
Abstract. Growth disorders are commonly observed in
children suffering from chronic inflammatory diseases such
as Juvenile Idiopathic Arthritis (JIA) and Inflammatory Bowel
Disease (IBD). These disorders range from general growth
retardation to local acceleration of growth in the affected
limb and are associated with the increased production of pro-
inflammatory cytokines. In this article, we review how
cytokines influence child growth by exerting a local effect at
the level of the growth plate, and through systemic effects
throughout the whole body.
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1. Introduction

Abnormal growth patterns are commonly observed in children
suffering from chronic inflammatory diseases such as
Juvenile Idiopathic Arthritis (JIA) and Inflammatory Bowel
Disease (IBD), both at the onset of the disease and after
steroid treatment. Changes in bone development are commonly
associated with the growth abnormalities observed in these
children. An imbalance of pro-inflammatory cytokines is

often seen in children with inflammatory diseases (1-5). The
pro-inflammatory cytokines that have been reported to play a
major role in JIA and IBD include interleukin-1ß (IL-1ß),
tumour necrosis factor · (TNF·) and interleukin-6 (IL-6)
(6-10).

Individual cytokines have multiple target cells and multiple
actions, which often overlap with other cytokines. Cytokines
may act as antagonists to or synergists with another, or may
have a combined action altogether disparate to the individual
agents. The action of cytokines is exerted via specific high-
affinity cell surface receptors resulting in changes in gene
expression of the target cell. Receptors of different cytokines
share common signal transduction pathways allowing ‘cross
over’ effects. Pro-inflammatory cytokines may act individually
or in combination to influence child growth through systemic
effects and/or a local effect at the level of the growth plate of
long bones. 

2. Growth and bone disorders associated with chronic
inflammatory disease

In children suffering from JIA, estimates of significant short
stature (final height SDS of <-2) range from 11% of patients
with polyarticular JIA (11) to 41% of patients with systemic
JIA (12). Child growth and skeletal development are reversibly
impaired during periods of intensive glucocorticoid therapy
(13). However, significant deviation of adult height from
mid-parental height has been reported to be present only in
children treated for longer than 12 months with systemic
steroids (14). In a retrospective study of 24 children with
systemic JIA (12), 87% of patients had a final height less
than their target height. Furthermore, no catch-up growth was
observed in 30% of the children following disease remission
and the termination of glucocorticoid therapy. These patients
were probably shorter at the time of diagnosis and had lower
target heights (12). 

Pubertal development is compromised in girls with JIA,
particularly if they have received glucocorticoid therapy (15).
Furthermore, girls with systemic JIA have a later menarche
than those with polyarticular or oligoarticular JIA (15).

Children suffering from JIA show a distinctive pattern of
growth disturbance; oligoarticular JIA is associated with
localised excessive bone growth, whereas general growth
retardation is often observed in children with systemic JIA.
In the younger child with oligoarticular JIA, increased growth
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in the affected limb occurs, with early fusion of the epiphyses
leading to limb shortening in the older child (16). Early
treatment of a young child with oligoarticular JIA with intra-
articular glucocorticoids may avoid the leg length discrepancy,
however this treatment may inhibit the growth of the contra-
lateral leg (17,18).

Growth failure is a major feature of childhood IBD, and is
more commonly observed in Crohn's disease (CD) rather
than ulcerative colitis. Approximately 10-15% of children
with CD have severe growth failure (height SDS <-2) at
diagnosis (19,20). A prospective multi-centre study showed
that approximately 21% of patients remain <-2 SDS after
2 years of follow-up (19). 

Pubertal growth represents 15-20% of adult height, and
precedes the fusion of the growth plates (21). Delayed
puberty is common in patients with IBD, particularly CD
(22,23). In a study of young patients with CD, menarche
occurred at the age of 16 years or later in 73% of female
patients in whom disease onset preceded puberty. In a few
patients, menarche was delayed until the early 20's (23). In
another study (24), the onset of puberty was taken as breast
stage 2 in girls and testicular volume of 4 ml in boys. By these
criteria, the mean age of onset of puberty was 12.6 years in
young female patients with IBD compared with 11.1 years in
healthy controls. In boys, the onset of puberty was 13.2 years
in patients with IBD and 12.4 years in healthy controls (24).
Furthermore, the duration of puberty may also be prolonged,
particularly in patients with frequent disease relapses during
this period (24).

Studies that have analysed the long-term growth of IBD
patients from adolescence into adulthood have observed
persistent stunting into adulthood at an incidence of 15-30%
(25-27). A recent study of adult height in CD patients with
pre-pubertal onset of symptoms showed that in the majority
of patients (85%) the final height was less than ‘target
height’, and in 22% the final height deficit was >10 cm (28).

Children suffering from JIA and IBD who show severe
growth retardation may have normal pulsatile growth
hormone (GH) secretion, but have reduced IGF-1 (insulin-
like growth factor-1) levels suggestive of GH resistance (29).
Two randomised controlled trials assessing the efficacy of
recombinant human growth hormone (rhGH) in JIA have
shown favourable results up to 4 years of treatment (30,31). A
randomised placebo-controlled double blind cross over study
using rhGH at 0.033 mg/kg/day showed significant
improvement in height velocity and height SDS during
treatment (30). A randomised controlled study using a
moderately high rhGH dose of 0.05mg/kg/day showed that
rhGH was effective in significantly improving height
velocity SDS over a 4-year treatment period, and prevented
the further deterioration in height SDS seen in those patients
not treated with rhGH (31). 

Only one prospective study has evaluated the response of
rhGH in IBD patients (nine CD, one indeterminate colitis)
with a history of chronic glucocortico-steroid exposure (32).
rhGH administration at 0.05 mg/kg/day was associated with
improved growth at 1 year from baseline and compared to
controls. Improvement of height velocity from a mean of
3.5 cm/year at baseline to a mean of 7.7 cm/year was
observed after 6 months of treatment. There was also a

concomitant improvement of serum levels of IGF-1 and
IGFBP-3 after treatment. This improvement was independent
of disease activity and steroid dose (32). Preliminary results
from a recent randomised controlled trial of GH in children
with IBD showed improved growth in the rhGH-treated group
at 1 year from baseline (33). However, pilot results from
another randomised trial of rhGH at 0.05 mg/kg/day for
children with CD (3 patients) versus placebo treatment (4
patients) showed no improvement in growth for the pooled
result of growth for all 7 patients during rhGH treatment. The
4 patients treated with placebo were subsequently treated
with rhGH (34).

Overall, these studies suggest that moderately high doses
of rhGH can improve short-term height velocity, prevent
further deterioration of linear growth and reverse the catabolic
state induced by the inflammatory process and chronic steroid
use.

A direct association between factors produced during
chronic inflammation and growth failure has been proposed
(29,35,36). In patients with systemic JIA, inhibition of linear
growth is observed during disease activity periods, with
subsequent growth rate normalisation during remission
(35,36). In children with systemic JIA and growth
retardation, growth velocity during GH treatment is inversely
correlated with inflammation intensity (29). Pro-inflammatory
cytokines may be associated with the growth failure observed
in JIA and IBD by acting through both systemic effects
and/or locally at the level of the growth plate.

3. Systemic and local control of bone growth

Articular chondrocytes produce and maintain an extracellular
matrix (ECM) that is able to assist joint articulation and resist
physical deformation. Growth plate cartilage is progressively
synthesised at the epiphyseal growth plate and subsequently
replaced by bone, with accompanying longitudinal bone
growth (37). 

The growth plate is a thin cartilage layer located near
the ends of vertebrae and long bones (38). It consists of both
chondrocytes and their ECM, where proteoglycans and
collagen type II predominate. A feature of endochondral bone
growth is the exact chronological and spatial organisation of
chondrocytes in the growth plate. The chondrocytes differ-
entiate through a sequence of maturational phases whilst
staying in a fixed location (39) (Fig. 1).

Undifferentiated progenitors within the reserve stem cell
zone differentiate into chondrocytes and advance through a
proliferative phase. Immediately after the termination of cell
division, the cells undergo terminal differentiation into
hypertrophic chondrocytes (40). These chondrocytes are
considerably larger, with increases in Golgi apparatus and
rough endoplasmic reticulum, reflecting greater ECM
synthesis (41). The rate of endochondral bone growth
attributed to a specific growth plate in any given period of
time results from a complex synchronisation of proliferative
kinetics, ECM production, and hypertrophic chondrocyte
enlargement (42). The exact control of these processes is yet
to be elucidated, and any alteration of these variables by
external factors such as pro-inflammatory cytokines may
induce growth modulatory effects.
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The growth plate chondrocytes are in columns in the
direction of the bone's longitudinal axis. Longitudinal and
transverse septae consisting of ECM divide each column and
each chondrocyte inside the columns respectively. The ECM
of the growth plate determines its mechanical properties.
The ECM also offers a scaffold for chondrocyte adhesion and
movement, thereby contributing to the growth plate's
histological design (43). During terminal differentiation,
mineralisation of the ECM surrounding the hypertrophic
chondrocytes occurs. Functionally the ECM changes to an
environment permitting vascular invasion, allowing
osteoclasts and differentiating osteoblasts to remodel the new
cartilage into bone tissue (44).

In order to compensate for the rapid chondrocyte
proliferation and hypertrophy rates, the differentiated
chondrocyte must be removed in order to maintain a constant
growth plate width. In growing rats, it has been determined
that eight hypertrophic chondrocytes are removed each day
by apoptosis (39). However, the growth plate tapers and
ultimately disappears near the end of the growth phase. The
control of growth termination is central to the growth plate,
with the cessation of growth preceeding rather than following
growth plate fusion (45,46).

GH and IGF-1 are two of the most significant and widely
investigated regulators of post-natal bone growth, and exert
direct effects on the growth plate. A dual effector theory of
GH/IGF-1 action at the level of the growth plate has been
proposed, whereby GH acts directly on germinal zone
precursors of the growth plate to induce chondrocyte
differentiation, with a subsequent increase in local IGF-1

synthesis, which in turn results in the clonal enlargement of
chondrocyte columns in an autocrine/paracrine mechanism
(47,48). However, chondrocytes in all of the growth plate's
maturational zones express IGF-1, with IGF-1 mRNA
expression predominantly limited to the hypertrophic
zone. In vivo studies involving IGF-1 infusion of hypo-
physectomised rats, show stimulation of chondrocytes in all
maturational zones, including the hypertrophic (49-51).
Growth plate-derived IGF-1 is considerably more important
for post-natal growth compared to serum IGF-1 (52,53).

Parathyroid hormone-related peptide (PTHrP) plays an
important role in locally controlling the cellular function of
growth plate chondrocytes. Mice missing the PTH/PTHrP
receptor gene, and mice that are homozygous for the ablation
of the PTHrP gene have comparable growth plate
morphologies (54). Accelerated chondrocyte differentiation
and early mineralisation produce the thin growth plate
observed in these mice. Conversely, mice overexpressing the
PTHrP gene show a remarkable deceleration of chondrocyte
differentiation and a larger growth plate (55). PTHrP,
together with the morphogen Indian hedgehog (Ihh), exert
important effects on bone growth (38).

Sex steroids induce direct effects on the growth plate, and
are extremely important in the control of endochondral growth.
Androgen receptor, estrogen receptor · (ER·) and estrogen
receptor ß (ERß) mRNA and protein expression have been
observed in growth plate tissue (56). This demonstrates that
androgens and estrogens directly control growth plate
cellular function. The growth plate also has the capacity for
steroidogenesis and aromatisation (57). However, it has been
difficult to determine whether androgens directly influence
the growth plate cartilage. Nonaromatisable androgens, such as
dihydrotestosterone, control both chondrocyte proliferation
and differentiation, by inducing local IGF-1 synthesis and
increasing IGF-1 receptor expression (58,59). In both sexes,
estrogen is the essential hormone in regulating growth plate
acceleration and fusion (60,61). Estrogen changes
proliferation, alkaline phosphatase activity and proteoglycan
synthesis in chondrocytes (62,63). Interestingly, growth plate
chondrocyte proliferation is increased by low levels of
estrogen and reduced by high levels (64).

Pro-inflammatory cytokines are involved in bone
development, in the initiation and control of skeletal tissue
growth, and in regulating bone remodelling (65). Both TNF
and IL-1ß may act at the level of the growth plate. TNF·

induces neo-vascularisation in vivo, and may be involved in
the stimulation of growth plate vascular invasion (66). IL-1ß
mRNA has been localised in the calcified cartilage zone of
the growth plate, and together with bone morphogenetic
protein (BMP) enhances cartilage formation in vitro (67).
However, whilst cytokines play important roles in bone
development, the elevated concentrations of pro-
inflammatory cytokines associated with JIA and IBD may
lead to detrimental effects on bone growth through systemic
effects and/or a local effect at the level of the growth plate. 

4. Systemic effects of cytokines through the GH/IGF axis

Elevated levels of circulating IL-6 have been observed in
children suffering from JIA and IBD (68,69). These patients
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show reduced circulating IGF-1 levels, with unchanged GH
levels (70,71). Low concentrations of IGF binding protein-3
(IGFBP-3) may also be seen in these patients (70-72). The
mechanisms by which the pro-inflammatory cytokine IL-6
causes systemic effects on growth have been examined using
the NSE/hIL-6 transgenic murine model, which overexpresses
IL-6. Elevated circulating IL-6 and growth retardation are
observed in these mice (73), however growth is normalised
following IL-6 neutralisation (74). Like the JIA and IBD
patients, these transgenic mice have reduced circulating IGF-1
levels, with unchanged GH (73), and also reduced IGFBP-3
levels (72). It is probable that IL-6 reduces IGF-1 levels by
increased clearance. This is because the association of IGF-1
in the circulating ternary complex with IGFBP-3 and an acid-
labile subunit (ALS) markedly prolongs the half-life of IGF-1
(72).

The pro-inflammatory cytokine TNF· is also associated
with JIA and IBD (7,75). TNF-transgenic mice, which
overexpress TNF·, show growth retardation (76,77). However,
alterations in the IGF-1/GH axis have yet to be examined in
this transgenic model.

IL-1ß treatment reduces plasma levels of both IGF-1 and
ALS (78-80). Hepatic IGFBP-1 expression is increased in
septic rats, which inhibits IGF-1 bioactivity, as phos-
phorylated IGFBP-1 has a higher affinity for IGF-1 than the

IGF-1 receptor (81,82). This effect can be completely
reversed by treatment with an IL-1 receptor antagonist (82).
IL-1ß also increases IGFBP-1 protein and mRNA synthesis
in the HepG2 hepatoma cell line (83-85). 

5. Local effects of cytokines on the growth plate through
the GH/IGF axis

The effect of IL-6, IL-1ß, and TNF· on chondrocytes has been
comprehensively studied in vitro. However, investigations
have predominantly focused on the effects of cytokines on
articular chondrocytes, rather than on growth plate chondro-
cytes.

Localised damage to the growth plate of long bones is
associated with inflammatory synovitis, indicated by
increased concentrations of synovial IL-6, TNF· and IL-1ß
(86). This suggests that the cytokines in the synovial fluid
can act directly on the growth plate from the adjacent
synovial space.

The effect of IL-6 on articular chondrocyte differentiation
has been described. It has been shown that the stimulatory
effect of IGF-1 on proteoglycan synthesis is reduced by IL-6
(87). In bovine articular chondrocytes, IL-6 with the addition
of soluble IL-6 receptor also inhibits the expression of gene
markers of chondrocyte differentiation, including aggrecan,
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type II collagen and link proteins (88). IL-6 has been shown
to have no effect on growth plate chondrocyte dynamics (89),
however these experiments were performed without the
addition of the soluble IL-6 receptor.

Both IL-1ß and TNF· have been shown to inhibit growth
plate chondrocyte differentiation (90-94). IL-1ß and TNF·

have also been shown to increase DNA synthesis in growth
plate and costal chondrocytes (95-97), which may be the
mechanism for the excessive endochondral bone growth
observed in the affected limbs of children with oligoarticular
JIA. TNF· has been shown to cause apoptosis in chick
chondrocyte cultures (98) and to inhibit cartilaginous nodule
formation and the production of cartilage-specific proteo-
glycans in ATDC5 murine growth plate cells (99). TNF· has
also been shown to inhibit proteoglycan production in foetal
mouse metatarsals (100). This study also showed that IL-17
synergises with TNF· to further inhibit proteoglycan synthesis.
IL-1ß also synergises with TNF· to inhibit endochondral
growth in foetal rat metatarsal bones (89). 

The cellular mechanisms through which cytokines act
on the growth plate have yet to be elucidated. Possible
mechanisms include increased cell apoptosis induced by
TNF· (89,99), the down-regulation of Sox9 gene expression
(101), a master regulatory factor for chondrocyte differentiation
and cartilage formation (102), effects on the growth plate
through the gonadal axis (105-107), inhibition of IGF-1
signalling (106-108) and interference with GH signalling
(109).

The IGF-1 signalling pathway is a major autocrine/
paracrine controller of endochondral bone growth (110).
IGF-1 exerts its cellular effects through a receptor tyrosine
kinase (IGF-1R), which is expressed in growth plate
chondrocytes. However, studies have shown that neither IL-1ß
nor TNF· reduce IGF-1R expression (111), alter IGF-1R
affinity (112) or inhibit the intrinsic tyrosine kinase activity
of the IGF-1R (113,114). It is therefore doubtful that
inflammatory cytokines affect the IGF-1 signalling cascade
at the IGF-1 receptor level.

IGF-1 receptor binding initiates an IGF-1 signalling
cascade, which may be altered by pro-inflammatory cytokines
at one or more points: insulin receptor substrate (IRS)
phosphorylation; the Erk1/Erk2 mitogen-activated protein
kinase (MAPK) signalling pathway; the phosphatidylinositol
3-kinase (PI-3K) signalling pathway and Akt phos-
phorylation. The effects of pro-inflammatory cytokines on
IGF-1 signalling in growth plate chondrocytes at these
junctures have yet to be determined. However, effects of
cytokines on IGF-1 signalling have been investigated in a
number of other cell types. TNF· and IL-1ß inhibit IRS-1
phosphorylation in both myoblasts (106,114) and breast
cancer epithelial cells (113). TNF· inhibits MAPK-kinase
phosphorylation in neuronal cells (107), prevents the
intranuclear translocation of PI-3K in osteoblasts (108) and
inhibits Akt phosphorylation and activation in neuronal cells
(107).

Increased concentrations of pro-inflammatory cytokines
may also alter the effects of GH on the growth plate.
Cytokines may interfere with GH receptor signalling (109),
although little research has been performed in this area. IL-1ß
and TNF· induce the expression of SOCS (suppressor of

cytokine signalling proteins) (115). SOCS are cellular
signalling proteins that down-regulate cytokine signalling
and alter GH signalling (116,117). Mice genetically modified
to not express SOCS2 show gigantism accompanied by
deregulated GH signalling (118). Furthermore, IL-6 may
reduce liver GH signalling by inducing SOCS3 (119), a
mechanism that may explain GH resistance observed in
inflammatory diseases.

6. Conclusions

Pro-inflammatory cytokines may modulate growth patterns
in children with inflammatory diseases such as Juvenile
Idiopatic Arthritis  and Inflammatory Bowel Disease through
both systemic and local effects of the GH/IGF-1 axes (Fig. 2).
By elucidating the fundamental cellular mechanisms that
are altered in growth plate development, we will be in a
better position to treat the abnormal growth patterns observed
in affected children.
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