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Abstract. This perspective review focused on the Werner 
syndrome (WS) by addressing the issue of how a single muta-
tion in a WRN gene encoding WRN DNA helicase induces 
a wide range of premature aging phenotypes accompanied 
by an abnormal pattern of tumors. The key event caused by 
WRN gene mutation is the dysfunction of telomeres. Studies 
on normal aging have identified a molecular circuit in which 
the dysfunction of telomeres caused by cellular aging activates 
the TP53 gene. The resultant p53 suppresses cell growth and 
induces a shorter cellular lifespan, and also compromises 
mitochondrial biogenesis leading to the overproduction of 
reactive oxygen species (ROS) causing multiple aging pheno-
types. As an analogy of the mechanism in natural aging, we 
described a hypothetical mechanism of premature aging in 
WS: telomere dysfunction induced by WRN mutation causes 
multiple premature aging phenotypes of WS, including short-
ened cellular lifespan and inflammation induced by ROS, such 
as diabetes mellitus. This model also explains the relatively 
late onset of the disorder, at approximately age 20. Telomere 
dysfunction in WS is closely correlated with abnormality 
in tumorigenesis. Thus, the majority of wide and complex 
pathological phenotypes of WS may be explained in a unified 
manner by the cascade beginning with telomere dysfunction 
initiated by WRN gene mutation.
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1. Introduction

Patients with Werner syndrome (WS) show a wide range of 
premature aging phenotypes accompanied by rare tumors (1). 
The major premature aging phenotypes include gray hair, 
hoarseness, cataract, diabetes and malignancy (Table  Ⅰ). 
However, phenotypes of WS are not necessarily identical to 
those of natural aging; for instance WS is not usually accom-
panied by hearing loss, presbyopia or brain dysfunction, such 
as Alzheimer's disease and Parkinson's disease (1,2).

WRN, the causative gene of WS, is located on human 
chromosome 8p12-11.2  (3). This gene encodes the WRN 
protein consisting of 1432 amino acids (4), which acts as 
a DNA helicase with exonuclease activity (5-7). WRN is a 
member of the RecQ helicase gene family, which includes 
RECQL1  (8), Bloom syndrome gene  (BLM)  (9), WRN  (4), 
Rothmund-Thomson syndrome gene (RTS/RECQL4)  (10), 
and RECQL5 (11). Mutations of BLM, WRN and RTS result 
in Bloom syndrome  (BS), Werner syndrome  (WS) and 
Rothmund-Thomson syndrome  (RTS), respectively. These 
three genetic disorders are associated with genomic instability, 
and therefore the RecQ helicases are considered to be guard-
ians of the genome (12-14). Diseases caused by mutations of 
RECQL1 and RECQL5 have yet to be identified.

WS has ~100 different mutation types, which result in the 
early termination of protein synthesis (15). The WRN protein 
has a nuclear localization signal (NLS) in its C-terminus and 
is located in the nucleus where it functions. Mutations occur 
throughout the helicase molecule resulting in truncated poly-
peptides that lack NLS in the C-terminus (16). Therefore, a 
mutated WRN in patient cells cannot be transported to the 
nucleus (17,18).

The mechanism of how the mutation of the single gene 
WRN induces such multi-phenotypes in WS remains to be 
determined. This perspective review focused on a hypothetical 
cascade beginning with telomere dysfunction caused by WRN 
gene mutation leading to multi-phenotypes of premature aging 
and an abnormal profile of tumors.
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2. Genomic instability and telomere dysfunction

WS somatic cells are characterized by chromosomal aber-
rations known as ‘variegated translocation mosaicism’ (19), 
representing frequent pseudodiploidy with variable and clonal 
structural rearrangements associated with a high proportion of 
genomic deletions (20,21). This type of chromosomal aberra-
tion is assumed to be closely correlated with premature aging 
phenotypes, including rare tumors, in WS.

Accelerated loss of telomere repeats was observed in 
cultured WS patient fibroblasts (22), and recently this phenom-
enon was also confirmed in vivo by Ishikawa et al (23), who 
noted an accelerated epidermal telomere loss in WS patient 
tissues (Fig. 1). Authors of that study analyzed statistically the 
relationship between WS and control groups by applying a 
multiple regression model to the data of Fig. 1, and concluded 
that the lengths of the terminal restriction fragment (TRF) 
in WS patients were equivalent to those in control indi-
viduals who were ≥26 years. Abnormal telomere changes 
of B-lymphoblastoid cell lines  (LCLs) from WS patients 
transformed by Epstein-Barr virus have also been previously 
reported (24) (Fig. 2). The telomere length of the majority of 
LCLs from normal individuals decreases uniformly and most 
of them no longer proliferate by 160 population doublings, 
although a very small proportion of them immortalize to 
continue proliferation (24-27). However, most LCLs obtained 
from WS patients show irregular changes of telomere length 
and repeated lengthening and shortening, without the occur-
rence of immortalized cell lines. We hypothesized (28) that an 
alternative pathway is involved in maintaining telomeres (29) 
in order to maintain telomere length in normal and WS LCLs 
that have relatively long life spans (28) compared with normal 
fibroblasts (30).

Molecular biological studies support the idea that genomic 
instability in WS cells is caused directly by telomere dysfunc-
tion. WRN helicase is capable of unwinding in vitro duplexed 
and tetraplexed DNA structures occurring in telomere and 
ribosomal DNA that are rich in repeated sequences  (31). 
WRN is considered necessary for the efficient replication of 
G-rich telomere DNA, preventing telomere dysfunction and 
consequent genomic instability (32). Replication-associated 
telomere loss is responsible for chromosome fusions found in 
WS fibroblasts (33).

When the supF shuttle vector (SV) with (TTAGGG)6 as 
a model of a telomere was used for the mutagenesis assay in 
order to evaluate the role of WRN protein (34), SV sequences 
were stably replicated in human cells having normal WRN 
protein. WRN depletion, however, caused a marked increase 
(70-fold) in deletions and rearrangements arising within telo-
mere SV. These results suggest that WRN protein contributes 
to the prevention of large deletions and rearrangements during 
replication of a telomere sequence, and provides a possible 
explanation for increased telomere loss and abnormal telomere 
dynamics in WS cells.

The shelterin complex is formed at telomeres by a group of 
six proteins including telomeric repeat binding factors TRF1 
and TRF2, which assemble along the telomere region and are 
involved in telomere maintenance and protection (35-37). Of 
note, WRN is assumed to operate preferentially on aberrant 
DNA structures believed to exist in vivo, such as replication 

of forked DNA, Holliday junctions, triplex and tetraplex DNA, 
and to repair partial duplex with single‑stranded bubble (38). 
WRN has also been shown to cooperate functionally at telo-
meres with shelterin proteins, including TRF2 (38). Therefore, 
this evidence strengthens the idea that absence of normal 
WRN in WS cells may be closely associated with the telomere 
dysfunction of WS cells.

Telomere dysfunction by an extreme shortening requires 
a long period of time and therefore, the present hypothesis 
regarding involvement of telomere dysfunction in WS disorder 
explains the relatively late onset of its phenotypes (1), at 
approximately age 20.

3. Telomere dysfunction and activation of aging pathway

WS cells prolong S-phase and other abnormalities in DNA 
replication (39-41). DNA damage, including telomere dysfunc-
tion, arrests cell growth leading to aging (42), and a hypothesis 
was proposed for natural aging where telomere-based aging is 
primarily a stem cell defect caused by the activation of p53 and 
then by the induction of growth arrest, senescence and apop-
tosis in resident stem and progenitor cells (43). Davis et al (44) 
investigated the signaling pathways involved in the prolif-
erative life span barriers in WS fibroblasts. Cultured WS 
fibroblasts undergo senescence after ~20 population doublings, 
which was associated with high levels of CdkIs p16 and p21. 
Of note, senescent WS cells reentered the cell cycle following 
microinjection of a p53-neutralizing antibody. Davis et al (44) 
concluded that the strong similarity between signaling path-
ways triggering cell cycle arrest in WS and normal fibroblasts 
supports the hypothesis that accelerated loss of telomeres 
in WS cells also leads to acceleration of a pathway of aging 
similar to that in normal cells. Therefore, some phenotypes 
of WS (Table Ⅰ) may be induced by p53 activation, including 
growth retardation, alopecia, and hypogonadism, as they all 
seem to be correlated with cell proliferation.

An essential role of limiting telomeres in the pathogenesis 
of WS is also supported by experiments using late-generation 
mice that were null for WRN and TERC (telomerase RNA 
component) (45): these TERC-null mice have extremely 
shortened telomeres. These mice manifest phenotypes of 
WS  patients, including premature aging phenotypes and 
unique tumors.

4. Mitochondrial compromise by telomere dysfunction

Additional mechanisms of aging by telomere dysfunc-
tion have been suggested. Recent studies using telomerase 
reverse transcriptase (TERT)-deficient mice with telomere 
dysfunction showed a marked compromised mitochondrial 
function  (42,46). This mitochondrial change seems to be 
caused by combined suppression of transcriptional co‑activa-
tors PGC1α (proliferator-activated receptor-γ coactivator-1α) 
and PGC1β and their downstream targets. This suppression 
was mediated by the direct binding of p53 to the promoters 
of PGC1α and PGC1β. Notably, TERT-deficient mice showed 
a reduced expression of genes essential for gluconeogenesis, 
β‑oxidation and defense against reactive oxygen species 
(ROS) suggesting a mitochondrial compromise. A hypothesis 
of a telomere-mitochondrion connection was indicated from 
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these results (42) that assumes that compromised mitochon-
drial function causes oxidative stress by increasing ROS levels 
leading to inflammation and various aging phenotypes. The 
WRN protein suppresses hypoxia-inducible factor-1 (HIF-1) 
complex (47). HIF-1 activation in WS cells in the absence of 
WRN participates in the generation of mitochondrial ROS, 
Therefore, mitochondrial ROS is considered to be activated 
in WS cells by a mechanism that includes HIF-1 participation.

Recently, two distinct teams provided evidence that 
Rothmund-Thomson syndrome (RECQL4) helicases play 
a role in mitochondrial DNA integrity, which is strongly 
involved in the aging process (48,49). The role of WRN in 
mitochondrial function, however, remains to be determined.

5. Increase in oxidative stress in WS

Pagano et al (50) suggested participation of oxidative stress 
in causing WS multi-phenotypes. For instance, they showed 
an in vivo prooxidant state in WS (51). In this correlation, 

Goto et al (52) showed that the disulfide glutathione:glutathione 
ratio was significantly altered in WS patients, glyoxal 
and methylglyoxal levels significantly increased, and the 
plasma levels of uric acid (52,53) increased significantly in 
WS patients. Vitamin C restored healthy aging phenotypes in 
a mouse model for Werner syndrome (54).

A significant contribution to human aging of low-grade, 
chronic and systemic inflammation caused by an imbalance 
between pro- and anti-inflammatory circuits, mainly by 
monitoring highly sensitive C-reactive protein (hsCRP), has 
recently been proposed as inflammaging to explain the aging 
mechanism (55). Goto  et  al  (56) investigated the inflam-
matory condition associated with normal human aging by 
examining hsCRP in sera collected from healthy Japanese 
individuals and mutation-proven Japanese WS patients. The 
serum hsCRP level increased significantly with normal aging 

Table I. Major phenotypes of Werner syndrome.

	 Occurrence	 Mean	 Oxidative stress	 Suppressed cell
Phenotypes	 frequency (%)	 age (years)	 and inflammation	 growth

Growth retardation	 100	 18.9	 -	 Yes
Gray hair, alopecia	 100	 20.1	 Yes (Gray hair)	 Yes (alopecia)
Hoarseness	 100	 22.8	 Yes	 Yes
Skin sclerosis	 100	 26.4	 Yes	 -
Cataract	 100	 31.2	 Yes	 -
Diabetes mellitus	   70	 31.5	 Yes	 -
Skin ulcer	   40	 34.7	 Yes	 Yes
Hypogonadism	   80	 35.6	 Yes	 Yes
Osteoporosis	   60	 39.5	 Yes	 Yes
Immune abnormalities	   80	 40.0	 Yes	 Yes
Atherosclerosis	   20	 40.6	 Yes	 -
Brain atrophy	   40	 40.7	 Yes	 Yes
Malignancy	   20	 41.3	 Yes	 -

This table is based on reference (1). Yes, known or suggested; -, unknown.

Figure 1. Terminal restriction fragment (TRF) length in skin samples from 
Werner syndrome (WS) patients and controls. This figure is based on refer-
ence (23). ●, WS patients; ○, controls.

Figure 2. Abnormal telomere changes in B-lymphoblastoid cell lines (LCLs) of 
Werner syndrome (WS). This figure is based on the figure from reference (28). 
Cell line WS11301 from a WS patient (dotted line) is mortal LCL with a lifespan 
of 150 PDL, showing irregular changes of the telomere. The cell line N0003 
from a normal individual (solid line) is an immortalized LCL that decreased 
the telomere length uniformly to 135 PDL and, thereafter is immortalized by 
expressing high telomerase activity and maintained telomere length.
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in males and females significantly increased in WS compared 
with age‑matched normal and normal elderly populations. 
Accordingly, both normal aging and WS were associated with 
minor inflammation that can be evaluated by serum hsCRP.

Notably, cataract and type-II diabetes mellitus are associ-
ated with ROS in non-WS individuals and therefore these two 
phenotypes of WS may also be associated with ROS. Other 
phenotypes (Table  Ⅰ), such as gray hair, cataract, diabetes 
mellitus, skin ulcer and atherosclerosis, of WS may also corre-
late with ROS (50,57).

Correlated with the association of ROS, oxidative stress 
markers, including pentosidine and homocysteine, were exam-
ined in serum from WS patients and healthy individuals (58). 
Increased serum pentosidine correlated significantly with 
normal aging in healthy individuals. Serum pentosidine in WS 
patients increased significantly compared with age-matched 
healthy individuals. Serum homocysteine levels increased 
significantly with normal aging in healthy individuals, but 
those in WS patients did not increase compared with those 
from age-matched healthy individuals.

Linkage of increased inflammation and ROS in WS with 
mitochondrial compromise caused by telomere dysfunction 
seems likely. Fig. 3 summarizes a hypothetical cascade starting 
with WRN gene mutation and leading to multi-phenotypes of 
premature aging in WS patients. A body of data examining the 
effect of oxidative stress on inflammation by means of modi-
fied lipid metabolism has accumulated: for instance, oxidative 
stress is suggested to cause atherosclerosis and cardiovascular 
disease by the formation of pro-inflammatory, pro-atherogenic 
oxidized low-density lipoprotein (59).

WRN plays a role in various functions not mediated by 
telomeres, such as repair of damaged DNA by genotoxins 
including camptothecin (60-62) and in the transcription of 
ribosomal RNA (63). These functions may also be relevant to 
the premature aging phenotypes of WS. Thus, Fig. 3 shows 
a major route focusing on the cascade beginning with the 
WRN-telomere axis.

6. Correlation with the target of rapamycin (TOR)

The target of rapamycin (TOR) is a conserved Ser/Thr kinase 
that regulates cell growth and metabolism in response to envi-
ronmental cues (64). Inhibition of TOR extends the lifespan 
of invertebrates as well as of mammals (65-67). In a study 
conducted to determine whether stressed cells undergo cell 
death, reversible quiescence or irreversible senescence, p53 was 
shown to communicate with the mammalian TOR (mTOR), 
thereby adding yet another level of complexity to the signaling 

Table II. Neoplasms in Japanese Werner syndrome (1996‑2008).

Diagnosis	 No.

Non-epithelial	
  Soft-tissue sarcoma	
    MFH	    8
    Others	   12
  Osteosarcoma	    6
  Malignant melanoma	   18
  Meningioma	    9
  Hematologic disorders	
    AML	    4
    MDS	   11
  Others	    8
Epithelial	
  Thyroid	    9
  Liver	    6
  Skin	    5
  Lung	    5
  Others	   30
Total	 131

MFH, malignant fibrous histiocytoma; AML, acute myelogenous 
leukemia; MDS, myelodysplastic syndrome. This table is based on 
reference (71).

Table III. Incidence of immortalization by way of the TCP of 
LCLs from non-WS and WS individuals.

	 Total
Variables	 LCLs	 Immortalized	 % of immortalization

Non-WS	 61	 10	 16.4
WS	 44	   0	 0

This table is based on reference (73). Non-WS LCL samples include 
11 LCLs from diabetes families showing a high incidence of immor-
talization (5/11) as well as remaining 50 normal LCLs (5/50). The 
Chi-square test of WS LCLs (0/44) against normal individuals (0/50) 
and the diabetes families (5/11) showed significant differences, 
P<0.031 and P<0.00001, respectively. TCP, telomere crisis pathway; 
LCLs, B-lymphoblastoid cell lines; WS, Werner syndrome.

Figure 3. A cascade of Werner syndrome (WS) pathogenesis starting with 
WRN gene mutation and leading to multi-phenotypes of premature aging and 
abnormality in tumorigenesis. This scheme does not cover all possible mecha-
nism of the WS pathogenesis but focuses only on the WRN-telomere axis.
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network that emanates from p53 (68). Talaei et al (69) found 
an increase in cytosolic aggregates in cultured WS fibroblasts 
and hypothesized that the phenotype is indirectly related to 
excess activation of the mTOR pathway, leading to the forma-
tion of protein aggregates in the cytosol with increasing levels 
of oxidative stress. As those authors found that the expression 
levels of the two main H2S-producing enzymes, cystathionine 
β synthase and cystathionine γ lyase, were lower in WS cells 
compared with normal cells, they investigated the effect of the 
administration of H2S by using NaHS (50 µM). NaHS treat-
ment blocked mTOR activity, abrogated protein aggregation 
and normalized the phenotype of WS cells. Similar results 
were obtained by treatment with mTOR inhibitor rapamycin. 
These findings suggest the participation of mTOR in the 
pathogenesis of WS, although p53 activation with the mTOR 
system remains to be clarified.

7. Abnormality in tumorigenesis

Another characteristic feature of WS is a much higher incidence 
of rare tumors (70). Non-epithelial tumors, including soft-tissue 
sarcoma and benign meningioma, are highly associated with 
WS. Notably, the ratio of epithelial (55 cases) to non‑epithelial 
tumors (76 cases) is 1:1.38 in WS patients (Table Ⅱ) (71) compared 
with 10:1 in the general population (70,71). Genomic instability 
and chromosomal aberrations in WS may be the basic phenom-
enon leading to tumorigenesis, as hypothesized by Monnat (72). 
WRN helicase was shown to be required for immortalization 
accompanied by activation of the hTERT gene to activate telom-
erase by way of the telomere crisis pathway (TCP) in a system 
that uses LCLs transformed by the Epstein‑Barr virus (62,73) 
(Table Ⅲ). These data support the hypothesis that the develop-
ment of TCP-mediated epithelial tumors also requires WRN 
helicase accompanied by telomerase activation. In non-WS 
individuals, telomere crisis is considered to produce significant 
chromosomal instability and thus is a hallmark of human cancer 
(reviewed in refs. 62,74), such as renal cell carcinoma (75). 
Whether the assumed inability of tumorigenesis by way of TCP 
due to WRN dysfunction is associated with an abnormal tumor 
profile in WS remains to be clarified.

A hypothetical scheme explaining the role of WRN helicase 
in immortalization by a supposed ‘breakage-fusion-bridge 
cycle’ of chromosomes at telomere crisis (76) was suggested in 
correlation with the unique tumorigenesis profile in WS (77). 
WRN helicase may have at least two mutually compatible 
roles in immortalization by way of TCP. First, WRN helicase 
may unwind the repressed state of chromatin DNA, leading 
to modification and activation of the promoter region of the 
hTERT gene (78). Second, in the telomerase-mediated de novo 
addition of telomeres to non-telomeric sequences generated 
during the ‘breakage-fusion-bridge cycle’ (76), the exonuclease 
activity of WRN helicase may also be involved in this process 
to trim the 3' end to expose a favorable sequence as a primer for 
adding a telomere to the non-telomeric end (79). At this point, 
particular telomeric repeats may be added by telomerase onto 
the 3' end of non-telomeric primers. WRN has been shown 
to cooperate functionally at telomeres with shelterin proteins, 
including TRF2 (37), which supports the hypothetical func-
tion of WRN in immortalization by way of TCP, as previously 
suggested (77).

8. Conclusion

This perspective review has shown that the majority of wide 
and complex premature aging phenotypes, including abnormal 
tumor profiles, of WS may be explained in a unified manner by 
the cascade beginning with telomere dysfunction initiated by 
WRN gene mutation, leading to mitochondrial dysfunction and 
overproduction of ROS.
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