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Abstract. Lysophosphatidylcholine (LPC) plays an important 
role in atherosclerosis through initiation of endothelial inflam-
mation response. Paeoniflorin (PEF), isolated from the dry root 
of Paeonia, has been reported to exert an anti-inflammatory 
effect, but the exact mechanism is not fully understood. The 
aim of this study was to investigate the inhibitory effects of 
PEF on LPC-induced inflammatory factor production and the 
underlying mechanisms. In human umbilical vein endothelial 
cells (HUVECs), different concentrations (1, 10 or 100 µmol/l) 
of PEF were added 2 h prior to exposure to LPC (10 mg/l) 
for 24 h. The results showed that PEF significantly inhibited 
LPC-induced inflammatory factor production. In addition, PEF 
was also able to suppress the enhanced high mobility group 
box-1 (HMGB1) expression and release, upregulated expres-
sion of receptor for advanced glycation end product (RAGE), 
Toll-like receptor (TLR)-2 and TLR-4, and increased nuclear 
factor-κB (NF-κB) activity induced by LPC. Our results 
suggest that PEF suppresses LPC-induced inflammatory 
factor production through inhibition of the HMGB1-RAGE/
TLR-2/TLR-4-NF-κB pathway.

Introduction

It is well recognized that atherosclerosis is a chronic inflam-
matory disease (1). Vascular inflammatory response plays an 
important role in the onset, development and evolution of athero-
sclerosis (2). Many reports have demonstrated that vascular 

inflammatory response is closely associated with endothelial 
dysfunction (3,4). Endothelial cells can release several inflam-
matory factors in response to a variety of harmful stimulations 
including increased lysophosphatidylcholine (LPC) (5). LPC 
is the major phospholipid component of oxidized low-density 
lipoprotein (ox-LDL) (6), and it is well known for its ability to 
mimic the effects of ox-LDL (7). Increased plasma ox-LDL is 
an independent risk factor in atherosclerosis and plays a key 
role in initiation of the inflammatory response (8,9). Recently, 
it has been reported that ox-LDL-induced inflammation in 
endothelial cells is related to stimulation of high mobility 
group box-1 (HMGB1) release (10).

HMGB1 is a non-histone DNA-binding nuclear protein 
that can be positively released from immune-activated cells or 
passively released from necrotic cells (11). There is growing 
evidence that extracellular HMGB1 is a very potent pro-
inflammatory mediator (12,13). HMGB1 can stimulate the 
expression and release of numerous inflammatory factors, such 
as tumor necrosis factor-α (TNF-α), interleukins, intercellular 
adhesion molecule-1 (ICAM-1) and selectins (14,15). It has 
been reported that the pro-inflammatory effect of HMGB1 
is mediated mainly through binding to its specific receptors, 
including receptor for advanced glycation endproduct (RAGE), 
Toll-like receptor (TLR)-2 and TLR-4 (16). The binding of 
HMGB1 to its specific receptors ultimately results in the acti-
vation of nuclear factor-κB (NF-κB), and then upregulation of 
inflammatory factor expression and release (17,18). Therefore, 
the HMGB1-RAGE/TLR-2/TLR-4-NF-κB pathway may be an 
important inflammatory signaling pathway.

Paeoniflorin (PEF), a monoterpene glucoside, is the primary 
active ingredient extracted from the dry root of Paeonia, which 
is a traditional Chinese herbal medicine extensively used in 
China for more than 1000 years to treat numerous diseases, 
such as virus hepatitis, anemia, systemic lupus erythematosus 
and gynecological diseases (19). In recent years, it has been 
reported that PEF exhibits anti-inflammatory properties. In 
Sprague-Dawley rats, both pretreatment and post-treatment 
with PEF alleviated ischemia/reperfusion-induced cerebral 
injury, at least in part, through inhibition of inflammatory 
factor production (20). In addition, PEF was able to protect 
against lipopolysaccharide-induced acute lung injury in mice 
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by alleviating inflammatory cell infiltration and microvascular 
permeability (21). However, the exact anti-inflammatory 
mechanisms of PEF remain unclear.

In the present study, we investigated whether PEF has 
an inhibitory effect on LPC-induced inflammatory factor 
production using cultured human umbilical vein endothelial 
cells (HUVECs), and whether the anti-inflammatory effect is 
related to the inhibition of the HMGB1-RAGE/TLR-2/TLR-4-
NF-κB pathway.

Materials and methods

Materials. HUVECs were obtained from the Tumor 
Research Institute of Peking University (Peking, China). PEF 
(purity  ≥98%) was purchased from the Yangling Dongke 
Pharmaceutical Division (Shanxi, China). LPC was purchased 
from Sigma-Aldrich (St. Louis, MO, USA). Dulbecco's modi-
fied Eagle's medium (DMEM) and fetal bovine serum (FBS) 
were provided by Gibco-BRL (Grand Island, NY, USA). TRIzol 
reagent was a product of Invitrogen Corp. (Carlsbad, CA, USA). 
The First Strand cDNA Synthesis kit was purchased from MBI 
Fermentas Inc. (Vilnius, Lithuania). RAGE, TLR-2, TLR-4 
and β-actin antibodies were from Abcam (Cambridge, UK). 
3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 
(MTT) was from Beyotime Biotechnology (Jiangsu, China). 
ICAM-1, MCP-1, IL-6, TNF-α, HMGB1 and NF-κBp65 ELISA 
kits were obtained from the Nanjing Jiancheng Bioengineering 
Institute (Nanjing, China).

Cell culture and treatment. HUVECs were cultured in DMEM 
containing 10% (v/v) FBS, 100 U/ml penicillin and 100 µg/
ml streptomycin in a humidified atmosphere of 5% CO2 at 
37˚C. Cells were passaged by trypsinization and seeded at 
~105 cells/ml. When cells reached 80% confluence, the culture 
medium was replaced with serum-free medium for 24 h, and 
then cells were pretreated with various concentrations (1, 10 or 
100 µmol/l) of PEF 2 h prior to exposure to LPC (10 mg/l) for 
24 h. LPC was dissolved in ethanol. The final concentration of 
ethanol was less than 0.1% (v/v). Cells used in the experiments 
were from 5 to 8 passages.

Cell viability assay. MTT was used to determine cell viability. 
Briefly, HUVECs were seeded at a density of 1x104 cells/well 
in a 96-well culture plate. After drug treatment, the cells were 
washed twice with PBS to remove the medium, and 10 µl of 
MTT (0.5 mg/ml) was added to each well and incubated for 
an additional 4 h at 37˚C. Subsequently, 100 µl of dimethy 
sulfoxide (DMSO) was added to dissolve the MTT, and the 
absorbance at 490 nm was read on a microplate reader. Data 
are expressed as a percentage of the control, which was consid-
ered to be 100% viable.

ELISA. After drug treatment, cell culture supernatants were 
collected and centrifuged at 3,000 x g for 10 min to remove 
debris. The nuclear lysates were prepared as described by 
Wu et al (22). Briefly, cells were washed with cold PBS and 
then scraped from the well. Cells were treated with hypo-
tonic buffer and centrifuged. The pellet was collected and 
treated with cell extraction buffer, vortexed, centrifuged and 
the supernatants (nuclear lysates) were stored at -70˚C. The 

concentrations of ICAM-1, MCP-1, IL-6, TNF-α and HMGB1 
in cell culture supernatants and NF-κBp65 in nuclear lysates 
were determined by commercially available ELISA kits 
according to the manufacturer's instructions.

Quantitative real-time PCR. Total  RNA was isolated from 
HUVECs using TRIzol reagent and quantified by measuring the 
optical density at 260 nm. cDNA was synthesized from 1 µg of 
total RNA, which was the used for quantitative real-time PCR. 
Quantitative analysis of mRNA expression was performed using 
the ABI 7300 real-time PCR system with the Power SYBR-Green 
PCR Master Mix kit. PCR primers were as follows: HMGB1 
(forward, 5'-ATGTTGCGAAGAAACTGG-3' and reverse, 
5'-TTCAGCCTTGACAACTCC-3'); RAGE (forward, 5'-AAG 
CCCCTGGTGCCTAATGAG-3' and reverse, 5'-CACCAATT 
GGACCTCCTCCA-3'); TLR-2 (forward, 5'-ATCCTCCAATC 
AGGCTTCTCT-3' and reverse, 5'-ACACCTCTGTAGGTCAC 
TGTTG-3'); TLR-4 (forward, 5'-ATATTGACAGGAAACCCC 
ATCCA-3' and reverse, 5'-AGAGAGATTGAGTAGGGGCAT 
TT-3'); GAPDH (forward, 5'-CAATGACCCCTTCATTGA-3' 
and reverse, 5'-GACAAGCTTCCCGTTCTCAG-3'). The PCR 
amplification profiles consisted of denaturation at 95˚C for 10 min, 
followed by 40 cycles of denaturation at 95˚C for 15 sec and 
annealing at 60˚C for 60 sec. All amplification reactions for each 
sample were carried out in triplicates, and the relative expression 
values were normalized to the expression value of GAPDH.

Western blot analysis. The protein expression of RAGE, 
TLR-2 and TLR-4 was determined by western blotting. 
Briefly, after drug treatment, cells were lysed with ice-cold 
lysis buffer [0.33 mol/l Tris/HCl, 10% SDS (wt/vol), 40% glyc-
erol (vol/vol) and 50 mmol/l DTT containing bromophenol 
blue], and the protein content of the lysates was measured 
using the bicinchoninic acid (BCA) method. Equal amounts 
of protein were separated by 10% SDS-PAGE and transferred 
to a nitrocellulose membrane. After being blocked with TBST 
containing 5% bovine serum albumin, the membranes were 
incubated with the primary antibody for RAGE, TLR-2, 
TLR-4 and β-actin overnight at 4˚C, and then incubated 
with the corresponding horseradish peroxidase-conjugated 
secondary antibody at room temperature for 1 h. The protein 
bands were quantitated by video densitometry, and the results 
were normalized to β-actin expression.

Statistical analysis. Data are expressed as means ± SEM. All 
values were analyzed by analysis of variance followed by the 
Student-Newman-Keuls test. P<0.05 was regarded as indica-
tive of statistical significance.

Results

Effect of PEF on cell viability induced by LPC. MTT assay 
showed that treatment of HUVECs with LPC (10 mg/l) for 
24 h significantly decreased the cell viability. Pretreatment 
with PEF 2 h prior to exposure to LPC concentration depen- 
dently inhibited the decrease in cell viability induced by LPC. 
However, PEF alone had no effect on cell viability (Fig. 1).

Effect of PEF on inflammatory factor production induced by 
LPC. ELISA showed that treatment with LPC significantly 
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increased the concentration of ICAM-1, MCP-1, IL-6 and 
TNF-α in cell culture supernatants. This effect of LPC was 
markedly attenuated by pretreatment with PEF in a concentra-
tion-dependent manner. However, PEF alone had no effect on 
inflammatory factor production (Fig. 2).

Effect of PEF on HMGB1 expression and release induced by 
LPC. Real-time PCR analysis showed that HMGB1 mRNA 
expression was significantly upregulated in LPC-treated 
HUVECs. Consistent with this result, treatment with LPC 

markedly increased the concentration of HMGB1 in cell culture 
supernatants. However, these effects of LPC were reversed by 
pretreatment with PEF in a concentration-dependent manner. 
PEF alone had no effect on HMGB1 mRNA expression and 
release (Fig. 3).

Effect of PEF on the expression of HMGB1 receptors induced 
by LPC. The mRNA expression of RAGE, TLR-2 and TLR-4 
was significantly upregulated in HUVECs treated with 
LPC compared with the controls (Fig. 4A). Consistent with 
the mRNA expression, treatment with LPC significantly 
increased the protein expression of RAGE, TLR-2 and TLR-4 
(Fig. 4B and C). These effects were attenuated by pretreatment 
with different concentrations of PEF.

Effect of PEF on NF-κB activation induced by LPC. Since acti-
vation of NF-κB is essential to inflammatory factor production, 
we therefore detected NF-κB activity. Treatment of HUVECs 
with LPC significantly increased NF-κB activity, which was 
indicated by the increased optical density of NF-κBp65 in the 
nuclear lysates (Fig. 5). This effect was markedly inhibited by 
pretreatment with different concentrations of PEF.

Discussion

In the present study, we investigated the inhibitory effect of 
PEF on LPC-induced inflammatory factor production and 

Figure 1. Effect of PEF on LPC-induced cell viability in HUVECs. Data are 
expressed as means ± SEM and represent three independent experiments. 
**P<0.01 vs. control; #P<0.05, ##P<0.01 vs. LPC.

Figure 3. Effect of PEF on LPC-induced HMGB1 mRNA (A) expression and 
(B) release in HUVECs. Data are expressed as means ± SEM and represent 
three independent experiments. **P<0.01 vs. control; #P<0.05, ##P<0.01 vs. LPC.

Figure 2. Effect of PEF on LPC-induced inflammatory factor production in 
HUVECs. Data are expressed as means ± SEM and represent three indepen-
dent experiments. **P<0.01 vs. control; #P<0.05, ##P<0.01 vs. LPC.
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the underlying mechanisms in HUVECs. The results showed 
that pretreatment with PEF was able to inhibit LPC-induced 
inflammatory factor production in a concentration-dependent 
manner, which was related to inhibition of HMGB1 expres-

sion and release, downregulation of RAGE, TLR-2 and TLR-4 
expression, and decrease in NF-κB activity.

Vascular inflammatory response is well known to play a 
crucial role in all stages of atherosclerosis from the nascent 
lesion to acute coronary syndromes (23). Inhibition of the 
inflammatory response is a potential strategy to prevent the 
development of atherosclerosis (8,9,24). LPC is the major 
bioactive lipid component of ox-LDL and is implicated as 
an important factor in the atherogenic activity of ox-LDL 
(25). Many studies have indicated that the atherogenic effect 
of LPC is closely related to the inflammatory response. 
Gonçalves et al (26) reported that an increased level of LPC 
plays a key role in human atherosclerotic plaque inflamma-
tion. In addition, LPC was found to significantly increase the 
adherence of monocytes to endothelial cells and upregulate 
the expression of ICAM-1 and vascular cell adhesion mole-
cule-1 (VCAM-1), which are both biomarkers in inflammatory 
progression (5). Therefore, inhibition of LPC-induced inflam-
mation may be a promising approach by which to prevent the 
development of atherosclerosis.

HMGB1, also named amphoterin, is a highly conserved 
chromatin binding protein that is expressed in multiple cell 
types including endothelial cells (27). HMGB1 overexpression 
and release can initiate and amplify the inflammatory response 
(28). Recently, extracellular HMGB1 was identified as a potent 
pro-inflammatory cytokine (16) and plays a decisive role in the 
mediation of inflammatory responses (29). Therefore, HMGB1 
is recognized as a potential therapeutic target in inflammatory 
diseases (28). As previously mentioned, HMGB1 interacts with 
RAGE, TLR-2 and TLR-4, the cell surface receptors of HMGB1, 
to amplify inflammatory responses by activating NF-κB and 
then inducing inflammatory factor expression and release (30). 
Therefore, the HMGB1-RAGE/TLR-2/TLR-4-NF-κB pathway 
may be an important inflammatory signaling pathway.

PEF, a monoterpene glucoside isolated from the dry root of 
Paeonia, has been reported to have multiple beneficial effects, 
such as the lowering of cholesterol levels, anti-platelet agglu-
tination and neuroprotective effects (31-33). Recently, there is 
growing evidence that PEF exerts an anti-inflammatory effect 
in animal models of collagen-induced arthritis (34), ischemia/
reperfusion-induced cerebral injury (20), lipopolysaccharide-
induced acute lung injury (21) and liver inflammatory reactions 
(35). However, the exact anti-inflammatory mechanisms of 
PEF are still unclear. Since PEF has anti-inflammatory prop-
erties and the HMGB1-RAGE/TLR-2/TLR-4-NF-κB pathway 
is an important inflammatory signaling pathway, we therefore 
hypothesized that PEF may be able to inhibit LPC-induced 
inflammatory factor production in HUVECs, and the mecha-
nism may be associated with inhibition of the HMGB1-RAGE/
TLR-2/TLR-4-NF-κB signaling pathway. In the present study, 
we found that pretreatment of PEF significantly inhibited 
LPC-induced inflammatory factor production concomitantly 
with decreased expression and release of HMGB1, down-
regulated mRNA and protein expression of RAGE, TLR-2 and 
TLR-4, and decreased NF-κB activity. These results confirmed 
our hypothesis.

In summary, the present study demonstrated that PEF was 
able to inhibit LPC-induced inflammatory factor production, 
which was related to inhibition of the HMGB1-RAGE/TLR-2/
TLR-4-NF-κB signaling pathway.

Figure 4. Effect of PEF on LPC-induced RAGE, TLR-2 and TLR-4 expres-
sion in HUVECs. (A) mRNA expression of RAGE, TLR-2 and TLR-4 by 
real-time PCR. (B) Representative image of RAGE, TLR-2 and TLR-4 
protein expression by western blotting. (C) Optical density of protein bands. 
Data are expressed as means ± SEM and represent three independent experi-
ments. **P<0.01 vs. control; #P<0.05, ##P<0.01 vs. LPC.

Figure 5. Effect of PEF on LPC-induced NF-κB activation in HUVECs. Data 
are expressed as the mean optical density (OD) at 450 nm ± SEM and repre-
sents three independent experiments. **P<0.01 vs. control; ##P<0.01 vs. LPC.
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