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Abstract. Essential hypertension (EH) is a frequent, chronic, 
age-related disorder, which remains a major modifiable risk 
factor for cardiovascular disease despite important advances 
in our understanding of its pathophysiology. Previous studies 
have noted a consistent maternal effect on blood pressure (BP). 
Consequently, mutations in mitochondrial DNA (mtDNA) have 
become an additional target of investigations on the missing BP 
heritability. Among these mutations, mt-transfer RNA (tRNA) 
is a hot mutational spot for pathogenic mutations associated 
with EH. Mutant mtDNA aggravates mitochondrial dysfunc-
tion, pivotally contributing to the clinical phenotype. Moreover, 
the damaged mitochondria, due to their inability to provide the 
high-energy requirements for cells, generate reactive oxygen 
species (ROS) and induce mitochondrial-mediated cell death 
pathways. Therefore, mitochondrial dysfunction plays a critical 
role in the pathogenesis of EH. This review summarizes the 
basic knowledge of mitochondrial genetics and EH-associated 
mtDNA mutations and further discusses the molecular 
mechanisms behind these mtDNA mutations in clinical mani-
festations of EH.
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1. Introduction

Hypertension is an established risk factor for coronary heart 
disease, stroke, congestive heart failure and renal dysfunc-
tion. Despite significant advances in our understanding of the 
pathophysiology of hypertension, it remains to be one of the 
world's greatest public health issues (1). It is estimated that one 
third of the world's adult population will be hypertensive by 
2025 (2). In particular, in industrialized countries, the risk of 
becoming hypertensive [blood pressure (BP) >140/90 mmHg] 
during a lifetime exceeds 90% (3). Essential hypertension 
(EH), or hypertension due to undetermined causes, accounts 
for >90% of cases of hypertension. It is a heterogeneous 
disorder, with different patients having different causal factors 
that lead to high BP.

To date, the etiology of EH is not well understood due 
to multifactorial causes. It is generally believed that EH is a 
multifactorial trait involving interactions among genetic, envi-
ronmental and demographic factors (4). Of these, hereditary 
factors account for 30 to 50% of BP variability (5). Variations 
in a variety of genes have shown an association with hyperten-
sion in certain studies; however, these associations are often not 
reproducible in studies on other populations. Improved tech-
niques of genetic analysis, particularly genome-wide linkage 
analysis, have enabled the search for genes that contribute to the 
development of primary hypertension in the population (6,7). 
However, the majority of the reported genetic variants were 
identified in studies of the nuclear genome (8-10); only limited 
insights have been gained from the investigation of the mito-
chondrial genome.

This review provides a detailed introduction of the mito-
chondrial genome, summarizes the results of studies on the 
role of mitochondrial DNA (mtDNA) mutations associated 
with EH published thus far, and highlights some of the general 
conclusions that have become apparent.

2. Mitochondrial genome and mitochondrial genetics

Mitochondria are bacterium-sized organelles found in all 
nucleated cells (11). Uniquely, they contain their own genome 
(mtDNA) and it is widely accepted that mitochondria originate 
from aerobic bacteria engulfed by an anaerobic eukaryotic cell. 
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Mammalian mtDNA encodes 13 proteins that are subunits 
of the oxidative phosphorylation (OXPHOS) system and 
22 transfer RNAs (tRNAs) and 2 ribosomal RNAs (rRNAs) 
(Fig. 1). The mitochondrial OXPHOS complexes are assembled 
from genes distributed between mtDNA and nuclear DNA 
(nDNA) (12). Unlike nDNA, mtDNAs are maternally inher-
ited and are present in multiple copies/cell. The numbers vary 
according to the bioenergentic needs of each unique tissue and 
can range over three orders of magnitude, depending on the 
cell type (13).

Each mammalian cell contains hundreds of mitochondria 
and thousands of mtDNAs. Since mtDNA is in the proximity 
of reactive oxygen species (ROS) generation sites and mito-
chondria have less sophisticated DNA protection and repair 
systems, mtDNA is hence vulnerable to a high mutation 
rate (14). The most prominent is polyplasmy. Polyplasmy is the 
basis of heteroplasmy (alternations of mtDNA may be present 
in some of the mtDNA molecules) and homoplasmy (mutations 
in all of the molecules). Neutral polymorphisms are usually 
homoplasmic, whereas pathogenic mutations are usually 
heteroplasmic in nature, and EH-associated mtDNA mutations 
are commonly homoplasmic or almost homoplasmic.

3. Mitochondrial function and dysfunction

Mitochondria exert both vital and lethal functions in physi-
ological and pathological conditions. On the one hand, they 
provide the majority of cellular energy in the form of adenosine-
5'-triphosphate (ATP) through OXPHOS (15). Additionally, 
they are involved in a variety of processes, including regulation 
of the cell cycle, cell signaling, apoptosis and calcium (Ca2+) 
buffering (12,16,17).

Oxygen radicals, such as ROS, are also generated during 
OXPHOS as a toxic byproduct in the mitochondria, which 
may damage the mitochondrial and cellular DNA, protein, 
lipids and other molecules, leading to oxidative stress and 

mitochondrial dysfunction (18,19). An impairment of normal 
mitochondrial function leads to an excessive production 
of ROS and a general decrease in ATP levels. Moreover, 
there is a concomitant loss of mitochondrial transmembrane 
potential  (20). Excessive ROS and Ca2+ production lead to 
mitochondrial outer membrane permeabilization and to the 
release into the cytosol of cytotoxic proteins normally confined 
within the mitochondrial intermembrane space. As a result, 
this process induces apoptosis or necrosis (21).

4. Oxidative stress and hypertension

In animal models, oxidative stress has been observed in 
spontaneously hypertensive rats (22), renovascular hyperten-
sion (23) and salt-sensitive hypertension (24). Although its 
pathogenesis is complex and multifactorial, human hyperten-
sion is considered as a state of increased oxidative stress (25). 
An excessive endothelial production of ROS and nitric oxide 
synthase (NOS) may lead to impaired endothelium-dependent 
vasorelaxation in human internal mammary arteries and the 
saphenous vein (26), contributing to vascular pathophysiology 
by promoting increased vascular tone, cell growth, as well as 
the activation of matrix metalloproteinases and the deposition 
of extracellular matrix proteins, which are processes associated 
with the vascular phenotype of hypertension (27).

5. Role of mtDNA mutations in EH

12S rRNA A1555G mutation. The A1555G mutation in the 
12S rRNA gene has been associated with aminoglycoside-
induced and non-syndromic hearing loss in various ethnic 
populations (28-31). Chen et al (32) described two Han Chinese 
families with hearing loss and hypertension carrying the 
homoplasmic A1555G mutation. An A to G transition at this 
position in the 12S rRNA gene has been predicted to encode 
an aminoglycoside binding based on sequence similarity to 
Escherichia coli (33) and alters mitochondrial ribosomal func-
tion and translation (34-36), which in turn causes OXPHOS 
defects that are thought to contribute to the clinical pathology 
of hypertension. Insufficient metabolism caused by mitochon-
drial dysfunction may lead to the elevation of systolic BP and 
may be involved in the development of hypertension (37).

ND1 T3308C mutation. The homoplasmic ND1 T3308C 
mutation is a known disease-associated mutation. This muta-
tion has been suggested to contribute to the higher penetrance 
of hearing loss in a large African family than Japanese and 
French pedigrees carrying the tRNASer(UCN) T7511C muta-
tion (38,39). Liu et al  (40) reported a Han Chinese family 
carrying the ND1 T3308C mutation with EH. The T to C tran-
sition at position 3308 causes translation-initiating methionine 
with a threonine in ND1. Thus, the ND1 mRNA is shortened 
by two amino acids (41). Moreover, the T3308C mutation is 
also located in two nucleotides adjacent to the 3' end of the 
tRNALeu(UUR) gene; the T3308C mutation also affects the 
processing of the H-strand polycistronic RNA precursors (42).

ND5 T12338C mutation. The well-known T12338C muta-
tion in the ND5 gene, combined with tRNALeu(CUN) A12330G 
mutation, has been found in a three generation Han Chinese 

Figure 1. Genetic map of the human mitochondrial genome. The outer circle 
represents the heavy (H) strand and the inner circle the light (L) strand. 
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family with high penetrance of EH (43). Moreover, this muta-
tion was also shown to be present in a Chinese family with 
hypertrophic cardiomyopathy (44). In fact, the ND5 T12338C 
mutation, which is similar to the ND1  T3308C mutation, 
causes a replacement of the first amino acid, translation-
initiating methionine with a threonine in the ND5 polypeptide, 
and decreases ND5 mRNA levels and alters the processing of 
RNA precursors. In addition, this mutation is located in two 
nucleotides adjacent to the 3' end of the tRNALeu(CUN), and it 
is anticipated that the T12338C mutation will lead to a reduc-
tion in tRNALeu(CUN) levels, whereas the A12330G mutation 
disrupts the highly conserved base pairing (6T-67A) in the 
acceptor arm of tRNALeu(CUN) (45). Therefore, the combination 
of T12338C and A12330G mutations may have contributed to 
the high penetrance of EH in this Chinese family (43).

ND6 T14484C mutation. The T14484C mutation in the ND6 
gene is one of the primary mutations associated with Leber's 
hereditary optic neuropathy (LHON) (46). In a recent study, 
a large Han Chinese family with maternally transmitted 
EH but not presenting any LHON phenotype, was found to 
be associated with the T14484C mutation (47). Analysis of 
the complete mtDNA sequence of the proband showed the 
absence of additional pathogenic mutations, apart from the 
T14484C mutation. Moreover, analysis of the mitochondrial 
function of lymphoblastoid cell lines established from the 
family members showed that mitochondrial respiration rate 
and membrane potential were significantly reduced when 
compared with the control cell lines. In addition, there was an 
increase in the levels of ROS and mitochondrial mass in the 
mutant cell lines. These data suggest that ND6 T14484C also 
plays an important role in the pathogenesis of EH and is also a 
pathogenic mutation associated with EH (47).

CyB G15059A mutation. The heteroplasmic G15059A mutation 
in CyB gene was first described in a patient with mitochondrial 
myopathy (48). This substitution results in the replacement of 
a glycine at amino acid position 190 of CyB with a stop codon 
leading to a truncated protein that misses 244 amino acids at 
the C-terminus of CyB (49). Nikitin et al (50) examined the role 
of the CyB G15059A mutation in patients with type 2 diabetes 
(T2D) with EH. In addition, the G15059A heteroplasmy level 
exceeding 39% was associated with an increased risk of EH, 
indicating a direct pathogenic role for this mutation in EH (50).

50-bp deletion. The 50-bp deletion (m.298_347del50) in 
the mtDNA control region removes the conserved sequence 
block II (CSBII) and the replication primer location (51-53). 
This deletion, co-occurring with two novel mutations 
(ND1 C3519T and ND5 G13204A), accounted for the complex 
clinical traits, including hypertension, T2D and coronary 
artery disease (CAD) in an Indian family (54). Of note, two 
short homologous direct repeats of CCAAACCCC flanked the 
50-bp deletion. The CSBII directs transcription termination 
and primer formation in mtDNA replication (55). Thus, it can 
be predicted that the 50-bp deletion may reduce the mtDNA 
copy number and decrease the levels of cellular energy. 
However, conflicting reports have shown that this deletion 
does not affect the mtDNA copy number (53); its functional 
role requires further elucidation in future studies.

tRNAIle A4295G mutation. The homoplasmic A4295G muta-
tion in the tRNAIle gene was identified in a three generation 
Han Chinese family with maternally inherited EH (56). An 
A to G transition at nucleotide position 4295 was shown to be 
highly evolutionarily conserved, and was not present in the 
healthy controls (57). The A4295G mutation is localized at the 
3' end adjacent to the anticodon (position 37) of tRNAIle (45); 
nucleotide at position 37 is responsible for the stabilization 
of functional tRNA  (58). Thus, it has been suggested that 
this mutation reduces the efficiency with which tRNAIle can 
be processed by 3'-tRNase, reducing the level of functional 
tRNAIle (59). The functional characterization of the A4295G 
mutation shows that this mutation induces a significant 
decrease in complex III protein levels, leading to a decrease in 
the activity of this complex, which is reflected by the decline in 
mitochondrial respiration (60).

tRNAIle A4263G mutation. The A4263G mutation changes the 
stop codon TAA of the ND1 mRNA to an equivalent TAG 
stop codon. This mutation causes an A to G transition at the 
5' end of the tRNAIle gene (61,62). Cybrid cells derived from 
the proband carrying A4263G mutation show a reduction in 
tRNAIle steady-state levels, as well as in the rate of mitochon-
drial protein translation. Increased ROS and the decreased 
efficiency of 5' end processing of tRNAIle precursor indicated 
that this mutation caused mitochondrial dysfunction that was 
responsible for EH in this Han Chinese family (61).

tRNAIle T4291C mutation. The homoplasmic T4291C mutation 
in the tRNAIle gene has been associated with a cluster of meta-
bolic defects, including hypertension, hypercholesterolemia 
and hypomagnesaemia in a large family (63). The T4291C 
mutation occurs immediately 5' to the tRNAIle anticodon 
(position 33), and is conserved in every sequenced tRNAIle 
from bacteria to human mitochondria  (64). Biochemical 
studies with anticodon stem-loop analogs of tRNAs have been 
performed and have indicated that the substitution of cyti-
dine for uridine at this position markedly impairs ribosomal 
binding (65), providing evidence of the functional importance 
of this mutation.

tRNAMet A4435G mutation. The presence of the A4435G 
mutation with chronic progressive external ophthalmoplegia 
(CPEO) was initially reported in the study by Jaksch et al (66). 
Later on, this mutation was found in patients with LHON (67), 
as well as in a Japanese subject with diabetes (68). In addition, 
the East Asian haplogroup G2a1-specific A4435G muta-
tion (69) has also been associated with EH in two Chinese 
families (70,71). The homoplasmic A4435G mutation, which 
is located at immediately 3' end to the anticodon of tRNAMet 
(nucleotide position 37), is extremely conserved from bacteria 
to human mitochondria (45). In fact, as shown in previous 
studies, the A4435G mutation causes ~40-50% reduction in 
the steady-state level of tRNAMet and consequently results in 
the failure of mt-tRNA metabolism (67,70). Impaired mt-tRNA 
metabolism subsequently worsens the mitochondrial protein 
synthesis, decreases ATP production and increases ROS 
levels. Thus, mitochondrial dysfunction may contribute to the 
development of EH in these families carrying the A4435G 
point mutation (37,63,72).
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A4401G mutation in tRNAMet and tRNAGln. The homoplasmic 
A4401G mutation was originally described in a three generation 
Chinese family with left ventricular hypertrophy (LVH) (73). 
This mutation was also present in a five generation Chinese 
pedigree with EH (74). The A4401G mutation is localized at 
the junction of tRNAMet at the H-strand and tRNAGln at the 
L-strand (75). Thus, it is anticipated that this mutation may 
lead to defective tRNAMet 5' end processing in the H-strand 
transcripts and reduce the efficiency of tRNAGln precursor 
5' end cleavage in the L-strand transcripts. Functional char-
acterization of cell lines derived from the proband carrying 
the A4401G mutation shows virtually ~30% reduction in the 
levels of tRNAIle and tRNAGln (74). In addition, the mutant cell 
lines present a significant decrease in the oxygen consumption 
rate (73). These findings indicate that the A4401G mutation is 
involved in the pathogenesis of EH in Han Chinese families.

T4353C mutation in tRNAGln. The T4353C mutation, in conjunc-
tion with the tRNATrp C593T mutation, has been shown 
to account for the high penetrance of EH in a Han Chinese 
family (76). Clinical evaluation of this family showed a typical 

Table I. Summary of cardiovascular diseases associated mt-tRNA mutations.

			   Homoplasmy/
Position	 tRNA species	 Allele	 heteroplasmy	 Clinical features	 Refs.

29	 tRNAVal	 C1628T	 Homoplasmy	 Cardiomyopathy	 (80)
14	 tRNALeu(UUR)	 A3243G	 Heteroplasmy	 Cardiomyopathy	 (81)
29	 tRNALeu(UUR)	 A3260G	 Heteroplasmy	 Myopathy, cardiomyopathy, MELAS	 (82-84)
72	 tRNALeu(UUR)	 C3303T	 Homoplasmy	 Cardiomyopathy, myopathy, HCM	 (85-87)
  1	 tRNAIle	 A4263G	 Homoplasmy	 Hypertension	 (61)
  7	 tRNAIle	 A4269G	 Homoplasmy	 Cardiomyopathy	 (88)
15	 tRNAIle	 T4277C	 Homoplasmy	 Cardiomyopathy	 (89)
33	 tRNAIle	 T4291C	 Homoplasmy	 Hypertension, hypercholesterolemia, 	 (63)
				    hypomagnesaemia
37	 tRNAIle	 A4295G	 Homoplasmy	 HCM, hypertension	 (56,57)
42	 tRNAIle	 A4300G	 Homoplasmy	 HCM	 (90)
37	 tRNAMet	 A4435G	 Homoplasmy	 LHON, CPEO, hypertension	 (66-68,70,71)
  1	 tRNAGln and tRNAMet	 A4401G	 Homoplasmy	 LVH, hypertension	 (73,74)
49	 tRNAGln	 T4353C	 Homoplasmy	 Hypertension	 (76)
58	 tRNAAla	 A5600T	 Heteroplasmy	 DCM	 (91)
54	 tRNALys	 A8348G	 Heteroplasmy	 Cardiomyopathy	 (92)
  7	 tRNAGly	 T9997C	 Heteroplasmy	 HCM	 (93)
59	 tRNAHis	 G12192A	 Homoplasmy	 Cardiomyopathy	 (94)
67	 tRNALeu(CUN)	 A12330G	 Homoplasmy	 Hypertension	 (43)
37	 tRNAGlu	 T14709C	 Homoplasmy	 Cardiomyopathy	 (95)
  2	 tRNAThr	 T15889C	 Heteroplasmy	 DCM	 (91)
16	 tRNAThr	 A15902G	 Heteroplasmy	 DCM	 (91)
38	 tRNAThr	 T15924C	 Homoplasmy	 DCM	 (96)
51	 tRNAThr	 A15935G	 Heteroplasmy	 DCM	 (91)

MELAS, mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes; HCM, hypertrophic cardiomyopathy; LVH, left 
ventricular hypertrophy; LHON, Leber's hereditary optic neuropathy; CPEO, chronic progressive external ophthalmoplegia; DCM, dilated 
cardiomyopathy.

Figure 2. Cloverleaf structure of mt-tRNA with standard nucleotide num-
bering. The nucleotides in the variable stem have the prefix ‘e’ and are located 
between positions 45 and 46, obeying the base-pairing rules. The nucleotides 
in the 54-strand and 34-strand are numbered by e11, e12, e13; the second digit 
identifies the base-pair.
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maternally transmitted pattern. Analysis of the complete 
mtDNA sequence identified the homoplasmic T4353C mutation. 
This mutation alters a conservative base-pairing (49A-65U) on 
the T arm of tRNAGln, thereby affecting tRNA metabolism (45). 
Moreover, the T4353C mutation reduces the steady-state level 
of tRNAGln, mutant tRNAGln and tRNAPhe may be metaboli-
cally less stable and more subject to degradation. The cybrid 
cell lines carrying the T4353C mutation present mitochondrial 
protein synthesis defects. As a result, this mutation causes the 
mitochondrial dysfunction responsible for EH.

6. Molecular mechanisms behind mtDNA mutations associated 
with EH

In previous studies, we noticed that several hypertension-
associated mitochondrial pathogenic mutations were located 
in tRNA genes. Mt-tRNA mutations have structural and 
functional effects, including destabilization of the tRNA 
tertiary structure, altered processing of RNA precursors, 
loss of nucleotide modification and deficient aminoacylation 
(Fig. 2 and Table I). In particular, these pathogenic mutations 
may lead to deficiencies in tRNA 3' end metabolism including 
3' end cleavage, CCA addition, aminoacylation or impairment 
of critical subunits of respiratory chain functions. Failures in 
mt-tRNA metabolism subsequently lead to the impairment of 
mitochondrial protein (77-79). However, mutations in protein 
coding genes may have the potential to affect OXPHOS and 
in turn cellular death, resulting in a failure in mitochondrial 
protein synthesis. The increased bioavailability of ROS results 
in oxidative stress, which leads to cardiovascular and renal 
damage, thus, contributing to EH.

7. Conclusion

EH is a multifactorial syndrome that is characterized by 
abnormal energy metabolism and high BP. Recent studies 
have identified the mitochondria as the target and origin of 
major pathogenic pathways which lead to the progression 
of hypertension  (97-99). Although existing therapies have 
been beneficial, there is a clear need for new approaches to 
treatment. Pharmacological targeting of the cellular stresses 
underlying mitochondrial dysfunction is showing promise. 
In addition, screening for mtDNA mutations for the clinical 
expression of hypertension may provide further insight into 
the understanding of the pathophysiology for maternally 
inherited hypertension.
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