Table V). Among individuals with hypercholesterolemia, the -403G→A polymorphism of CCL5 (recessive and additive 2 models) and the $G \rightarrow A$ polymorphism of COMT (dominant and additive 1 models) were significantly associated with ACI (Table IX). A stepwise forward selection procedure revealed that hypertension, age, sex, AGT genotype (dominant model), and diabetes mellitus significantly influenced ACI in individuals without hypercholesterolemia, whereas hypertension, diabetes mellitus, AGTR2 genotype (dominant model), CCL5 genotype (recessive model), ADRB2 genotype (recessive model), and COMT genotype (dominant model) significantly affected ACI in individuals with hypercholesterolemia (Table X).

Association of polymorphisms with ACI in the absence or presence of diabetes mellitus. Characteristics of subjects with or without diabetes mellitus are shown in Table XI. Age and the prevalence of hypertension were greater in subjects with ACI than in controls for both nondiabetic and diabetic individuals. The Chi-square test revealed that eight and 14 polymorphisms were related to ACI in nondiabetic and diabetic individuals, respectively (Supplementary Table VI). Multivariable logistic regression analysis with adjustment for age, sex, BMI, and the prevalence of smoking, hypertension, and hypercholesterolemia revealed that no polymorphism was associated with ACI in nondiabetic individuals (Supplementary Table VII). In diabetic individuals, the 3932T→C polymorphism of APOE (dominant and additive 1 models), the 2445G \rightarrow A polymorphism of FABP2 (dominant model), and the $A \rightarrow G$ polymorphism of *TNFSF4* (additive 2 model) were significantly associated with ACI (Table XII). A stepwise forward selection procedure revealed

		Dominant		Recessive		Additive 1		Additive 2	
Gene	Polymorphism	Р	OR (95% CI)	Р	OR (95% CI)	Р	OR (95% CI)	Р	OR (95% CI)
APOE	3932T→C (Cys112Arg)	0.0017	1.98 (1.29-3.03)	0.9025		0.0014	2.03 (1.32-3.16)	0.8137	
FABP2	2445G→A (Ala54Thr)	0.0038	1.65 (1.78-2.33)	0.0692		0.0160	1.57 (1.09-2.26)	0.0107	1.94 (1.17-3.32)
TNFSF4	A→G	0.1462		0.0053	9.36 (2.33-63.04)	0.5350		0.0048	9.61 (2.38-64.85)
APOE	4070C→T (Arg158Cys)	0.0812				0.0812			
ABCC8	G→A (Arg1273Arg)	0.7670		0.7244		0.4686		0.7255	
GCK	-30G→A	0.7928		0.0340	0.26 (0.06-0.79)	0.3520		0.0422	0.27 (0.06-0.84)
COMT	G→A (Val158Met)	0.0063	0.62 (0.44-0.87)	0.4109		0.0094	0.62 (0.35-1.17)	0.1117	
MTHFR	677C→T (Ala222Val)	0.5767		0.0250	1.66 (1.07-2.58)	0.1624		0.1571	
APOH	341G→A (Ser88Asn)	0.7588				0.7588			
ENG	C→G (Asp366His)	0.7674		0.5544		0.7609		0.7684	
P2RY12	744T→C	0.9633		0.0384	0.31 (0.09-0.86)	0.4371		0.0462	0.32 (0.09-0.89)
GP1BA	1018C→T (Thr145Met)	0.6972		0.7416		0.9659		0.7415	
GYS1	A→G (Met416Val)	0.0132	0.57 (0.37-0.88)	0.5491		0.0076	0.54 (0.34-0.84)	0.6608	
MMP2	-1306C→T	0.0563		0.7812		0.0321	0.59 (0.36-0.95)	0.7841	

Table XII. Multivariable logistic regression analysis of polymorphisms related to ACI in diabetic individuals.

OR, odds ratio; CI, confidence interval. Multivariable logistic regression analysis was performed with adjustment for age, sex, BMI, and the prevalence of smoking, hypertension, and hypercholesterolemia. P values of <0.005 are shown in bold.

Table XIII. Effects of genotypes and	other characteristics on	ACI in the absence of	or presence of diabetes m	ellitus as determined
by a stepwise forward selection proce	edure.			

Diabetes me	llitus (-)		Diabetes mellitus (+)					
Variable	P R ²		Variable	Р				
Hypertension	< 0.0001	0.0428	Hypertension	< 0.0001	0.0352			
Age	< 0.0001	0.0170	APOE (TT versus CC+TC)	0.0015	0.0118			
Sex	< 0.0001	0.0140	Age	0.0017	0.0116			
<i>IL6</i> (<i>GG</i> + <i>GC</i> versus <i>CC</i>)	0.0049	0.0040	TNFSF4 (AA+AG versus GG)	0.0019	0.0114			
MMP12 (AA versus $GG+AG$)	0.0083	0.0035	GCK (GG+GA versus AA)	0.0038	0.0099			
COL3A1 (GG+GA versus AA)	0.0113	0.0032	Sex	0.0045	0.0095			
SAH (AA versus GG + AG)	0.0139	0.0030	FABP2 (GG versus AA+GA)	0.0092	0.0080			
ABCA1 (AA+AG versus GG)	0.0237	0.0026	COMT (GG versus AA+GA)	0.0115	0.0075			
Smoking	0.0290	0.0024	MTHFR (CC+CT versus TT)	0.0179	0.0066			
			P2RY12 (TT+TC versus CC)	0.0250	0.0059			
			Hypercholesterolemia	0.0326	0.0054			
			GYS1 (AA versus $GG+AG$)	0.0420	0.0049			

R², contribution rate.

that hypertension, age, sex, and IL6 genotype (recessive model) significantly affected ACI in nondiabetic individuals (Table XIII). Hypertension, *APOE* genotype (dominant model), age, *TNFSF4* genotype (recessive model), *GCK* genotype (recessive model), and sex significantly influenced ACI in diabetic individuals (Table XIII).

stepwise forward selection procedure in women or men, or in individuals with or without hypertension, diabetes mellitus, or hypercholesterolemia, are summarized in Table XIV.

Discussion

The polymorphisms significantly (P<0.005) associated with ACI by both multivariable logistic regression analysis and the

We have examined the relation of 202 polymorphisms to ACI in women or men separately as well as in individuals with or

Sex or risk factor	Gene	Polymorphism	Risk allele	Function of encoded protein
Women	LIPG	584C→T (Thr111Ile)	С	Phospholipase involved in HDL and apolipoprotein A-1 metabolism
	EDNI	5665G→T (Lys198Asn)	G	Vasoconstrictor produced by vascular endothelial cells
	CCL11	G→A (Ala23Thr)	G	Chemokine involved in allergic inflammation and angiogenesis
Men	MTHFR	677C→T (Ala222Val)	Т	Enzyme involved in methylation of homocysteine
	ITGB2	1323C→T	С	Integrin that participates in leukocyte adhesion and cellular signaling
	APOE	3932T→C (Cys112Arg)	Т	Ligand for the LDL receptor and the LDL receptor-related protein
	EDNRA	-231A→G	G	Endothelin 1 receptor that modulates vascular tone
Hypertension (-) Hypertension (+)	IL6	-572G→C	С	Cytokine involved in acute inflammatory responses
Hypercholesterolemia (-)				
Hypercholesterolemia (+)	CCL5	-403G→A	Α	Chemoattractant for monocytes, T helper cells, and eosinophils
	COMT	G→A (Val158Met)	G	Enzyme that catalyzes catecholamine transmitters
Diabetes mellitus (-)				
Diabetes mellitus (+)	APOE	3932T→C (Cys112Arg)	Т	See above
	TNFSF4	A→G	G	Ligand that mediates adhesion of activated T cells to endothelial cells
HDL, high density lipoprotein;	LDL, low d	ensity lipoprotein.		

Table XIV. Summary of polymorphisms significantly (P<0.005) associated with ACI as determined by multivariable logistic regression analysis and a stepwise forward selection procedure.

without hypertension, hypercholesterolemia, or diabetes mellitus. Our observations suggest that polymorphisms associated with ACI may differ between men and women as well as among individuals with or without different conventional risk factors for atherosclerosis.

ACI is the most common type of stroke and, in most patients, is caused by atherosclerosis (5). Atherosclerosis results from excessive inflammatory and fibroproliferative responses to various forms of insult to the endothelium and smooth muscle of the artery wall, with the participation of large numbers of growth factors, cytokines, and vasoregulatory molecules (17). We therefore selected 152 candidate genes for ACI on the basis of a comprehensive overview of vascular, platelet, leukocyte, lymphocyte, and monocyte-macrophage biology; coagulation and fibrinolysis cascades; neurological factors; as well as lipid, glucose, and homocysteine metabolism and other metabolic factors. Indeed, the genes found to be associated with ACI may have roles in diverse aspects of the etiology of this condition, including cell adhesion (ITGB2, TNFSF4); vascular inflammation (CCL11, IL6); leukocyte, lymphocyte, and monocyte-macrophage biology (CCL5); vascular constriction (EDN1, EDNRA); and metabolism of lipids (LIPG, APOE), homocysteine (MTHFR), and catecholamine transmitters (COMT). Three of the 11 polymorphisms associated with ACI in the present study (677C \rightarrow T of *MTHFR*, 3932T \rightarrow C of *APOE*, and -572G \rightarrow C of *IL6*) have previously been associated with ischemic stroke (8,9,15,18,19). The remaining eight polymorphisms (584C \rightarrow T of *LIPG*, 5665G \rightarrow T of *EDN1*, G \rightarrow A of *CCL11*, 1323C \rightarrow T of *ITGB2*, -231A \rightarrow G of *EDNRA*, -403G \rightarrow A of *CCL5*, G \rightarrow A of *COMT*, and A \rightarrow G of *TNFSF4*) have not been previously associated with this condition.

Association of polymorphisms with ACI in women versus men. The 584C \rightarrow T polymorphism of *LIPG*, the 5665G \rightarrow T polymorphism of *EDN1*, and the G \rightarrow A polymorphism of *CCL11* were associated with ACI in women, whereas the 677C \rightarrow T polymorphism of *MTHFR*, the 1323C \rightarrow T polymorphism of ITGB2, the 3932T \rightarrow C polymorphism of *APOE*, and the -231A \rightarrow G polymorphism of *EDNRA* were associated with this condition in men. The mechanisms responsible for the difference in the polymorphisms associated with ACI between men and women remain unclear. Given that, in general, the total risk for atherosclerotic disease, such as coronary heart disease and ACI, in women lags behind that in men by approximately 10 years, the mechanisms underlying the risk for ACI in women may differ from those in men at each age. The sex difference in the association of polymorphisms with ACI might be attributable to the difference in sex hormones such as estrogen between men and women, given that estrogen exerts various favorable effects on vessel wall and vasomotor function, including stimulation of the production of nitric oxide and prostaglandin I_2 as well as inhibition of the release of endothelin-1 by vascular endothelial cells (20). Furthermore, considering that the polymorphisms examined in our study probably represent only a small proportion of those potentially associated with ACI, it remains possible that further investigations will uncover polymorphisms that are associated with ACI in both men and women.

Association of polymorphisms with ACI in the absence or presence of conventional risk factors for atherosclerosis. Given that interactions between gene polymorphisms and conventional risk factors may be important in the etiology of ACI, we examined the effects of polymorphisms on the prevalence of ACI in the absence or presence of hypertension, hypercholesterolemia, or diabetes mellitus. The $-572G \rightarrow C$ polymorphism of IL6 was associated with ACI in hypertensive individuals, whereas no polymorphism was associated with ACI in normotensive individuals. The -403G \rightarrow A polymorphism of CCL5 and the $G \rightarrow A$ polymorphism of COMT were associated with ACI in subjects with hypercholesterolemia, whereas no polymorphism was associated with ACI in subjects without hypercholesterolemia. The 3932T \rightarrow C polymorphism of APOE and the A \rightarrow G polymorphism of *TNFSF4* were associated with ACI in diabetic individuals, whereas no polymorphism was associated with this condition in nondiabetic subjects. These observations suggest that polymorphisms associated with ACI may differ among subjects with different conventional risk factors, although the mechanisms responsible for these differences remain to be elucidated. Given that the effects of single polymorphisms on the development of ACI are likely to be small, the association between a polymorphism and the prevalence of ACI might be influenced by the absence or presence of conventional risk factors for atherosclerosis. Furthermore, considering that hypertension, hypercholesterolemia, and diabetes mellitus probably have genetic components, there might be interactions between genes related to ACI and those related to conventional risk factors.

There were several limitations to the present study. The number of subjects with ACI was relatively small after stratification of these individuals by sex or conventional risk factors. Considering the multiple comparisons of genotypes with ACI, we adopted the criterion of P<0.005 for significant association. However, this approach does not completely exclude the possibility of false positive associations. It is also possible that one or more of the polymorphisms associated with ACI in our study are in linkage disequilibrium with polymorphisms of other nearby genes that are actually responsible for the development of this condition. Furthermore, the functional relevance of the identified polymorphisms to gene transcription or to protein structure or function was not determined in the present study.

Our present observations suggest that polymorphisms associated with ACI may differ between women and men as well as among individuals with different conventional risk factors for atherosclerosis. Stratification of subjects on the basis of sex or conventional risk factors may thus be important in order to achieve the personalized prevention of ACI with the use of genetic information.

Acknowledgments

This work was supported in part by Grants-in-Aid for Scientific Research on Priority Areas (Applied Genomics) from the Ministry of Education, Culture, Sports, Science, and Technology of Japan (nos. 16012226, 17019030, 18018021) as well as by grants from Gifu Prefectural Science and Technology Promotion Center, Okasan Kato Culture Promotion Foundation, Japan Cardiovascular Research Foundation, Takeda Science Foundation, Daiwa Securities Health Foundation, and Mitsubishi Pharma Research Foundation, all to Y.Y.

References

- Warlow C, Sudlow C, Dennis M, Wardlaw J and Sandercock P: Stroke. Lancet 362: 1211-1224, 2003.
- 2. Thom T, Haase N, Rosamond W, Howard VJ, Rumsfeld J, Manolio T, Zheng ZJ, Flegal K, O'Donnell C, Kittner S, Lloyd-Jones D, Goff DC Jr, Hong Y, Adams R, Friday G, Furie K, Gorelick P, Kissela B, Marler J, Meigs J, Roger V, Sidney S, Sorlie P, Steinberger J, Wasserthiel-Smoller S, Wilson M and Wolf P; American Heart Association Statistics Committee and Stroke Statistics Subcommittee: Heart disease and stroke statistics - 2006 update: a report from the American Heart Association Statistics Subcommittee and Stroke Statistics Subcommittee. Circulation 113: e85-e151, 2006.
- Goldstein LB, Adams R, Becker K, Furberg CD, Gorelick PB, Hademenos G, Hill M, Howard G, Howard VJ, Jacobs B, Levine SR, Mosca L, Sacco RL, Sherman DG, Wolf PA, and del Zoppo GJ: Primary prevention of ischemic stroke: a statement for healthcare professionals from the Stroke Council of the American Heart Association. Stroke 32: 280-299, 2001.
- Hassan A and Markus HS: Genetics and ischaemic stroke. Brain 123: 1784-1812, 2000.
- Humphries SE and Morgan L: Genetic risk factors for stroke and carotid atherosclerosis: insights into pathophysiology from candidate gene approaches. Lancet Neurol 3: 227-235, 2004.
- 6. Pola R, Flex A, Gaetani E, Flore R, Serricchio M and Pola P: Synergistic effect of -174 G/C polymorphism of the interleukin-6 gene promoter and 469 E/K polymorphism of the intercellular adhesion molecule-1 gene in Italian patients with history of ischemic stroke. Stroke 34: 881-885, 2003.
- Flex A, Gaetani E, Papaleo P, Straface G, Proia AS, Pecorini G, Tondi P, Pola P and Pola R: Proinflammatory genetic profiles in subjects with history of ischemic stroke. Stroke 35: 2270-2275, 2004.
- Morita H, Kurihara H, Tsubaki S, Sugiyama T, Hamada C, Kurihara Y, Shindo T, Oh-hashi Y, Kitamura K and Yazaki Y: Methylenetetrahydrofolate reductase gene polymorphism and ischemic stroke in Japanese. Arterioscler Thromb Vasc Biol 18: 1465-1469, 1998.
- Kohara K, Fujisawa M, Ando F, Tabara Y, Niino N, Miki T and Shimokata H; NILS-LSA Study: MTHFR gene polymorphism as a risk factor for silent brain infarcts and white matter lesions in the Japanese general population: The NILS-LSA Study. Stroke 34: 1130-1135, 2003.
- Voetsch B, Benke KS, Damasceno BP, Siqueira LH and Loscalzo J: Paraoxonase 192 Gln→Arg polymorphism: an independent risk factor for nonfatal arterial ischemic stroke among young adults. Stroke 33: 1459-1464, 2002.
- 11. Gretarsdottir S, Thorleifsson G, Reynisdottir ST, Manolescu A, Jonsdottir S, Jonsdottir T, Gudmundsdottir T, Bjarnadottir SM, Einarsson OB, Gudjonsdottir HM, Hawkins M, Gudmundsson G, Gudmundsdottir H, Andrason H, Gudmundsdottir AS, Sigurdardottir M, Chou TT, Nahmias J, Goss S, Sveinbjornsdottir S, Valdimarsson EM, Jakobsson F, Agnarsson U, Gudnason V, Thorgeirsson G, Fingerle J, Gurney M, Gudbjartsson D, Frigge ML, Kong A, Stefansson K and Gulcher JR: The gene encoding phosphodiesterase 4D confers risk of ischemic stroke. Nat Genet 35: 131-138, 2003.

- 12. Helgadottir A, Manolescu A, Thorleifsson G, Gretarsdottir S, Jonsdottir H, Thorsteinsdottir U, Samani NJ, Gudmundsson G, Grant SF, Thorgeirsson G, Sveinbjornsdottir S, Valdimarsson EM, Matthiasson SE, Johannsson H, Gudmundsdottir O, Gurney ME, Sainz J, Thorhallsdottir M, Andresdottir M, Frigge ML, Topol EJ, Kong A, Gudnason V, Hakonarson H, Gulcher JR and Stefansson K: The gene encoding 5-lipoxygenase activating protein confers risk of myocardial infarction and stroke. Nat Genet 36: 233-239, 2004.
- 13. Cipollone F, Toniato E, Martinotti S, Fazia M, Iezzi A, Cuccurullo C, Pini B, Ursi S, Vitullo G, Averna M, Arca M, Montali A, Campagna F, Ucchino S, Spigonardo F, Taddei S, Virdis A, Ciabattoni G, Notarbartolo A, Cuccurullo F and Mezzetti A; Identification of New Elements of Plaque Stability (INES) Study Group: A polymorphism in the cyclooxygenase 2 gene as an inherited protective factor against myocardial infarction and stroke. JAMA 291: 2221-2228, 2004.
- Special report from the National Institute of Neurological Disorders and Stroke. Classification of cerebrovascular diseases III. Stroke 21: 637-676, 1990.
- 15. Yamada Y, Metoki N, Yoshida H, Satoh K, Ichihara S, Kato K, Kameyama T, Yokoi K, Matsuo H, Segawa T, Watanabe S and Nozawa Y: Genetic risk for ischemic and hemorrhagic stroke. Arterioscler Thromb Vasc Biol 26: 1920-1925, 2006.

- 16. Itoh Y, Mizuki N, Shimada T, Azuma F, Itakura M, Kashiwase K, Kikkawa E, Kulski JK, Satake M and Inoko H: High throughput DNA typing of HLA-A, -B, -C and -DRB1 loci by a PCR-SSOP-Luminex method in the Japanese population. Immunogenetics 57: 717-729, 2005.
- 17. Ross R: The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature 362: 801-809, 1993.
- Kessler C, Spitzer C, Stauske D, Mende S, Stadlmuller J, Walther R and Rettig R: The apolipoprotein E and betafibrinogen G/A-455 gene polymorphisms are associated with ischemic stroke involving large-vessel disease. Arterioscler Thromb Vasc Biol 17: 2880-2884, 1997.
- Szolnoki Z, Somogyvari F, Kondacs A, Szabo M, Fodor L, Bene J and Melegh B: Evaluation of the modifying effects of unfavourable genotypes on classical clinical risk factors for ischaemic stroke. J Neurol Neurosurg Psychiatry 74: 1615-1620, 2003.
- 20. Koh KK: Effects of estrogen on the vascular wall: vasomotor function and inflammation. Cardiovasc Res 55: 714-726, 2002.

Supplementary Table I. Polymorphisms related to ACI in women or men as determined by the Chi-square test.

	Women		Men				
Gene	Polymorphism	Р	Gene	Polymorphism	Р		
LIPG	584C→T (Thr111Ile)	0.0007	MTHFR	677C→T (Ala222Val)	0.0011		
CCL11	G→A (Ala23Thr)	0.0010	ITGB2	1323C→T	0.0031		
EDN1	5665G→T (Lys198Asn)	0.0027	THBS2	T→G (3' UTR)	0.0050		
AKAP10	A→G (Ile646Val)	0.0044	ALOX5	G→A (Glu254Lys)	0.0083		
UTS2	G→A (Ser89Asn)	0.0120	IPF1	-108/3G→4G	0.0220		
IL6	-572G→C	0.0186	APOE	3932T→C (Cys112Arg)	0.0284		
PTGDS	4111A→C	0.0195	APOE	-219G→T	0.0320		
ANXA5	-1C→T	0.0197	KCNJ11	A→G (Glu23Lys)	0.0327		
KCNJ11	A→G (Glu23Lys)	0.0210	ACDC	-11,377C→G	0.0327		
			APOA1	84T→C	0.0355		
			APOH	341G→A (Ser88Asn)	0.0355		
			SELE	561A→C (Ser128Arg)	0.0358		
			TNFSF4	A→G	0.0369		
			F7	11,496G→A (Arg353Gln)	0.0387		
			UCP3	-55C→T	0.0468		
			EDNRA	-231A→G	0.0468		

Supplementary Table II. Polymorphisms related to ACI in the absence or presence of hypertension as determined by the Chisquare test.

	Hypertension (-)		Hypertension (+)				
Gene	Polymorphism	Р	Gene	Polymorphism	Р		
MTHFR	677C→T (Ala222Val)	0.0070	IL6	-572G→C	0.0067		
NOS3	-786 T→C	0.0241	SLC26A8	A→G (Ile639Val)	0.0149		
SAH	$A \rightarrow G$ in intron 12	0.0418	GP6	13,254T→C (Ser219Pro)	0.0268		
UCP3	-55C→T	0.0473	THBS2	T→G (3' UTR)	0.0316		
AGTR1	1166A→C	0.0497	TNFSF4	A→G	0.0329		
			PCSK9	23,968A→G (Glu670Gly)	0.0329		
			IPF1	-108/3G→4G	0.0362		
			CCR5	59,029G→A	0.0367		
			SELE	561A→C (Ser128Arg)	0.0404		
			HNF4A	A→G	0.0465		

			Dominant		Recessive		Additive 1		Additive 2	
Gene	Polymorphism	Р	OR (95% CI)	Р	OR (95% CI)	Р	OR (95% CI)	Р	OR (95% CI)	
MTHFR	677C→T (Ala222Val)	0.9203		0.0073	1.69 (1.14-2.47)	0.3760		0.0495	1.54 (1.00-2.38)	
NOS3	-786T→C	0.0731		0.7701		0.1461		0.7688		
SAH	A→G in intron 12	0.0323	0.32 (0.10-0.81)	0.8734		0.0334	0.32 (0.10-0.81)	0.8721		
UCP3	-55C→T	0.4095		0.0964		0.1473		0.2580		
AGTR1	1166A→C	0.2329		0.0095	4.96 (1.39-16.53)	0.5319		0.0087	5.08 (1.42-16.95)	

Supplementary Table III. Multivariable logistic regression analysis of polymorphisms related to ACI in normotensive individuals.

OR, odds ratio; CI, confidence interval. Multivariable logistic regression analysis was performed with adjustment for age, sex, BMI, and the prevalence of smoking, hypercholesterolemia, and diabetes mellitus.

Supplementary Table IV. Polymorphisms related to ACI in the absence or presence of hypercholesterolemia as determined by the Chi-square test.

	Hypercholesterolemia (-)		Hypercholesterolemia (+)					
Gene	Polymorphism	Р	Gene	Polymorphism	Р			
F7	11,496G→A (Arg353Gln)	0.0057	ENG	C→G (Asp366His)	0.0003			
AGT	-6G→A	0.0076	AGTR2	1675G→A	0.0037			
MTHFR	677C→T (Ala222Val)	0.0088	CCL5	-28C→G	0.0046			
ITGB2	1323C→T	0.0095	AGTR2	3123C→A	0.0058			
UTS2	G→A (Ser89Asn)	0.0128	IL6	-572G→C	0.0076			
ANXA5	-1C→T	0.0143	FABP2	2445G→A (Ala54Thr)	0.0133			
SELE	561A→C (Ser128Arg)	0.0214	HNF4A	A→G	0.0228			
LIPG	584C→T (Thr111Ile)	0.0252	IPF1	-108/3G→4G	0.0292			
UCP3	-55C→T	0.0374	CCL5	-403G→A	0.0300			
IL6	-572G→C	0.0382	ADRB2	46A→G (Arg16Gly)	0.0375			
PAII	A→G (Tyr243Cys)	0.0459	RECQL2	T→C (Cys1367Arg)	0.0376			
PCSK9	23,968A→G (Glu670Gly)	0.0467	<i>F</i> 7	11,496G→A (Arg353Gln)	0.0379			
			ACDC	$G \rightarrow T$ in intron 2	0.0425			
			COMT	G→A (Val158Met)	0.0431			

Supplementary Table V. Multivariable logistic regression analysis of polymorphisms related to ACI in individuals without hypercholesterolemia.

		Dominant		Recessive		Additive 1		Additive 2	
Gene	Polymorphism	Р	OR (95% CI)	Р	OR (95% CI)	Р	OR (95% CI)	Р	OR (95% CI)
F7	11,496G→A (Arg353Gln)	0.9484		0.0222	7.03 (1.50-50.38)	0.6667		0.0229	6.97 (1.48-49.92)
AGT	-6G→A	0.0124	3.01 (1.37-7.95)	0.4913		0.0063	3.41 (1.52-9.12)	0.0183	2.84 (1.29-7.53)
MTHFR	677C→T (Ala222Val)	0.7596		0.0115	1.46 (1.09-1.96)	0.2160		0.0817	
ITGB2	1323C→T	0.0146	1.33 (1.06-1.67)	0.6545		0.0082	1.38 (1.09-1.74)	0.9249	
UTS2	G→A (Ser89Asn)	0.2625		0.0496	0.51 (0.25-0.96)	0.0903		0.0861	
ANXA5	-1C→T	0.4968		0.6264		0.7900		0.6261	
SELE	561A→C (Ser128Arg)	0.1094		0.1456		0.1880		0.1413	
LIPG	584C→T (Thr111Ile)	0.0414	1.27 (1.01-1.60)	0.0986		0.0961		0.0501	
UCP3	-55C→T	0.5128		0.1079		0.2105		0.2496	
IL6	-572G→C	0.0913		0.0813		0.1941		0.0624	
PAII	A→G (Tyr243Cys)	0.7340				0.7340			
PCSK9	23,968A→G (Glu670Gly)	0.0087	1.64 (1.13-2.36)	0.8706		0.0064	1.69 (1.15-2.45)	0.9131	

OR, odds ratio; CI, confidence interval. Multivariable logistic regression analysis was performed with adjustment for age, sex, BMI, and the prevalence of smoking, hypertension, and diabetes mellitus.

	Diabetes mellitus (-)		Diabetes mellitus (+)				
Gene	Polymorphism	Р	Gene	Polymorphism	Р		
MMP12	-82 A→G	0.0040	APOE	3932T→C (Cys112Arg)	0.0030		
IL6	-572 G→C	0.0118	FABP2	2445G→A (Ala54Thr)	0.0035		
SELE	561A→C (Ser128Arg)	0.0133	TNFSF4	A→G	0.0043		
SAH	$A \rightarrow G$ in intron 12	0.0151	APOE	4070C→T (Arg158Cys)	0.0196		
ANXA5	-1C→T	0.0174	ABCC8	G→A (Arg1273Arg)	0.0211		
COL3A1	A→G (Ile1205Val)	0.0265	GCK	-30G→A	0.0212		
ABCA1	2583A→G (Ile823Met)	0.0294	COMT	G→A (Val158Met)	0.0237		
COL3A1	G→A (Ala698Thr)	0.0474	MTHFR	677C→T (Ala222Val)	0.0239		
			APOH	341G→A (Ser88Asn)	0.0254		
			ENG	C→G (Asp366His)	0.0271		
			P2RY12	744T→C	0.0377		
			GP1BA	1018C→T (Thr145Met)	0.0415		
			GYS1	A→G (Met416Val)	0.0422		
			MMP2	-1306C→T	0.0466		

Supplementary Table VI. Polymorphisms related to ACI in the absence or presence of diabetes mellitus as determined by the Chi-square test.

Supplementary Table VII. Multivariable logistic regression analysis of polymorphisms related to ACI in nondiabetic individuals.

		Dominant		Recessive		Additive 1		Additive 2	
Gene	Polymorphism	Р	OR (95% CI)	Р	OR (95% CI)	Р	OR (95% CI)	Р	OR (95% CI)
MMP12	-82A→G	0.0052	2.05 (1.22-3.36)			0.0052	2.05 (1.22-3.36)		
IL6	-572G→C	0.0854		0.0066	1.40 (1.10-1.78)	0.2962		0.0412	1.86 (1.06-3.51)
SELE	561A→C (Ser128Arg)	0.0393	1.57 (1.01-2.38)	0.1465		0.0760		0.1415	
SAH	$A \rightarrow G$ in intron 12	0.0364	0.43 (0.18-0.89)	0.8618		0.0380	0.43 (0.18-0.89)	0.8607	
ANXA5	-1C→T	0.3737		0.7237		0.6536		0.7233	
COL3A1	A→G (Ile1205Val)	0.1596		0.6908		0.2372		0.6894	
ABCA1	2583A→G (Ile823Met)	0.4747		0.0256	1.31 (1.04-1.66)	0.1069		0.6835	
COL3A1	G→A (Ala698Thr)	0.1379		0.0108	1.65 (1.11-2.40)	0.4701		0.0081	1.71 (1.14-2.53)

OR, odds ratio; CI, confidence interval. Multivariable logistic regression analysis was performed with adjustment for age, sex, BMI, and the prevalence of smoking, hypertension, and hypercholesterolemia.