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Abstract. Protection of cyclin-dependent kinase inhibi-
tors  (CDKIs) has been demonstrated in acute kidney 
injury (AKI). However, previous studies on CDKIs have mainly 
focused on CIP/KIP family members, with INK4 family 
members rarely being investigated. This study investigated the 
behaviors of p18INK4c (p18) in cisplatin-induced AKI using p18 
gene knockout mice (p18-/-). AKI was induced in p18-/- and 
wild-type (p18+/+) mice after a single cisplatin (12.5 mg/kg) 
intraperitoneal injection. Protection by p18 was identified by 
a comparison of survival, renal function and morphological 
injuries between p18-/- and p18+/+ mice. Further investiga-
tion of endoplasmic reticulum stress (ERS) was performed by 
western blot analysis in p18-/- and p18+/+ kidneys at day 3 after 
cisplatin injection. The results revealed that after cisplatin injec-
tion, the survival of p18-/- mice was significantly shorter than 
that of p18+/+ mice, accompanied by aggravated renal function 
and more severe morphological injuries. Deletion of p18 also 
significantly aggravated ERS in cisplatin-induced AKI. In 
conclusion, p18 exerts protective effects on cisplatin‑induced 
AKI, which may be associated with the effect of p18 on cell 
death pathways, such as the ERS pathway.

Introduction

Acute kidney injury  (AKI) is a life‑threatening condition 
with high morbidity and mortality, even in patients who have 
received medical intervention. As there is a lack of effective 
remedies for AKI other than dialysis, experimental efforts 
are being made to explore the pathogenesis of AKI and to 
seek materials with therapeutic potency. Cell cycle arrest is 
known to be beneficial for repairing of damaged DNA, thereby 

reducing the severity and teratogenicity of the injury (1). For 
this reason, cyclin-dependent kinase inhibitors (CDKIs) have 
been much investigated and have proven to possess cell protec-
tive properties in AKI (2-10). It is therefore believed that cell 
cycle regulation is a potential remedy for the treatment of AKI.

Based on sequence and the inhibitory effects they exert on 
cyclin-dependent kinase (CDK), the seven CDKIs are divided 
into two families. The CIP/KIP family includes p21, p27 and 
p57, which act with multiple CDK and extensively inhibit the 
cell cycle (11). The INK4 family includes p16, p15, p18 and p19, 
which only interact with CDK4/6 and specifically arrest the cell 
cycle in early G1 phase (12). CDKIs studies in AKI have mainly 
focused on the CIP/KIP family, especially p21, which has been 
identified as the protective factor in AKI (5-10). Compared to 
CIP/KIP family members, the role of INK4 members in AKI 
has yet to be determined. However, previous studies have 
reported that some novel additional biological functions are 
present in INK4 family members, such as p16 and p19. P16 
controlled apoptosis induced by ultraviolet light and cisplatin 
through the intrinsic mitochondrial cell death pathway (13-14). 
Overexpression of p19 conferred resistance to cells exposed to 
UV irradiation (15-16).

Therefore, we hypothesized the beneficial behaviors of p18 
and investigated its role in cisplatin-induced AKI using p18-/- 
mice. As oxidative stress is important factor in cisplatin‑induced 
AKI, we also investigated the effect of p18 on cisplatin-induced 
endoplasmic reticulum stress (ERS) in an attempt to elucidate 
the possible mechanism involved in p18 actions.

Materials and methods

Animals. P18+/-mice in a C57BL/6 and 129/Sv background 
were kind gifts from Professor Tao Cheng of the laboratory 
of Cancer Research Center at Pittsburgh University. P18-/- or 
p18+/+ mice were generated from p18+/- breeding pairs. The 
mice were genotyped by a PCR approach, using tail DNA as 
previously described (17).

The primer sequences for genotype identification included: 
p18 WT forward, 5'‑AGCCATCAAATTTATTCATGTTGC 
AGG‑3'; p18 MG-47 reverse, 5'‑CCTCCATCAGGCTAATG 
ACC‑3'; and PGKNEO reverse, 5'‑CCAGCCTCTGAGCCCAG 
AAAGCGAAGG‑3'.

The detailed characteristics of the p18-/- mice were  previ-
ously described by Franklin et al (18). Briefly, p18-/- mice grew 
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and developed to become larger in body size than their p18+/+ 
littermates. Accordingly, the heart, liver and kidneys of the 
p18-/- mice exhibited proportional organomegaly; however, no 
abnormal structures, such as hepatic hypertrophy, glomerular 
sclerosis, diffuse kidney tubular atrophy, or dermal abnormali-
ties, were detected in p18-/- mice.

Littermates or age-matched male mice (8-12 weeks) were 
used in our experiments. The animals were housed in a specific 
pathogen‑free facility with access to water and food ad libitum 
at the Second Military Medical University Animal Center. All 
procedures were approved by the Ethics Committee of the 
Experimental Animals Center of the University.

Animal experiments. AKI was induced by a single intraperi-
toneal injection of cisplatin (Sigma, St.  Louis, MO, USA) at a 
dose of 12.5 mg/kg in p18-/- (n=35) and p18+/+ (n=35) mice, 
while the controls (n=15) were injected with isovolumic saline.

After cisplatin injection, the 28-day survival of p18-/- (n=15) 
and p18+/+ (n=15) mice was determined, while the other animals 
were dealt with at day 3 after the injection. Blood samples were 
collected using the method of eye enucleation. Kidneys were 
collected after the animals were sacrificed by cervical disloca-
tion. Kidneys and blood were collected at day 3 after cisplatin 
injection for morphological and renal function analysis. Serum 
creatinine (SCr) and urea nitrogen were determined by enzy-
matic colorimetric assay. Kidney tissues were stained with 
hematoxylin and eosin (H&E) and morphological assessment 
was determined under light microscopy by the same experienced 
histologist. Tubular necrosis, brush border loss and cast forma-
tion were used as the main damage parameters. Scoring was 
performed according to the percentage of damaged tubuli in the 
kidney as follows: I, 0-25%; II, 25-50%; III, 50-75%; IV, >75%.

Terminal deoxynucleotidyl‑transferase-mediated dUTP 
nick end‑labeling (TUNEL) and analysis of ERS signal 
proteins by quantitative PCR (qPCR) and western blot analysis 
were performed at day 3 after cisplatin injection for the p18-/- 
and p18+/+ kidneys.

TUNEL. A commercial kit (Fuzhou Maixin Biotechnology 
Development Co., Ltd., Fuzhou, China) was used to detect 
apoptotic cells for in situ kidneys. Briefly, paraffin-embedded 
sections were deparaffinized in xylene and rehydrated through 
graded concentrations of ethanol. After being washed with 
PBS, the sections were treated with 0.5% pepsin at 37˚C for 
8 min, and 0.3% Triton X-100 for 10 min at room tempera-
ture. To inactivate endogenous peroxidase, the sections were 
incubated in 3% H2O2 at 37˚C for 15 min and then incubated 
with terminal deoxynucleotidyl transferase (TdT) in a humid 
chamber at 37˚C for 1 h. The signals were detected with a 
horseradish peroxidase-conjugated sheep anti-alkaline phos-
phatase antibody. Quantitative measurement of apoptotic cells 
was performed by examining 10 randomly selected fields 
under a light microscope (magnification, x400) in the cortex. 
Twelve sections from at least six animals of each group were 
counted, and the data were presented as the mean number of 
apoptotic cells in each HPF field. Differences were considered 
statistically significant if P<0.05.

qPCR. Total RNA was extracted from kidney tissues (renal 
cortex) by means of the TRIzol reagent  (Invitrogen Life 

Technologies, Carlsbad, CA, USA), and an RT kit (Takara Bio, 
Inc., Shiga, Japan) was used to synthesize cDNA. The expres-
sion of signal proteins in ERS was determined by qPCR using 
the ABI PRISM 7000 Sequence Detection System, and PCR 
reactions were performed using the SYBR‑Green real-time 
PCR Master mix (Toyobo Co., Ltd., Osaka, Japan). The ribo-
somal gene 18S (18S rRNA) was selected as an endogenous 
reference and the samples were assayed in triplicate. Based on 
the analysis by the ΔΔCt method, the expression of the target 
genes was determined. The primer sequences used for qPCR 
were: 18S  rRNA forward, 5'‑AGGAGTGGGCCTGCGGC 
TTA‑3' and reverse, 5'‑GCCGGGTGAGGTTTCCCGTG‑3'; 
Grp78 forward, 5'‑AGACATTTGCCCCAGAAGAA‑3' and 
reverse, 5'‑ATCTTTGGTTGCTTGTCGCT‑3'; Grp94 
forward, 5'‑TGAAGGAGAAGCAGGACAAAA‑3' and 
reverse, 5'‑AGTCGCTCAACAAAGGGAGA‑3'; and 
CCAAT/enhancer-binding protein‑homologous protein 
(CHOP) forward, 5'‑TATCTCATCCCCAGGAAACG‑3' and 
reverse, 5'‑GGACGCAGGGTCAAGAGTAG‑3'.

Western blot analysis. Protein was extracted from the 
renal cortex using a lysis buffer containing 50  mM 
Tris-HCl (pH 8.0), 50 mM NaCl, 50 mM sodium fluoride, 
0.1% Nonidet P-40, 5 mM EDTA, 2 mM phenylmethylsul-
fonyl fluoride, 1  mM dithiothreitol, 10  µg/ml leupeptin, 
2 µg/ml pepstatin, and 1 µg/ml aprotinin. After a 30-min 
incubation on ice, the lysates were heated at 100˚C for 15 min 
and centrifuged at 12,000 x g for 15 min at 4˚C. Lysates 
containing equal amounts of proteins (100 µg) were dissolved 
in an SDS sample buffer, separated on 12% SDS slab gels 
and transferred electrophoretically onto polyvinylidene 
difluoride (PVDF) membranes. Equal protein loading and 
protein transfer was confirmed by Ponceau S staining. After 
blocking with 5% non-fat dry milk in TBST, the membrane 
was incubated at 4˚C overnight with the following primary 
antibodies: mouse anti-GAPDH (1:5,000 dilution; Kangcheng 
Biotechnology, Shanghai, China), rabbit anti-p18 (1:200 dilu-
tion; Santa Cruz Biotechnology, Inc., Santa Cruz, CA, USA), 
rabbit anti‑grp78 (1:1,000 dilution), rabbit anti-phosphorylation 
of pancreatic ����������������������������������������������endoplasmic reticulum (�����������������������ER) eukaryotic transla-
tion initiation factor  2α  (eIF2α) kinase  (PERK)  (1:1,000 
dilution), rabbit anti-phospho-PERK  (1:1,000 dilution), 
rabbit anti-eIF2α (1:1,000 dilution) and rabbit anti-phospho-
eIF2α (1:1,000 dilution) (all from Cell Signaling Technology, 
Beverly, MA, USA). After washing, a horseradish peroxidase-
conjugated secondary antibody was applied. Proteins that 
bound to the secondary antibody were visualized using 
ECL (Amersham Pharmacia Biotech, Amersham, UK).

Statistical analysis. Data are presented as mean ± SD and 
were analyzed for significance using an ANOVA model. 
Comparisons between the two groups were made using the 
t‑test or Wilcoxon-Mann-Whitney test. Differences were 
considered tatistically significant if P<0.05.

Results

Deletion of p18 aggravated cisplatin-induced AKI. As shown 
in Fig. 1, the 28-day survival of p18-/- mice was significantly 
worse than that of their p18+/+ counterparts. All 15 p18-/- 
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mice died at day 7 after cisplatin injection, while the 7-day 
survival rate for the p18+/+ mice was 53.3%, with no deaths 
occurring in p18+/+ mice from day 8 to 28. A significant 
difference was observed between the survival curves of 
p18-/- and p18+/+ mice after cisplatin injection (P<0.05 for 
the log-rank test).

Compared to p18+/+ mice, aggravated urea nitrogen 
(Fig. 2A) and creatinine (Fig. 2B) of p18-/- mice was demon-
strated at day 3 after cisplatin injection.

Aggravated morphological changes were present in p18-/- 
mice at day 3 after cisplatin injection as demonstrated by H&E 
staining (Fig. 3 and Table Ⅰ) and TUNEL assessment (Fig. 4). 
A higher degree of kidney damage and a higher percentage of 
apoptotic cells were present in p18-/- kidneys as compared to 
p18+/+ kidneys at day 3 after cisplatin injection.

Deletion of p18 aggravated cisplatin-induced ERS. As shown 
in Fig. 5, the expression of molecular chaperones grp78 and 
grp94 mRNAs was upregulated in kidneys of animals with 
AKI at day 3 after cisplatin injection. However, compared to 
p18+/+ mice, the basal and inducible expression of grp78 and 
grp94 mRNAs was significantly higher in the p18-/- mice. 

Similar results were observed in the analysis of CHOP mRNA, 
a particular transcription factor activated by ERS.

Results were confirmed by western blot analysis (Fig. 6). 
The renal expression of grp78 protein was upregulated after 
cisplatin injection in p18-/- and p18+/+ mice. Compared to 
p18+/+ mice, the basal and inducible renal expression of grp78 
protein was significantly higher in p18-/- mice.

As a rapid response to ERS, PERK was also analyzed by 
western blot analysis. The degree of PERK/eIF2α phosphory-

Figure 2. Deletion of p18 aggravated animal renal function after cisplatin 
injection. Compared to p18+/+ mice, (A) urea nitrogen and (B) creatinine 
were increased significantly in p18‑/‑ mice after cisplatin injection. Six ani-
mals were sacrificed at each time point for renal function analysis. *P<0.05 
for p18‑/‑ mice vs. p18+/+ mice at various time points.

Figure 1. Deletion of p18 aggravated animals' survival after cisplatin injec-
tion. All 15 p18‑/‑ mice died at day 7 after cisplatin injection, while 7‑day 
survival rate for the p18+/+ mice was 53.3%, with no deaths occurring in 
the p18+/+ mice from day 8 to day 28. The 28‑day survival of the p18‑/‑ 
mice was significantly worse than that of the p18+/+ mice after the cisplatin 
injection (P<0.05 for the log‑rank test).

Table Ⅰ. Histological assessment of p18-/- and p18+/+ mice at 
day 3 after cisplatin (12.5 mg/kg, i.p) injection.

	 No. of mice in each grade
	 --------------------------------------------------------------------------------
Groups	 I	 II	 III	 IV

p18-/- (n=15)	 0	 2	 6	 7
p18+/+ (n=15)	 0	 4	 8	 3

For this assessment, 15 mice in each group were analyzed. The 
scoring was according to the proportion of damaged tubuli in the 
renal cortex, which was graded as follows: I, 0-25%; II,  25-50%; 
III, 50-75%; IV, >75%. Two slides for each mouse were randomly 
selected to determine the grade and all the slides were assessed by the 
same experienced histologist.

Figure 3. More severe lesions were present in p18‑/‑ mice after cisplatin 
injection. No apparent difference existed in the kidney morphology between 
p18‑/‑ and p18+/+ mice at day 3 after saline injection. However, more severe 
lesions and loss of tubular integrity were present in p18‑/‑ mice at day 3 after 
cisplatin injection. Representative morphological images are shown [hema-
toxylin and eosin (H&E); magnification, x400].
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lation was higher in p18-/- mice as compared to that of p18+/+ 
mice after cisplatin injection (Fig. 7).

Discussion

Clinical use of cisplatin is largely limited due to drug resis-
tance and nephrotoxicity (19-20). Since the mechanism by 
which cisplatin produces its nephrotoxic effect is similar to 
human AKI (21-22), AKI animals were administered cisplatin.

As the manifestation of cisplatin nephrotoxicity is apop-
tosis and/or necrosis, cell death pathways were involved in the 
mechanism of cisplatin nephrotoxicity. Previous studies have 
confirmed that in addition to the classical death-receptor and 
mitochondrial pathways (23-26), the ERS pathway is activated 
in cisplatin-induced kidney injury in vitro and in vivo (27-30). 
Therefore, the effect of p18 deletion on the ERS pathway was 
investigated to elucidate the actions of p18 in cisplatin-induced 
AKI. In ERS, the unfolded protein response (UPR) was identi-
fied and considered to interpret the mechanism of ERS-induced 
apoptosis (31-35). Three transmembrane proteins are activated 
in UPR: inositol-requiring enzyme-1 (IRE1), PERK and acti-
vating translation factor-6 (ATF6). In this study, upregulation 
of the molecular chaperones and CHOP and activation of the 
PERK/eIF2α pathway were analyzed to evaluate ERS severity 
in cisplatin-induced AKI.

It was found that p18 exerted protective actions in 
cisplatin‑induced AKI. Compared to p18+/+ mice, p18-/- mice 
exhibited a higher degree of kidney damage, accompanied with 
aggravated renal function and worse survival after cisplatin 
injection. Deletion of p18 also aggravated cisplatin-induced 
ERS. Compared to p18+/+ mice, the basal and inducible 
expression of the molecular chaperones (grp78 and grp94) 
and transcription factor (CHOP) in kidney were significantly 

Figure 4. A higher percentage of apoptotic cells was present in p18‑/‑ mice after cisplatin injection. (A) Compared to p18+/+ mice, more apoptotic cells were 
observed in kidneys of p18‑/‑ mice at day 3 after cisplatin injection. Apoptotic cells are shown by arrows. (B) For statistical analysis, apoptotic cells were 
counted at 10 unrepeated cortical fields under light microscopy (HPF; magnification, x400), 12 sections were counted, which were obtained from at least six 
animals. Data are shown as the mean number of apoptotic cells in each HPF field. *P<0.05 for p18+/+ vs. p18‑/‑ mice.

Figure 5. Deletion of p18 aggravated cisplatin‑induced endoplasmic reticulum 
stress (ERS) demonstrated by the basal and inducible expression of grp78, 
grp94 and CCAAT/enhancer-binding protein‑homologous protein (CHOP) 
mRNAs. Compared with saline injection, (A)  grp78, (B)  grp94 and 
(C) CHOP mRNAs were upregulated after cisplatin injection in p18+/+ (WT) 
and p18‑/‑ (KO) mice. However, the basal and inducible expression of these 
target genes was significantly higher in p18‑/‑ (KO) mice. Data are shown 
as mean ± SD. At least three independent experiments were performed for 
identification and statistical analysis. #P<0.05 for p18+/+ vs. p18‑/‑ mice after 
saline injection; *P<0.05 for p18+/+ vs. p18‑/‑ mice after cisplatin injection.
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higher in the p18-/- mice. The degree of PERK/eIF2α phos-
phorylation was also higher in p18-/- mice kidneys compared 
to p18+/+ mice after cisplatin injection. These results indicate 
that the effect of p18 on cell death pathways, such as the ERS 
pathway, may be the facet of its protective mechanism in 
cisplatin-induced AKI. However, other classical death path-
ways affected by p18 cannot be excluded as they were not the 
focus of our investigation.

P18, as a member of the INK4 family, is different from p21, 
whose protection in cisplatin-induced AKI has been demon-

strated in previous studies (2-10). Protection of p21 occurs 
mainly due to the inhibitory effect on CDK2 activity, which 
has been demonstrated as an important factor in the promo-
tion of apoptosis in cisplatin-induced AKI (36-37). However, 
the INK4 family members only interact with CDK4/6 and 
arrest the cell cycle in the early G1 phase, with no direct 
interaction with CDK2 (12,38). INK4 family members are 
also considered to be involved more in cell differentiation than 
CIP/KIP family members as they are often mutant or deleted 
in a number of tumors (39). No abnormality or defect exists 

Figure 6. Deletion of p18 aggravated cisplatin‑induced endoplasmic reticulum stress (ERS) demonstrated by the expression of grp78 protein. Compared with 
saline injection, grp78 protein was upregulated after cisplatin injection in the p18+/+ (WT) and p18‑/‑ (KO) mice. However, the basal and inducible expressions 
of grp78 protein was significantly higher in p18‑/‑ (KO) mice. Data are shown as mean ± SD. At least three independent experiments were performed for 
identification and statistical analysis. *P<0.05.

Figure 7. Deletion of p18 aggravated cisplatin‑induced endoplasmic reticulum stress (ERS) demonstrated by the phosphorylation of phosphorylation of pan-
creatic endoplasmic reticulum (ER) eukaryotic translation initiation factor 2α kinase (eIF2α) (PERK)/eIF2α pathway. Compared with the saline injection, 
the phosphorylation of (A) PERK and (B) eIF2α was observed in p18+/+ (WT) and p18‑/‑ (KO) mice after cisplatin injection. However, the degree of the 
phosphorylation was much higher in p18‑/‑ (KO) kidneys compared to the p18+/+ (WT) kidneys. Data are shown as mean ± SD. At least three independent 
experiments were performed. *P<0.05 for p18+/+ vs. p18‑/‑ mice after cisplatin injection.
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in p21 gene knockout mice, whereas p18 gene knockout mice 
acquire pituitary tumors with age (18,40). These limitations 
may be the possible reasons for INK4 members rarely being 
investigated in AKI. However, some studies have reported the 
involvement of INK4 family members in the cell response to 
genotoxic agents, such as p16 and p19 (13-16), as well as p18. 
These observations suggest that INK4 family members also 
exert protection and are involved in organ injury, despite the 
differences between the INK4 and CIP/KIP family members.

In conclusion, protection of p18 was demonstrated in 
cisplatin-induced AKI by using p18 gene knockout mice in 
this study. The main results of this study are the finding that 
p18 regulates cell death pathways, such as the ERS pathway, 
against cisplatin-induced AKI, although the exact signal 
transduction pathways connecting p18 to cell death pathways 
remain to be investigated in detail.
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