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Abstract. Periodontitis, which is the main cause of tooth loss, 
is one of the most common chronic oral diseases in adults. 
Tooth loss is mainly a result of alveolar bone resorption, 
which reflects an increased osteoclast formation and activa-
tion. Osteoclast formation in periodontal tissue is a multistep 
process driven by osteoclastogenesis supporting cells such as 
human periodontal ligament (PDL) cells and CD4+ T cells. 
Inflammatory cytokines, such as interleukin-1β (IL-1β), 
can induce osteoclastogenesis by affecting the expression 
of receptor activator of NF-κB ligand (RANKL) and osteo-
protegerin (OPG) in human PDL cells. Nicotine, the major 
component in tobacco smoking and a specific agonist of the 
α7 nicotinic acetylcholine receptor (α7 nAChR), has been 
proven to regulate the expression of inflammatory cytokines in 
smoking-associated periodontitis. In this study, we investigated 
the mechanism(s) through which nicotine affects osteoclasto-
genesis in human PDL cells co-cultured/non-co-cultured with 
CD4+ T cells. Human PDL cells were stimulated with nicotine 
(10-5 M) and/or α-bungarotoxin (α-BTX, specific antagonist 
of α7 nAChR, 10-8 M) before being co-cultured with CD4+ 
T cells. Compared with mono-culture systems, stimulation 
with nicotine caused an increased secretion of IL-1β in serum 
of human PDL cell-CD4+ T cell co-culture, and the expres-
sion of RANKL in human PDL cells was further upregulated 
co-cultured with CD4+ T cells, while no differences were 
observed in the expression of OPG between the co-culture 
and mono-culture systems. Our data suggested that nicotine 
upregulated IL-1β secretion, further upregulated RANKL 
expression in smoking-associated periodontitis, which may 
aid in the better understanding of the relationship between 
nicotine and alveolar bone resorption.

Introduction

Periodontitis is one of the most common chronic infectious 
diseases in adults. It often coincides with increased alveolar 
bone resorption, causing tooth loss and eventually exfoliation. 
Smoking is recognized as the primary behavioral risk factor 
for periodontitis (1-4). However, the mechanisms underlying 
the effects of smoking on periodontal tissue destruction 
remain unclear (5). Compared with non-smoking periodon-
titis, the height and density of alveolar bone in the periodontal 
tissue of smoking-associated periodontitis is lower, and 
closely related to smoking dose and time (6). Nicotine, the 
main toxic component in tobacco, was confirmed as the main 
effect of smoking on periodontal tissue destruction. Previous 
studies have demonstrated that daily quantitative injection of 
nicotine causes significantly heavier alveolar bone resorption 
in rats than injection of saline (7,8). As the specific agonist of 
α7 nicotinic acetylcholine receptor (α7 nAChR), nicotine also 
upregulated the expression of α7 nAChR in rat periodontal 
tissue and human periodontal ligament (PDL) cells, and 
these effects could be partially suppressed by pretreatment 
with α-BTX (8,9). A number of studies suggested that CD4+ 
T cell-mediated immune responses are critical to the process 
of periodontitis; large amounts of CD4+ T cells infiltrated 
periodontal tissue and the proportion of CD4+ T cells in 
peripheral blood was significantly changed in periodontitis 
(10-12). Other studies showed CD4+ T cell-mediated immune 
responses regulated alveolar bone resorption in periodontitis 
(13-16).

The receptor activator of NF-κB ligand (RANKL)/RANK/
osteoprotegerin (OPG) axis is the key factor for regulating 
differentiation of osteoclast and bone resorption (17,18). 
Nicotine affected the balance of the RANKL/RANK/OPG 
axis (19) and also upregulated the level of interleukin-1β 
(IL-1β) in human PDL cells (9) and gingival crevicular fluid 
(GCF) (20,21). Upregulated expression of IL-1β can further 
affect the balance of the RANKL/RANK/OPG axis, causing 
alveolar bone resorption in periodontitis (22).

We hypothesized that nicotine could alter the secretion of 
IL-1β in serum of human PDL cell-CD4+ T cell co-culture, 
further affecting the expression of RANKL in human PDL 
cells. Therefore, in this study, we investigated the stimulated 
human PDL cell-CD4+ T cell co-culture with nicotine for 72 h 
and analyzed the effects of this stimulation on the expressions 
of RANKL and OPG and the secretion of IL-1β, examining 
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whether the effects of nicotine were affected by the presence 
of CD4+ T cells.

Materials and methods

Cell culture. Cultures of human PDL cells from three healthy 
young patients undergoing first premolar tooth extractions at 
the Department of Maxillofacial Surgery, were explanted from 
the middle-third of the root surface and grown in RPMI-1640 
medium supplemented with 15% fetal calf serum (FCS) and 
antibiotics (penicillin, 50 U/ml and streptomycin, 50 mg/ml). 
Experiments were performed in 6-well plates that were then 
placed in a 37˚C humid atmosphere of 5% CO2 and 95% O2. 
Passage-5 cells were used for all the experiments. This study 
was independently reviewed and approved by the Ethics 
Committee of the School of Stomatology, The Fourth Military 
Medical University.

CD4+ T cell sort and culture. Peripheral venous blood was 
derived from healthy non-smoking volunteers. Peripheral 
blood mononuclear cells (PBMCs) were separated by density 
gradient centrifugation (Ficoll-Hypaque solution; Sigma, 
USA), stained with CD4 fluorescein isothiocyanate antibody 
(BD Biosciences, USA) and incubated at 4˚C for 30 min. CD4+ 
T cell sorting was performed by flow cytometry. Only samples 
with >90% CD4+ T cells were grown in RPMI-1640 medium 
supplemented with 15% FCS and antibiotics (penicillin, 50 U/ml 
and streptomycin, 50 mg/ml) for further experiments.

To determine the effects of nicotine and/or α-BTX, human 
PDL cells and CD4+ T cells were divided into two systems: 
the mono-culture and the co-culture system (ratio 1:4 human 
PDL cells:CD4+ T cells), then incubated for 72 h. We used a 
semi-permeable membrane (0.4 µm; Millipore, Germany) to 
establish the human PDL cell-CD4+ T cell co-culture system. 
Each system was divided into four groups, and received one of 
the following treatments randomly: i) no treatment; ii) nicotine 
(10-5 M); iii) α-BTX (10-8 M); iv) α-BTX (10-8 M) followed by 
nicotine (10-5 M) after 30 min.

ELISA analysis. Supernatants of mono-culture human PDL 
cells, mono-culture CD4+ T cells and human PDL cell-CD4+ 
T cell co-culture challenged as described above were collected 
and centrifuged. Concentrations of IL-1β were quantified using 
highly sensitive enzyme-linked immunoassay from R&D 
Systems (Abingdon, UK) according to the manufacturer's 
instructions, and normalized to the number of cells. Culture 
supernatants were thawed only once and assayed in the same 
run.

RNA analysis and real-time quantitative PCR. We then 
determined the constancy of the transcriptional alterations 
following stimulation with nicotine for 72 h. Total mRNA of 
human PDL cells was isolated with RNeasy kit (Omega, USA). 
mRNA concentration was measured by using NanoDrop 
Spectrophotometer (Thermo-Fischer Scientific, USA), and 
reverse-transcribed to cDNA by using iScript Select cDNA 
Synthesis kit (Bio-Rad, Hercules, CA, USA). Real-time PCR 
was performed with iQ SYBR-Green Supermix (Bio-Rad) 
and primers for RANKL and OPG (Takara, Ohtsu, Japan), 
and were then analyzed with the 2-ΔΔCt method. β-actin served 

as the housekeeping gene. Real-time PCR was performed 
on an ABI PRISM 7500 (Applied Biosystems, USA). Primer 
sequences are listed in Table I, all PCR efficiencies were 
comparable.

Western blot analysis. Whole-cell protein lysates of mono-
culture human PDL cells and human PDL cell-CD4+ T cell 
co-culture as described above were collected on ice and 
resuspended in SDS-sample buffer. Protein concentration was 
determined by the BCA protein assay kit (Pierce, Rockford, 
IL, USA). Samples containing equal amounts of protein were 
separated on 12% sodium dodecyl sulphate-polyacrylamide 
gel electrophoresis (SDS-PAGE) in a minigel apparatus. The 
proteins in the gel were transferred to a polyvinylidene difluo-
ride (PVDF) membrane. The membrane was blocked with 5% 
fat-free dry milk in TBST (TBS containing 0.1% Tween-20), 
washed with TBST (3x5 min), and incubated with rabbit anti-
human RANKL and OPG (Santa Cruz Biotechnology, Inc., 
USA), dilution 1:500, and with mouse anti-human β-actin 
(Abcam, Cambridge, MA, USA), dilution 1:500, respec-
tively. Then, the membranes were incubated overnight with 
primary antibodies, followed by incubation with horseradish 
peroxidase (HRP)-conjugated secondary antibodies, dilution 
1:10,000. Immunoreactive bands were visualized with the 
Western-Light chemiluminescent detection system (Peiqing, 
Shanghai, China).

Statistical analysis. All data are from experiments performed 
in triplicate and recorded as the means ± standard error (SE). 
The significant differences in mRNA and protein expressions 
of differences between groups were analyzed through one 
way-ANOVA and Tukey's test using SPSS 18.0 software. A 
P-value <0.05 was considered to indicate statistically signifi-
cant differences.

Results

IL-1β secretion in serum of co-culture and mono-culture 
systems. The secretion of IL-1β was subsequently quantified in 
co-culture and mono-culture systems by ELISA. The secretion 
of IL-1β was significantly upregulated following stimulation 
with nicotine (P<0.01) in mono-culture human PDL cells, and 
the secretion of IL-1β in mono-culture CD4+ T cells showed a 
similar tendency to mono-culture human PDL cells (P<0.01). 
Furthermore, the secretion of IL-1β in human PDL cell-CD4+ 

Table I. Primers used for real-time quantitative PCR.

β-actin F: 5'-TGGCACAGCACAATGAA-3'
 R: 5'-CTAAGTCATAGTCCGCCTAGAAGCA-3'
RANKL F: 5'-TGATGTGCTGTGATCCAACGA-3'
 R: 5'-AAGATGGCACTCACTGCATTTATAG-5'
OPG F: 5'-GAAGGTGAGGTTAGCATGTCC-3'
 R: 5'-CAAAGTAAACGCAGAGAGTGTAGA-3'

F, forward; R, reverse; OPG, osteoprotegerin; RANKL, receptor acti-
vator of NF-κB ligand.
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T cell co-culture was significantly higher than both mono-
culture systems (P<0.01) (Fig. 1).

Gene expressions of RANKL and OPG in human PDL cells. 
Subsequently, we examined whether nicotine regulated 
expressions of RANKL and OPG, thus potentially modulating 
alveolar bone metabolism. We used real-time PCR to amplify 
the mRNAs of RANKL and OPG in mono-culture human 
PDL cells and human PDL cell-CD4+ T cell co-culture. In the 
mono-culture system, gene expression of RANKL was signifi-
cantly upregulated after stimulation with nicotine (P<0.001) 
(Fig. 2A), while OPG was significantly downregulated (P<0.05) 
(Fig. 2B). In the co-culture system, gene expression of RANKL 
was significantly higher than the mono-culture system after 
stimulation with nicotine (P<0.01) (Fig. 2A), while no differ-
ences were observed in OPG mRNA expression between 
the co-culture and mono-culture systems (P>0.05) (Fig. 2B). 
β-actin used as the housekeeping gene was unaffected by the 
different stimulations.

RANKL and OPG protein expression in human PDL cells. 
Since human PDL cells constitutively expressed RANKL and 
OPG on mRNA levels, protein levels of RANKL and OPG 
were assessed by western blot analysis. Protein levels showed 
a similar tendency to mRNA levels (Fig. 3). Consequently, the 
observed minor changes at the protein and mRNA levels do 
not evidently affect OPG, identifying this cytokine as a stable 
protein synthesized by human PDL cells.

Discussion

In the present study, we found that nicotine significantly 
upregulated RANKL expression and downregulated OPG 
expression in mono-culture human PDL cells; it also upregu-
lated the secretion of IL-1β in serum of mono-culture human 
PDL cells and mono-culture CD4+ T cells. The secretion 
of IL-1β in human PDL cell-CD4+ T cell co-culture was 
significantly higher than in mono-culture systems, and the 
expression of RANKL was further upregulated in human PDL 
cells co-cultured with CD4+ T cells.

Tobacco smoking aggravated periodontal tissue 
destruction, pocket formation, alveolar bone resorption in 
periodontitis (2-4,23,24). It also reduced alveolar bone height 
and bone mineral density and led to alveolar bone resorption 
in rats (25). Meanwhile, its main component, nicotine, also 
aggravated the alveolar bone resorption in rat experimental 
periodontitis, and it was positively related to the expression 
of α7 nAChR (8,9). In addition, local accumulation of exces-
sive CD4+ T cells may be associated with periodontal tissue 
destruction in periodontitis (26). CD4+ T cells in peripheral 
blood of smoking-associated periodontitis was significantly 
higher than that of non-smokers (27). These findings suggested 
that CD4+ T cell-mediated immune responses play a critical 
role in the process of periodontitis.

The RANKL/RANK/OPG axis is significantly involved 
in osteoclast differentiation and bone remodeling (17,18). 
Any deregulation of this axis can alter bone metabolism, 
resulting in loss or gain of bone mass. Compared with 
periodontal health, RANKL is upregulated, whereas OPG 
is downregulated, in periodontitis, resulting in an enhanced 
RANKL/OPG ratio (28-30). Compared with health or gingi-
vitis, GCF RANKL level is also significantly upregulated 
and OPG level is significantly downregulated in chronic and 
generalized aggressive periodontitis, and positively related 
to probing pocket depth and clinical attachment level (31). In 
smoking-associated periodontitis, the GCF levels of RANKL 
and OPG showed a similar tendency to chronic and general-
ized aggressive periodontitis (32). The RANKL level was 
higher in gingival biopsies of smokers with periodontitis than 
in controls, whereas the OPG level was lower (33). Smoking 
also affected the status of periodontal treatment; the untreated 
as well as the treated smokers exhibited higher RANKL and 
lower OPG concentrations than non-smokers in saliva (34). 
Nicotine downregulated the expression of OPG and upregu-
lated the expression of RANKL in human PDL cells (19). 
High RANKL/OPG ratio could promote differentiation of 

Figure 1. Effects of nicotine and/or α-BTX on IL-1β secretion in mono-culture 
human PDL cells, mono-culture CD4+ T cells and human PDL cell-CD4+ T cell 
co-culture. **P<0.01, compared to the control.

Figure 2. Effects of nicotine and/or α-BTX on (A) RANKL and (B) OPG 
gene expression in human PDL cells co-cultured/non-co-cultured with CD4+ 

T cells. *P<0.05, ***P<0.001, compared to the control.

Figure 3. Effects of nicotine and/or α-BTX on (A) RANKL and (B) OPG 
expression at the protein level in human PDL cells co-cultured/non-co-
cultured with CD4+ T cells.
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osteoclasts. These results suggested that nicotine may affect 
the RANKL/RANK/OPG axis involved in alveolar bone 
resorption of smoking-associated periodontitis.

An animal study showed that CD4+ T cells, but not CD8+ 

T cells or B cells, were identified as essential mediators of 
alveolar bone destruction (35). Extract of smokeless tobacco 
at low concentrations enhanced the production of IL-1β in 
lymphocytes and also induced lymphocyte proliferation (36). 
IL-1β could be part of host responses involved in the process of 
local periodontitis and promote differentiation of osteoclasts, 
causing periodontal tissue destruction and alveolar bone 
absorption (22). Gursoy et al (37) suggested that salivary IL-1β 
could be referred to as the marker of periodontitis. Clinical 
studies showed that the GCF IL-1β level is significantly 
associated with pocket depth and bleeding on probing in peri-
odontitis (38). Smoking status affected the GCF IL-1β level; 
GCF IL-1β from deep bleeding sites of heavy smokers was 
significantly higher than that of non-smokers (20). Moreover, 
smoking could also affect the GCF IL-1β level following peri-
odontal therapy. IL-1β concentration was significantly greater 
in smokers following therapy than in non-smokers (39). Any 
factors affecting the balance of the RANKL/RANK/OPG 
axis could lead to the imbalance of bone metabolism, both in 
physiological and pathological conditions. Nakao et al (40) 
suggested IL-1β as an autocrine factor regulating compres-
sive force-induced RANKL expression in human PDL cells. 
IL-1β induced RANKL expression at the mRNA and protein 
levels, as well as RANKL activity, through partial suppression 
of prostaglandin E2 synthesis in human PDL cells directly 
or indirectly (41). Cell-cell interactions between PBMCs 
and periodontal ligament fibroblasts significantly favor the 
expression of osteoclastogenesis-related genes (RANKL, 
RANK, TNF-α and IL-1β) and the ultimate formation of 
osteoclasts (42). CD4+ T cells also derive from PBMCs, 
indicating human PDL cell-CD4+ T cell co-culture could 
show similar effects as human PDL cell-PBMC co-culture. 
Stimulated human PDL cell-PBMC co-culture with IL-1β 
has a long-lasting effect, leading to a significantly increased 
osteoclastogenesis, upregulating mRNA expression of inter-
cellular adhesion molecule-1 (ICAM-1), macrophage colony 
stimulating factor (M-CSF) and IL-1β, augmenting formation 
of TRACP+ multinucleated cells (43). These findings indicate 
that IL-1β could affect the balance of the RANKL/RANK/
OPG axis, particularly RANKL, causing bone resorption and 
inflammation in periodontitis.

In conclusion, our data indicate that nicotine could favor 
osteoclastogenesis in human PDL cells co-cultured with CD4+ 
T cells by upregulating IL-1β. This may have implications 
for the better understanding of affected bone remodeling in 
smoking-associated periodontitis. Although we gained signifi-
cant insights, these results are based on the responses of cell 
lines; further investigations are required to ascertain whether 
or not these results reflect processes in the intact body.
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