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Abstract. The thymus is the primary site for T-cell lympho
poiesis. Its function includes the maturation and selection of 
antigen specific T cells and selective release of these cells 
to the periphery. These highly complex processes require 
precise parenchymal organization and compartmentation 
where a plethora of signalling pathways occur, performing 
strict control on the maturation and selection processes of 
T lymphocytes. In this review, the main morphological char-
acteristics of the thymus microenvironment, with particular 
emphasis on nerve fibers and neuropeptides were assessed, as 
both are responsible for neuro-immune‑modulation functions. 
Among several neurotransmitters that affect thymus function, 
we highlight the dopaminergic system as only recently has its 
importance on thymus function and lymphocyte physiology 
come to light.
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1. Introduction

The thymus is the primary site for T-cell lymphopoiesis, 
providing a coordinated environment for critical factors to induce 
and support lineage commitment, differentiation and survival of 
thymus-seeding cells. The function of the thymus includes the 
maturation and selection of antigen‑specific T cells and selective 
release of these cells to the periphery. The maturation process 
consists of the development of T-cell antigen receptors with high 
diversity that are capable of binding to different antigens, while 
the selection process consists of eliminating those cells that 
support receptors that can bind to antigens of the organism itself.

T-cell differentiation is a highly complex process that 
includes progressive acquisition of different membrane markers 
and rearrangement of the genes coding for the antigen-specific 
T-cell receptor (TCR). This diversity of markers is generated 
by re-arrangement of the TCR genes from a set of germ-line 
genes (1-3). It has been found that the selection of the T-cell reper-
toire and rearrangement of TCR genes are not purely automatic 
genetically programmed mechanisms; instead, they are stepwise 
processes, controlled and probably induced by a variety of stromal 
cells in different regions of the organ. This insight has led to the 
concept of the thymus microenvironment, a three-dimensional 
network composed of several distinct cell types, such as epithelial 
cells, macrophages, dendritic cells and fibroblasts, as well as extra-
cellular matrix (ECM) elements (4,5). Evidence from molecular 
biology and immunohistochemical findings have revealed that 
there are several different microenvironments in the thymus, each 
responsible for a specific step of the stepwise process of T-cell 
development and differentiation (6-8). Within the microenviron-
ment, different types of intercellular communications occur and 
probably play a role in T-cell differentiation (9,10). Furthermore, 
an increasing amount of experimental data have indicated the 
presence of an intrinsic thymus innervation that actively partici-
pates to modulate the development and maturation of T cells in 
the thymus microenvironment (11,12).

2. Genesis of the thymus microenvironment

The thymus parenchyma is characterized by a succession of 
different microenvironments that offer specific assistance 
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to several T-cell maturation steps. This complex cellular 
architecture of the thymus parenchyma has its origin in the 
heterogeneous embryonal genesis of the organ. The long-held 
understanding that the thymus develops in the embryo from 
the endoderm of the third pharyngeal pouch, and from the 
ectoderm of the branchial clefts and related mesenchyma, 
which derive from pharyngeal arch (13,14), has been chal-
lenged. In their study, Gordon  et al  (15) showed through 
labelling experiments that ectoderm may not be involved in 
thymus genesis, and that endoderm cells alone seem to be 
sufficient to generate a complete thymic microenvironment. 
Recently, several studies have provided more support for the 
̔endodermic-centric̓ model of thymus organogenesis (16).

In the human foetus at about the 9th week of embryonal 
life, the thymus primordium begins to be invaded by lymphoid 
stem cells, and following this invasion the epithelial stroma 
becomes reticulated. During the 9th to 12th week of embry-
onal life, the surface of the thymus primordium becomes 
indented by mesenchymal septae, which begin to separate 
thymus parenchyma into pseudolobuli. In the 17th week of 
embryonal life, these septae reach the cortico-medullary junc-
tion. At the 12th week of embryonal life, the differentiation 
of cortex and medulla becomes evident, and is completed at 
approximately the end of the 4th fetal month. From that point 
on, the thymus delivers thymocytes to the peripheral lymphoid 
organs and is to be considered fully functional. In the post-
natal thymus, extended perivascular spaces with argyrophilic 
fibers, containing capillaries, arterial venous blood vessels and 
lymphatic vessels, sprouting from these septae, are predomi-
nantly found between the cortex and medulla (17).

The thymus continues to grow between birth and puberty 
and then begins its atrophic phase, when the organ is primarily 
replaced with fat (a phenomenon known as ̔organ involution̓). 
The atrophy is accompanied by increased circulating levels 
of sex hormones. Notably, it has been observed that chemical 
or physical castration of an adult subject results in the thymus 
increasing in size and activity (18). During this organ involution, 
the thymus becomes progressively smaller, and its micro-
anatomy changes significantly with a loss of thymic epithelial 
cells (TEC) and a decrease of lymphopoiesis (17,19). However, 
remnants of thymic epithelial tissue with a cortical lymphocyte 
population are preserved, and for the entire life of the subject 
the thymus acts as a site of T-cell differentiation and matura-
tion, with only partial reduction of endocrine physiology (17).

The macroscopic structure of the mature thymus organ 
is divided into lobules that have an outer part known as the 
cortex and an inner core known as the medulla, separated by 
the cortico-medullary border. T-cell maturation and develop-
ment occur along a cortico-medullary cell gradient, in which 
immature T-cells acquire step by step a particular expres-
sion of the membrane factor, following exposure to different 
signals regulated by a complex interaction with the thymic 
microenvironment. Furthermore the T-cell maturation steps, 
along cortical thickness, have evidenced a different expression 
of pro-thymocyte membrane proteins that lead to subdivision 
of the cortex into the outer and deep cortex (20,21). An impor-
tant site inside the thymus parenchyma is the perivascular site, 
through which immature T cells enter the thymus (cortical 
perivascular site) or exit the thymus when mature (medullar 
perivascular sites). In particular, the perivascular spaces at 

the cortico-medullary junction are narrowly interdigitated 
with the thymic epithelial tissue and are the site of exchange 
between the thymic epithelial region and the periphery. Both 
lymphatic stem cells as well as precursors of macrophages, 
presumably monocytes, invade the thymus and settle in the 
presumptive cortex and medulla of the fetal thymus (22-24).

The different regions into which the thymus parenchyma is 
divided show unusual cytological characteristics with complex 
humoral and paracrine relationships between stromal cells and 
developing pro-thymocytes.

The thymic epithelium is the major component of the 
thymic microenvironment and plays important and multifac-
eted roles in early events of T-cell differentiation (25,26) in 
at least two distinct ways: ⅰ) through secretion of a variety of 
polypeptides and thymic hormones and ⅱ) through cell‑to-cell 
contacts, including those occurring through classical adhe-
sion molecules  (10,25,27). However, the submorphological 
aspects are not only different in the TEC types, but there 
are also distinctions in the antigenic pattern (10,25). Van de 
Wijngaert et al (28), studying sections obtained from healthy 
donors, classified epithelial cells into six types, according to 
their ultrastructural appearance and location in the human 
thymus. More recently, transmission electron microscope 
observations have confirmed that there are four functional 
subtypes of medullar reticulo-epithelial (RE) cells; according 
to their morphological appearance, these subtypes are termed 
undifferentiated, squamous, villous and cystic (26).

The structure of the ECM is also important in defining 
the properties of thymus microenvironments as it affects 
the reciprocal relationships between cells and tissue organi-
zation (29-31). The ECM of the thymus is a well-organized 
macromolecular system containing collagen (types I and IV) 
and other glycoproteins (fibronectin, laminin), with a variable 
composition in different compartments of the organ  (32). 
Of note, although chemokines and ECM proteins can drive 
thymocyte migration, a combined role of these molecules 
likely concurs for the resulting migration patterns of thymo-
cytes in their various differentiation stages. Among ECM 
moieties, there are proteins with opposing functions, such as 
laminin or fibronectin vs. galectin-3, which promote, respec-
tively, adhesion and de-adhesion of thymocytes to the thymic 
microenvironment  (33). Thus, the physiological migration 
of thymocytes should be conceived as a resulting vector of 
multiple, simultaneous or sequential stimuli, involving chemo-
kines, adhesive and de-adhesive ECM proteins (31). Moreover, 
these interactions may be physiologically regulated in situ by 
matrix metalloproteinases (MMPs) (34,35) and hormonally 
regulated (9,36).

3. Endocrine function of the thymus microenvironment

Thymus physiology is pleiotropically influenced by hormones, 
but it also expresses endocrine functions, secreting several 
humoral factors, such as thymopoietin and the thymosins, which 
are involved in the maturation of prothymocytes and assist 
mature thymocytes in their peripheral tissue colonizing (9,37).

The thymic hormones are produced by the RE cellular 
network of the thymic stromal cellular microenvironment. The 
thymic hormones have different influences on T-cell matura-
tion: thymopoietin induces the phenotypic differentiation of 
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T precursors; β-3 and β-4 thymosins induce maturation of 
prothymocytes; α-7 thymosin is involved in the generation of 
suppressor T lymphocytes; and α-1 thymosin influences the 
early and late stages of T maturation (37,38). The intrathymic 
compartmentalization of secretory cells is also noteworthy, in 
that it corresponds to various stages of T-lymphocyte differ-
entiation (39).

Thymic RE cells also produce numerous cytokines, 
including IL-1, -3, -6, -7 and G-CSF, M-CSF, which likely are 
important during the various stages of thymocyte activation 
and differentiation (26,29,40).

In the RE cells of the thymus we have a unique phenom-
enon of molecular biology, because there is the presence of 
pituitary hormones, such as growth hormone, prolactin, adre-
nocorticotopic hormone and thyroid-stimulating hormone, as 
well as secretion of neuropeptides, production of a number of 
interleukins and growth factors, and expression of the recep-
tors for all these substances (9,41).

4. Anatomy of thymus innervation

The anatomical innervation of the thymus is complex, due 
to the numerous nerve pathways that supply it. The human 
thymus is innervated by nerve fibers originating from postgan-
glionic cell bodies located in the superior cervical and stellate 
ganglion (formed by the fusion of the third cervical ganglion 
with the first thoracic ganglion) of the sympathetic chain (42). 
These nerve fibers reach the thymus through the perivascular 
plexus, leading the sympathetic component of visceral inner-
vation. In addition, the thymus is reached by fibers running 
into the vagal branches of the superior and inferior (or recur-
rent) laryngeal nerve. There is debate regarding whether these 
fibers are parasympathetic (12,43-46) or not (47,48). All these 
nerve fibers form a rich perivascular plexus that branches 
along parenchymal vessels, thus becoming the access way 
for nerve fibers. In this case, the sympathetic and parasym-
pathetic component may be mixed and cause some enigmatic 
responses (49). Sympathetic and parasympathetic nerve fibers 
enter the thymus along with blood vessels and branch into the 
cortex, the capsular and septal system, the cortico-medullary 
junction and the medulla (11,50) (Fig. 1A).

The sympathetic noradrenergic innervation. The sympathetic 
noradrenergic innervation of the thymus has been identified 
as tyrosine hydroxylase (TH) immunohistochemical‑positive 
nerve fibers (51). In the subcapsular area around vasculature, 
noradrenergic nerve profiles are predominantly limited to the 
cortex with a slightly higher density near the cortico-medullary 
junction. At this level, noradrenergic fibers of septal origin run 
in venous sinuses, and from that point they reach the thymic 
cortex and medulla (50,52).

Several direct interactions have been described between 
noradrenergic nerve fibers and thymus parenchymal cells such 
as mast cells (53,54), cortico-medullary macrophages (53), and 
TEC of deep cortex and medulla (55). Even if conventional 
electron microscopy was unable to identify specific contacts 
between these cells and sympathetic neuroeffector junctions, 
it has been supposed that a diffusible release of neurotransmit-
ters may influence the physiology of these cells (56). The strict 
association of noradrenergic fibers with thymus stromal cells 

and TEC strongly supports the hypothesis that the secretory 
activity of epithelial cells is subject to neuroimmuomodula-
tion  (57). Previous studies have demonstrated that in the 
thymus, the release of noradrenaline from sympathetic nerve 
terminals is of axonal and vesicular origin (51,58).

Noradrenaline released from nerve terminals seems to 
have a direct role in the maturation of thymocytes, mediated 
through the activation of β-adrenoceptors; it has been observed 
that noradrenaline inhibits the proliferation of thymocytes and 
promotes their differentiation in vitro (39,57,59). Noradrenergic 
nerve fibers run in close contact with TEC, and TEC expresses 
β-adrenoceptors (55,56). The same type of TECs form the 
blood-thymus barrier in the outer thymic cortex, and may 
be targeted by noradrenaline released from perivascular 
nerves to regulate the entry trafficking of proto-thymocytes. 
Furthermore, some types of TECs are also the main cells 
responsible for performing thymus microenvironment, in 
which the relationships between TEC and noradrenergic 
fibers may directly affect the maturation and differentiation of 
thymocytes to T-lymphocytes (57,60,61).

Other sympathetic catecholamines have been found in 
thymus parenchyma as well (11,54,58,62). In particular, it has 
been observed that catecholamines influence the synthesis 
of cytokines, which are known to affect the T-cell prolifera-
tive/differentiative program (63).

It should be noted that direct production of noradrena-
line  (64), dopamine  (65,66) and other catecholamines has 
been found in thymocytes and stromal cells, which act in 
an autocrine/paracrine manner to regulate several immune 
functions such as differentiation, apoptosis and cytokine 
production (39,63).

The parasympathetic innervation. The parasympathetic 
innervation of the thymus has been demonstrated by acetyl-
cholinesterase (AChE) or choline acetyltransferase (ChAT) 
histochemistry  (44). The two methods have yielded some 
variable results, and therefore there is still doubt as to whether 
there is parasympathetic innervation of the thymus (47,48). 
However, several authors have delineated the presence of para-
sympathetic fibers, consisting primarily of non-myelinated 
C-fibers (12,43,67,68). They pass from the capsular region 
to the cortex and reach the medulla running in association 
with blood vessels (12,68,69). In vivo studies of the effects 
of efferent vagal innervations of rat thymus have shown that 
nicotinic receptors mediate mechanisms responsible for 
lymphocyte release from the thymus (70).

The neurotransmitter acetylcholine is involved in the mutual 
interplay between developing T cells and thymic epithelium, and 
thereby may influence the generation of T-cell repertoires (71,72). 
Moreover, cholinergic agonists may influence T-cell maturation, 
negatively affecting thymocyte apoptosis (nicotinic effect) (73). 
Thymic acetylcholine is mainly derived from thymocytes them-
selves, and its production and release depend on the activation 
of thymic lymphocytes (71,72). The occurrence of acetylcholine 
secretion by cells of thymus parenchyma renders cholinergic 
innervation unclear.

Thus, sympathetic noradrenergic and parasympathetic 
cholinergic nerve fibers innervate the vasculature and paren-
chymal fields of the thymus: the noradrenergic innervation is 
prominent in the subcapsular area, the deep cortex and the 
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connective tissue of the organ (capsule, interlobular septae) 
while cholinergic nerve endings are observed in the cortex and 
abundantly at the corticomedullary junction.

Another minor component of the thymus nerve supply is 
the phrenic nerve, a somatic nerve originating in the cervical 
plexus (74). The phrenic nerve accesses the intraparenchymal 
subcapsular region directly through the connectival capsula of 
thymus lobules, forming a rich subcapsular intraparenchymal 
plexus without being involved in the perivascular plexus. 
Phrenic nerve branching has not been found in other regions 
of thymic parenchyma outside the subcapsular region (12).

The strict association between nerve fibers and blood 
vessels strongly supports the hypothesis that autonomous 
innervation is also involved in controlling T-cell trafficking, 
i.e., both entry of T cells into the thymus and their exit from 
the thymus as mature T cells.

The dopaminergic system in the thymus. Although modulation 
of immune responses by the noradrenergic system and its main 
neurotransmitter, noradrenaline, as well as adrenaline, has 
been extensively investigated (75), little information is avail-
able concerning modulation by the other catecholamines such 
as dopamine. It was previously shown that the dopaminergic 
system is essential in the intrathymic microenvironment for 
modulating and coordinating the homeostasis of thymocyte 
survival or death by apoptosis (76,77).

Experimental findings have indicated that the thymus 
expresses a dopaminergic system characterized by the presence 
of dopamine, vesicular monoamine transporters and the five 
subtypes of dopamine receptors (66,78). In particular, in the rat 
thymus, the dopamine system was found to be expressed in the 
cortico-medullary junction and in the medulla, but not in the 
thymic cortex (12). However, DAT immune reaction was also 
found in the wall of arteries located in the septa of connective 
tissue as well as in the medulla, with a reticular localization 
and an apparent negative reaction of thymocytes (78). Other 
authors have identified dopamine synthesis and storage in 
dendritic cells, indicating a functional role of dopamine in 
cell-cell communication in the thymic microenvironment as 
well (65).

Following specific denervation (12), the persistence of D1 
and D2 receptor expression in the thymus medulla was shown, 
while dopamine and DAT disappeared with the loss of sympa-
thetic innervation, indicating their specific location on nerve 
fibers. These findings suggest that dopamine originates from 
thymus parenchymal cells and from sympathetic neuroeffector 
plexuses, and is released in the lymphoid microenvironment, 
emphasizing the importance of a paracrine/secretory loop of 
dopamine within the thymus microenvironment (65,79).

Dopamine receptors have been identified in peripheral 
mature lymphocytes (80). High doses of dopamine in vitro 
may inhibit mitogen-induced proliferation and promote apop-
tosis in lymphocytes (81-83). Data from in vivo studies have 
provided conflicting results, with evidence for both stimulatory 
and inhibitory effects of dopamine on lymphocyte func-
tion (84-86). However, previous studies have offered a detailed 
focus on the action of dopamine in lymphocytes. In human 
T cells, during TCR activation, D4 receptor was observed to 
be associated with lymphocyte quiescence by upregulating the 
transcription factor KLF2 (87). Following cytofluorimetric 

analysis, Mignini et al (77), found a modulated expression of 
dopaminergic markers on maturing thymocytes. In particular, 
during the lineage selection of thymocytes, the acquisition of 
the CD4+ or CD8+ identity of thymocytes is accompanied by 
particular modulation of dopaminergic system expression on 
the two cells (65,77,79).

Taken together, these findings indicate that the dopa-
minergic system is widely involved during the last steps of 
lymphocyte maturation in the thymus parenchyma.

5. Regulatory peptides

Regulatory peptides have been shown to be involved in the 
regulation of immune processes in several animal and human 
studies, and a role for neuropeptides in T-cell development 
has been investigated (9,88-90). In the human thymus, neuro-
peptides such as neuropeptide Y (NPY), vasoactive intestinal 
polypeptide (VIP), substance P (SP), calcitonin gene-related 
peptide (CGRP), and neurotensin (NT) have been described. 
These neuropeptides have been observed to be present in 
cells and nerve fibers, indicating a complex scenario in which 
neuropeptides seem to function as a secretory system and a 
modulator system of neurotransmission (11,90) (Fig. 1B).

NPY. Neuropeptide Y-containing (NPY+) nerve fibers have 
a distribution similar to that of TH-immunoreactive nerve 
fibers (53,69,91,92). Chemical denervation of noradrenergic 
nerve fibers with 6-hydroxydopamine  (6-OHDA) depletes 
NPY in the rat thymus, suggesting that NPY is co-localized 
with noradrenaline in sympathetic nerves (4,58). Nerve fibers 
containing NPY extend from the subcapsular and septal plex-
uses into superficial and deep cortical regions, the CM-J, and 
medulla, mainly detected in relation to the vasculature, while 
only a few NPY+ fibers were observed in the parenchyma of 
the same zone. The densest innervation occurs at the cortico-
medullary junction (90).

NPY+ fibers were observed to arborize between thymocytes 
and associated cells such as mast cells or macrophages (93). 
This intimate contact suggests a role for NPY in the devel-
opment of thymocyte modulation (94,95). In particular, the 
preferential localization of NPY fibers in perivascular spaces 
suggests that the effects of NPY in human thymus may be 
marked by compartment specificity, and may indicate a focal-
ised role for NPY in thymocyte migration (90). 

VIP. Several findings support the hypothesis that VIP may 
modulate thymocyte development. It is known that VIP distri-
bution is linked to key zones in the thymus lobule, and thus it is 
the primary signalling factor in modulating thymic responses 
to different stimuli (96). The distribution of VIP-positive fibers 
is similar to that of TH- and NPY-containing nerve fibers, 
although they are expressed with lower density (90,97). In all 
the thymus compartments, VIP immunoreactivity was observed 
with a varicose profile in perivascular sites and with a profile 
of very fine free fibers in parenchymal sites. A wide reticular 
pattern of VIP+ fiber staining was observed in the subcapsular 
zone, branching along the perivascular sites, and not in the 
parenchyma. In the septal zone, some VIP+ fibers left vessels to 
enter the deep cortex. In the deep cortex, the CM-J zone, and in 
the medulla, VIP+ fibers were present adjacent to blood vessels 



INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE  33:  1392-1400,  20141396

and free fibers in intraparenchymal sites. In thymus cortex and 
medulla, VIP immunoreactivity was also observed in cells, 
often in proximity to VIP+ fibers, whereas no VIP+ cell localiza-
tion was observed in the subcortical, septal or CM-J zones (90). 
The presence of VIP+ fibers and cells in the cortex lobular zone 
may be the neuroanatomical basis for the modulatory effect 
of VIP observed on the proliferation/apoptosis balance on 
CD4+CD8+ double‑positive thymocytes (88,98). Similarly, the 
presence of VIP+ fibers and cells in CM-J and medulla may 
be the neuroanatomical basis for the VIP downregulation of 
lymphocyte mobility from the thymus.

Functional findings have shown that VIP primarily affects 
three important aspects of thymocyte function: cytokine 
production, mobility and apoptosis. Through apoptosis, VIP 
affects T-cell development, participating in the generation and 
maturation of immune cells and in thymic response to stressful 
conditions. Immunomodulatory activity of VIP is mediated, at 
least in part, by the production of cytokines which are known 
to control intrathymic T-cell development (99).

In the human thymus, NPY and VIP are the main peptide-
rgic components in terms of diffusion, localized in cholinergic 
and adrenergic fibers, respectively (90).

Figure 1. (A) Graphic drawing of intrinsic innervation pattern of the thymus lobule. Green line, phrenic nerve fibers; red line, sympathetic nerve fibers; blue line, 
parasympathetic nerve fibers; orange line, dopaminergic-sympathetic nerve fibers. (B) Graphic drawing of neuropeptides pattern of the thymus lobule. Green 
line, SP+ nerve fibers; red line, neuropeptide Y-containing (NPY+) nerve fibers; blue line, VIP+ nerve fibers; violet line, neurotensin-immunopositive (NT+) 
nerve fibers; brown line, CGRP+ nerve fibers; green cells, SP+; blue cells, VIP+; violet cells, NT+; brown cells, CGRP+.
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SP. SP+ fibers were found to be associated with the vasculature 
and others were found freely branching in the parenchyma. 
In the subcapsular zone, SP+ fibers were observed as paren-
chymal fibers only, and were not associated with perivascular 
spaces. Instead, they were detected as the only neuropeptide-
positive fibers occurring in the subcapsular zone parenchyma. 
In deeper cortical zones, rare SP+ fibers were associated with 
perivascular sites. However, free SP+ fibers were distributed in 
parenchyma, mainly as branching of septal SP+ fibers. At the 
corticomedullary junction, SP+ fibers were found branching in 
association with the vasculature, with few SP+ fibers running 
towards the medullary zone which received only a sparse 
parenchymal innervation of SP+ fibers  (53,90,91). A close 
association was observed between free SP-immunoreactive 
fibers and macrophages at the corticomedullary junction, and 
between these nerve fibers and macrophages and mast cells 
along the capsule, interlobular septum and cortex (53,100,101).
SP+ cells exhibited a cell layer in subcapsular localization, and 
scattered cells were observed in the cortex and medulla. A close 
association was observed between free SP-immunoreactive 
fibers and SP‑positive cells (90,101).

The parenchymal, but not perivascular, distribution of 
SP+ cells in the subcapsular zone, and the occurrence of the 
well‑defined subcortical localization of SP+ cells, suggest an 
important role for this neuropeptide in the proliferation and 
first step of maturation of double‑negative (CD4-CD8-) thymo-
cytes (102). Mignini et al (90) have noted a similar distributive 
pattern of phrenic nerve fibers and SP+ fibers in the subcap-
sular zone of human thymus, an observation that suggests the 
potential co-localization of the two systems.

CGRP. CGRP-immunoreactive nerve fibers with vascular and 
parenchymal localization (53,91,93) were detected. Similar to 
SP+ fibers, these nerve fibers travel along the capsule and inter-
lobular septa and enter the thymic cortex from the septum. 
At the cortical level, these peptidergic fibers branch around 
immature thymocytes in cortical parenchyma or enter the 
medulla (92,100,101). SP-/CGRP-immunoreactive nerve fibers 
were also found adjacent to mast cells in the capsule, interlob-
ular septum, and at the corticomedullary junction (53,100,103). 

Sparse cells positive for CGRP were noted during the 
late embryonic period at the cortico-medullary boundary 
and in the medulla. The number of these cells increases in 
adulthood and is reduced in the thymus of aged mice (104). 
Thymic lymphocytes synthesize CGRP, which probably acts 
as a paracrine mediator in immune cells; intimate contact with 
macrophages and mast cells was observed (105).

Functional and pharmacological analyses have shown that 
CGRP mediates different immune responses of thymocytes 
via distinct receptor subtypes (106,107).

CGRP affects the proliferation of CD4-positive T cells, 
suggesting that the neuropeptide is an inhibitor of the prolif-
eration of virgin mature T cells while they remain in the 
thymus (106). Cytometric analysis revealed that in cultures the 
majority of thymocytes undergoing CGRP-induced apoptosis 
belong to the CD4/CD8- positive (double-positive/DP) cell 
types (107,108). Endogenous CGRP may serve as a natural 
inhibitor of inappropriate induction of mature, antigen-sensi-
tive cells in the thymus, as well as play a role in investigations 
on thymocyte.

CGRP and SP are likely fundamental physiological regula-
tory substances that are crucial in the differentiation, maturation 
and proliferation of thymocytes and are likely to be involved 
in the promotion of apoptosis in the thymus (102,107,108).

NT. Unlike observations in experimental animals (53,109) the 
occurrence of NT-immunopositive (NT+) fibers was detected 
in several zones of human thymus lobule, as free fine fibers. 
NT+ fibers was detected in the CM-J and medullary zones. 
Furthermore, NT+ cells were detected in the medullary zone of 
thymus lobule only and their appearance seems to be compat-
ible with TEC morphology (90).

The neuropeptide NT is known to be involved in the 
modulation of dopamine signalling in the brain (110). NT has 
been found to be expressed in human TEC (111) and it has 
been reported to modulate cell functions of both innate and 
adaptive immunity (112,113). The prevalent localization of 
NT on the medullary zone, where the thymus dopaminergic 
system has been specifically localized (12,66), may support 
this hypothesis, indicating that NT has a functional role in 
the thymus medullary environment (90). These findings lead 
us to hypothesize the potential involvement of NT in thymus 
dopaminergic signalling.

6. Conclusions

In the last three decades, strong evidence has been gathered for 
a functional link between the nervous and immune systems, 
opening a new area of investigation: the neuroimmune modu-
lation (10,11,58).

The rich nerve fiber network in the thymus parenchyma 
forms a complex scenario where T-lymphocyte maturation 
is under strict control. The large amount of data collected 
thus far indicates that there is step by step neuronal control 
of lymphocyte maturation in and release from the thymus. 
In addition, neurotransmitters involved in signal transmis-
sion are widely modulated by neuropeptide co-secretion, 
adding further complexity to the nervous system control on 
the thymus microenvironment and lymphocyte maturation. 
Furthermore, immune cells synthesize, store and release 
neurotransmitters and neuropeptides, performing a secretory/
paracrine activity that contributes to regulate the matura-
tion and function of immune cells. It is not of secondary 
importance that thymus parenchymal cells are able to secrete 
endocrine factor and are responsive to different circulating 
endocrine factors.

Alteration of these complex relationships has been associ-
ated with several diseases affecting the physiological function 
of the immune system, such as myastenia gravis, multiple 
sclerosis and functional alteration in aging (45,90,114).

The implications of these findings for immune system 
function merit particular attention, especially in the field of 
neurological disease, in which neurotransmitter signalling 
shows altered responses. Similarly, further study is needed to 
examine the therapeutic uses of drugs that affect neurotrans-
mitters, especially with regard to their side-effects on immune 
function.

Investigations into neuroimmune modulation may lead to 
improved understanding of the physiological and pathological 
mechanisms involved in the immune system.
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