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Abstract. The fine-needle aspiration of thyroid nodules and 
subsequent cytological analysis is unable to determine the 
diagnosis in 15 to 30% of thyroid cancer cases; patients with 
indeterminate cytological results undergo diagnostic surgery 
which is potentially unnecessary. Current gene expression 
biomarkers based on well-determined cytology are complex 
and their accuracy is inconsistent across public datasets. In the 
present study, we identified a robust biomarker using the differ-
ences in gene expression values specifically from cytologically 
indeterminate thyroid tumors and a powerful multivariate search 
tool coupled with a nearest centroid classifier. The biomarker is 
based on differences in the expression of the following genes: 
CCND1, CLDN16, CPE, LRP1B, MAGI3, MAPK6, MATN2, 
MPPED2, PFKFB2, PTPRE, PYGL, SEMA3D, SERGEF, 
SLC4A4 and TIMP1. This 15-gene biomarker exhibited superior 
accuracy independently of the cytology in six datasets, including 
The Cancer Genome Atlas (TCGA) thyroid dataset. In addition, 
this biomarker exhibited differences in the correlation coef-
ficients between benign and malignant samples that indicate its 
discriminatory power, and these 15 genes have been previously 
related to cancer in the literature. Thus, this 15-gene biomarker 
provides advantages in clinical practice for the effective diag-
nosis of thyroid cancer.

Introduction

The incidence of thyroid cancer has been increased over the 
past few years (1-3). Thyroid nodules are one of most prevalent 
thyroid diseases, detectable by cervical echography in between 
50 and 67% of healthy individuals (4). A confirmation study 
is required to verify the diagnosis as only 5% of these thyroid 
nodules are malignant (4).

Usually, diagnosing thyroid nodules as benign or malignant 
is performed by cytological evaluation (5). For this purpose, 
fine-needle aspiration (FNA) is the most commonly used sample 
extraction technique, since it is rapid, inexpensive and simple, 
as shown by Knezević-Usaj et al (6). Subsequent cytological 
analysis following FNA provides four possible results: non-
diagnostic, positive to malignancy or suspicious, indeterminate 
and benign cytology (7). Indeterminate FNA cytological results 
are obtained in between 15 to 30% of cases (8-11). Moreover, 
only between 5 and 15% of cases are malignant, particularly in 
those with indeterminate cytological results (11). Consequently, 
patients with FNA indeterminate cytological results undergo 
diagnostic surgery, even though this has been proven to be 
unecessary in >50% of cases where patients are later found to 
have benign disease (5,12).

Microarray-based gene expression profiling studies of 
thyroid nodules have proposed molecular markers (11,13,14). 
However, it has been demonstrated in other types of cancer 
that some biomarkers identified in one cohort may fail to 
reproduce similar results with a high degree of accuracy in 
other cohorts (15,16). For example, the accuracy of the Afirma® 
genomic test for FNA thyroid samples, which is based on 
the expression of >170 genes and one of the most extensively 
studied, has been confirmed by some studies (17-20); however, 
it has been seriously questioned by more recent investigations 
in terms of its sensitivity, cost-effectiveness, or its ability to 
complement tests with a high specificity such as the BRAF 
mutation test (21-24).

Given that those patients with thyroid nodules of indeter-
minate FNA cytology may undergo unnecessary surgical 
intervention, and that previously proposed molecular 
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biomarkers cannot be used in these cases, or that the accuracy 
of a currently available test has been questioned, a molecular, 
robust, biomarker for FNA, that is simple, and cost-effective, is 
still required for clinical investigations and practice. In contrast 
to other authors, in this study, we propose a molecular biomarker 
designed specifically from FNA indeterminate thyroid samples 
identified by a bioinformatics approach, which has been vali-
dated in six datasets, including four from other authors. We 
demonstrate that the accuracy of the proposed biomarker is 
superior to other previously proposed biomarkers for thyroid 
tumors. The proposed biomarker is composed of 15 genes and 
has the potential to be easily implemented into clinical practice 
using common and cost-effective real‑time‑polymerase chain 
reaction (RT-PCR) assays.

Data collection methods

Datasets and processing. We used six gene expression micro-
array datasets from five different authors (Table I), which we 
obtained from large microarray repositories. The main inclu-
sion criteria were that the number of samples was >40 and that 
the study contained histopathological diagnoses. To compare 
the results from the different datasets and microarray platforms, 
we transformed the gene expression data to a uniform distribu-
tion between 0 and 1, where 0 represents the lowest and 1 the 
highest expression. Multiple probes assigned to the same gene 
were averaged if they were correlated using a Pearson coef-
ficient of ≥0.7. The probe with the highest expression was used 
if duplicate symbols remained. To facilitate future biomarker 
measurements in clinical practice using RT-PCR, which may 
use an internal control for normalization (25), we transformed 
the original Alexander dataset of 173  genes  (11), which 
represent the previously identified Afirma® test, to a dataset 
of all combinations of gene-by-gene expression differences. 
This generated a dataset of 2,850 gene expression differences. 
In preliminary experiments, we observed that differences 
allowed better prediction than the raw expression measure 
(data not shown), which is consistent with other observations, 
where pairs of genes are more accurate predictors than sepa-
rate genes, as shown by Grate (26).

Biomarker identification. To the best of our knowledge, the 
Alexander dataset is the only data providing details of cyto-
logically indeterminate thyroid samples [Alexander et al (11)]; 
therefore, we used this ‘training’ dataset as a gold standard in 
order to identify the biomarker. To discover combinations of 
gene differences that together yield the optimal classification 
of malignant and non-malignant samples, we used GALGO, a 
genetic algorithm for feature selection (27). GALGO is a feature 
selection approach based on genetic algorithms coupled with a 
classifier. Briefly, GALGO first generates a population of random 
combinations of features. Each combination of this population 
is evaluated using the accuracy of a classifier and the selected 
features. The genetic algorithm then selects those combinations 
with higher accuracy, which are subsequently re-combined 
and changed replacing a gene difference with another. The 
process is repeated until a predefined number of cycles yields 
a highly accurate feature combination. Since this process is 
stochastic, the specific features may change; thus, GALGO 
typically performs this procedure multiple times. Subsequently, 

a representative feature combination is selected based on the 
number of times each feature is present in the highly accurate 
combinations and a forward selection procedure. In this study, 
as proposed by GALGO tutorials (http://bioinformatica.mty.
itesm.mx/GALGO), we used 300 combinations having five 
features to select the representative biomarker. For the classes, 
we used benign and malignant cytology as the sample class. For 
classification, we used the nearest centroid (NC) method shown 
in the study by Dabney (28). The NC method is based on centers 
per gene per class estimated as the mean of the gene expression 
values from the samples of the same class. The samples were 
classified as the class with the minimum Euclidean distance. 
The GALGO tutorial has further details of the genetic algo-
rithm and the NC classifier (27). This procedure was performed 
using the subset of the Alexander dataset  (GSE34289) that 
corresponded to indeterminate FNA cytology and post-surgery 
determinate, which is composed of 188 samples, 131 as benign 
and 57 as malignant. We used only 57 randomly selected benign 
samples for training to balance the number of benign samples 
with malignant samples.

Biomarker evaluation. To evaluate the performance of the 
proposed biomarkers and those proposed by other authors, we 
used an NC classifier learning the parameters from the gene 
expression measurements of their corresponding datasets. 
Given that the Alexander dataset is the only available data 
providing details of indeterminate thyroid samples (11), we used 
this dataset as the gold standard to evaluate the performance of 
biomarkers in the undetermined samples. For the cytologically-
determined samples, we used the other five datasets shown in 
Table I as Test datasets.

Results

Previously proposed thyroid cancer biomarkers are not 
robust. To predict thyroid tumor malignancy, we compared the 
accuracy of four previously described biomarkers involving 
between 3 and 167 genes (10,11,14,29) evaluated in six datasets 
using an NC classifier. The average accuracy ranged between 
73 and 78% (Fig. 1). However, we observed some issues. Firstly, 
none of these four biomarkers accurately predicted The Cancer 
Genome Atlas  (TCGA) subtypes; the maximum was 55%. 
Secondly, the accuracies evaluated in the 265 indeterminate 
FNA samples  (Alexander dataset) were poor. Thirdly, two 
of the biomarkers needed almost 100 genes or more, which 
would generate technical and economic difficulties in clinical 
practice.

Identification of a highly accurate and robust 15-gene biomarker. 
The application of previously proposed biomarkers was associ-
ated with several concerns: low accuracy, lack of robustness, need 
to screen of a high number of genes, as well as poor performance 
when used to analyze indeterminate samples. These biomarkers 
were all identified through the study of thyroid samples with 
a definitive cytological diagnosis. Therefore, we specifically 
selected thyroid tumors with indeterminate cytology from the 
Alexander GSE34289 dataset (11). To facilitate measurements 
in a clinical laboratory using RT-PCR and to improve accuracy, 
we used all combinations of gene differences (26,30-32) instead 
of the 173 gene expression profiles in GSE34289. To select a 
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low number of genes, we used a multivariate search to identify 
optimal combinations (27). This strategy is based on genetic 
algorithms coupled with an NC classifier. Finally, to validate 
the proposed biomarker in silico, we used five additional data-
sets (Table I).

The average accuracy  (83%) of the proposed biomarker 
was superior to the other biomarkers (Fig. 1). The proposed 

biomarker was the most accurate in four of the six datasets, 
including the TCGA dataset and the cytologically indeterminate 
samples; it was also highly competitive in the remaining two 
datasets [Borup (14) and Giordano (13)]. The biomarker identi-
fied using GALGO was based on 15 gene differences covering 
15 genes (CCND1, CLDN16, CPE, LRP1B, MAGI3, MAPK6, 
MATN2, MPPED2, PFKFB2, PYGL, PTPRE, SEMA3D, 

Figure 1. Evaluation of proposed and previous biomarkers for thyroid cancer in six datasets. The accuracy, shown on the vertical axis, was estimated using a nearest 
centroid classifier. Biomarkers are shown on the horizontal axis along with the different datasets indicated by the bars in different shades of gray. Average accuracy 
is shown below each biomarker. The number of genes per biomarker is shown in parenthesis. The number below some bars corresponds to the number of genes found 
in the corresponding dataset. For the Tomei biomarker, we did not use BRAF exon 15 status.

Table I. Characteristics of datasets used.

Authors/(Refs.)			   No. of benign/	
dataset/(use)	 ID/Platform	 Sample characteristics	 malignant samples	 Diagnosis

Alexander et al (11)	 GSE34289	 265 Indeterminate FNA:	 180/85	 FNA
indeterminate	 Affymetrix	 180 Benign after surgery (B)		  cytology
(training set)	 Afirma-T (custom)	 85 Malignant after surgery
	 173 probes
Giordano et al (13)	 GSE27155	 89 Adenomas/carcinomas:	 17/72	 Surgical 
(test set)	 Affymetrix	 10 Follicular adenomas (B)		  pathology
	 HG_U133A	 7 Oncocytic adenomas (B)
	 22,283 probes 	 13 Follicular carcinomas
		  8 Oncocytic carcinomas
		  51 Papillary carcinomas
Borup et al (14)	 E-MEXP-2442	 69 Adenomas/carcinomas:	 45/24	 Surgical 
(test set)	 Affymetrix	 22 Follicular adenomas (B)		  pathology
	 HG U133 Plus 2.0	 12 Microfollicular adenomas (B)
	 54,613 probes	 9 Nodular goiters (B)
		  18 Follicular carcinomas
		  4 Anaplastic carcinomas
		  2 Papillary carcinomas
		  2 Normal (B)
Alexander et al (11)	 GSE34289	 99 Determinate FNA:	 44/55	 FNA
determinate	 Affymetrix	 44 Benign after surgery (B)		  cytology
(test set)	 Afirma-T (custom)	 55 Malignant after surgery
	 173 probes
TCGA (test set)	 Illumina Hi-Seq	 547 Thyroid samples:	 57/490	 Surgical 
(https://tcga-data.nci.	 RNA-Seq	 490 Papillary cancers 		  pathology
nih.gov/tcga/)	 20,500 probes	 57 Benign tissues (B)
Tomás et al (51)	 GSE33630	 105 Thyroid tumor/non-tumor:	 45/60	 International 
Dom et al (52)	 Affymetrix	 11 Anaplastic carcinomas		  Pathology Panel 
(test set)	 HG_U133 Plus 2.0	 49 Papillary carcinomas		  of the Chernobyl 
	 54,675 probes	 45 Patient-matched		  Tissue Bank
		  non-tumor controls (B)

B, indicates benign samples; FNA, fine-needle aspiration.
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SERGEF, SLC4A4 and TIMP1). This signature seems to be 
preserved across the six datasets, exhibiting clear differences 
between malignant and benign samples  (Fig.  2). Twelve of 
these gene differences were statistically altered in four, five or 
six datasets (Table II). We also tested the signature across avail-
able strata. We observed a high degree of accuracy which was 
independent of gender, age, tumor size and ethnicity (Table III).

Genes in biomarker play important roles in cancer. Remarkably, 
the majority of the 15 genes that compose the biomarker have 
been previously associated with cancer. CLDN16 has been shown 
to be elevated in patients with thyroid papillary cancer (33). 
LRP1B inactivation has been shown to influence the tumor 
environment, thereby increasing the growth and invasiveness 
of thyroid cancer cells (34). SLC4A4 is expressed in low levels 
in papillary thyroid carcinoma (35). TIMP1, an inhibitor of the 
metalloproteinases in the extracellular matrix (36), has been 
shown to be highly expressed in thyroid cancer (37,38). CCND1, 
which is involved in the inactivation of the retinoblastoma (RB) 
protein, as well as in the G1-S phase transition within the cell 
cycle, has been shown to be associated with many tumors (39), 
including thyroid papillary carcinomas and follicular adenomas 
and carcinomas, as shown by Seybt et al  (40). SEMA3D, a 
semaphorin that guides migrating cells during developmental 
morphogenesis and in adult tissues (41), has been shown to 
have anti‑tumorigenic properties (42). The expression levels 
of CLDN16, LRP1B, SLC4A4, TIMP1, CCND1 and SEMA3D 
across subtypes in the six datasets analyzed in the present 
study were consistent with the findings of the above-mentioned 
studies (Fig. 3). PFKFB2, which is involved in the control of 
glycolysis, has been shown to be highly expressed in patients 
with papillary thyroid cancer aged >40 years compared with 
younger patients (43). However, in the present study, PFKFB2 

appeared to be more highly expressed in the benign tumors 
across the datasets. CPE mutations have been related to defi-
ciencies in thyrotropin-releasing hormone (44), suggesting that it 
plays important roles in the thyroid gland. CPE has been shown 
to be associated with tumor growth and metastases in pheo-
cromocytomas and others types of cancer (45). In this study, 
we found a consistently high expression of CPE in malignant 
tumors; however, CPE expression levels varied in the benign 
samples. MATN2 and MPPED2 seem to be highly correlated 
(r=0.7 in benign samples in Alexander dataset) and highly 
expressed in the benign thyroid gland (Fig. 3). It is well known 
that the former is involved in the formation of filamentous 
networks in the extracellular matrix and the latter displays low 
metallophosphoesterase activity. MPPED2 has been proposed 
to play an important role in neuroblastoma tumorigenesis (46) 
and the increased expression of this gene has been shown to 
be associated with a good prognosis (46), which is consistent 
with the higher expression observed in the benign thyroid 
tumors in the present study. By contrast, MATN2 overexpres-
sion has been observed in pilocytic astrocytoma (47). MAPK6 
is a member of the Ser/Thr protein kinase family that has been 
found to be associated with tumor invasion in lung cancer (48). 
Polymorphisms in MAGI3 and PYGL have been associated 
with various disorders, MAGI3 with hypothyroidism (49) and 
PYGL with relapse in leukemia (50). This literature review of 
the involved genes suggests that the majority play or may play 
an important role in thyroid tumors.

Alterations in correlation coefficients characterize differ-
ences in gene expression. Eight genes are included in only 
one difference and seven in more than one difference (Fig. 2). 
Notably, the CPE gene was found in seven gene differences 
indicating an important contribution within the biomarker. We 

Table II. Differences in centroids between benign and malignant samples across datasets.

	 Giordano	 Borup	 Alex. Ind	 Alex. Det	 TCGA	 Tomás
	 ----------------------------	 -----------------------------	 -----------------------------	 -----------------------------	 --------------------------	 ----------------------------	 Highlyb

Gene difference	 Diff	 p-valuea	 Diff	 p-valuea	 Diff	 p-valuea	 Diff	 p-valuea	 Diff	 p-valuea	 B	 p-valuea	 significant

MPPED2 - CPE	 0.89	   5	 4.15	   6	 0.35	 10	 3.67	 20	 -0.05	   8	 0.29	 20	 6
LRP1B - CPE	 0.45	   2	 2.91	 10	 0.39	 13	 3.53	 23	 -0.09	 31	 -0.26	 32	 5
PYGL - TIMP1	 0.29	   2	 0.98	   2	 0.19	 12	 2.61	 19	 0.17	 14	 -0.26	 NS	 3
SLC4A4 - CPE	 0.73	   3	 3.19	   4	 0.29	   8	 3.14	 18	 -0.1	 20	 -0.21	 28	 6
PFKFB2 - CLDN16	 0.66	   6	 0.94	 NS	 0.44	 13	 4.47	 19	 0.17	 37	 0.00	 15	 5
MATN2 - CPE	 0.66	   3	 1.53	   2	 0.21	   6	 2.55	 13	 0.24	 13	 0.01	   6	 5
MAGI3 - CLDN16	 -	 -	 1.18	   2	 0.51	 12	 3.44	 19	 0.08	 15	 0.33	 20	 4
PFKFB2 -CCND1	 0.25	 NS	 -0.22	 NS	 0.17	   8	 2.04	 19	 0.18	 15	 -0.35	 10	 4
PFKFB2 - CPE	 -0.65	 NS	 -1.23	   2	 0.13	   2	 2.13	   9	 -0.11	 23	 -0.47	 NS	 2
SERGEF - PFKFB2	 0.04	 NS	 0.44	 NS	 -0.14	   7	 -1.06	   7	 -0.19	 14	 0.26	   3	 4
CPE - MAPK6	 -0.26	 NS	 0.22	 NS	 -0.4	 10	 -4.7	 24	 0.09	 26	 0.03	   4	 4
CPE - SEMA3D	 -0.34	 NS	 -1.17	   2	 -0.38	   9	 -4.06	 17	 -0.01	   2	 0.47	 21	 3
CCND1 - LRP1B	 -0.5	   5	 -2.66	   9	 -0.41	 15	 -3.43	 26	 -0.1	 13	 0.14	 35	 6
PTPRE - PYGL	 -0.37	   7	 -0.4	 NS	 -0.1	   8	 -0.96	   9	 -0.07	 14	 0.08	   6	 5
CLDN16 - SEMA3D	 -0.79	 11	 -2.08	   3	 -0.67	 12	 -5.8	 18	 -0.25	 41	 -0.0	 29	 6

ap-values are expressed as -log10 (p-values); bnumber of datasets with a p-value <0.001. Ind, indeterminate; Det, determinate; Diff, differences in the 
centroids; NS, not significant.
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observed a higher correlation of genes combined with CPE in 
the benign samples compared with those correlations in the 

malignant tumor samples from the Alexander indeterminate 
dataset (Fig. 4A). By contrast, a higher correlation between the 

Figure 2. Profiles of the proposed biomarker in the six datasets. The heatmaps show samples in columns and gene differences in rows. Purple and pink columns 
represent benign (B) and malignant (M) samples, respectively. The total number of samples per subtype is shown as ‘B’ and ‘M’. Accuracy (Acc) is indicated. Cells 
within the heatmap are shaded in colors; red for high expression, white for median expression, and blue for low expression. The difference involving the MAGI3 
gene that was not found in Giordano was removed.

Figure 3. Expression levels across six datasets of the genes included in the proposed biomarker. Cells within the heatmap are shaded in colors; red for high 
expression, white for median expression, and blue for low expression.
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malignant samples was not observed. A similar analysis of all 
gene pairs across the datasets confirmed this trend (Fig. 4B).

Discussion

Previously proposed biomarkers were not robust across datasets 
or indeterminate FNA samples when evaluated under similar 
conditions in silico. This may be due to characteristics of the 
samples, microarray technology, or the methodology used for 
biomarker identification. Whereas other studies have focused 
on determinate samples in order to identify biomarkers (10,1
1,13,14,29,51,52), we specifically used indeterminate samples 
as the training set, and therefore, we captured the particular 
expression signatures in these samples. We then showed that 
the signatures were also conserved in five studies of determi-
nate tumors, which validates the proposed signature. For this 
purpose, we used gene expression differences between pairs 
of genes and a multivariate search methodology. Notably, the 
proposed biomarker is more compact and more accurate than 
other previously proposed biomarkers.

The proposed biomarker was found to be robust when evalu-
ated in other databases and across patient characteristics (tumor 
size, age, gender and ethnicity). These results suggest that differ-
ences in expression are independent of the cohort, methodology, 
genomic technology and particular characteristics of the cohort 
and thus, it is highly likely to represent true biological alterations. 
In the Giordano (13) and Borup (14) databases, the biomarker 
was capable of classifying, with high accuracy, many cellular 
types of thyroid cancer. In the case of determinate FNA samples 
in the Alexander database (11), the performance of the biomarker 
was higher (96%) than that of the indeterminate ones (87%) even 
though the latter was used to identify the biomarker. This result 

Table III. Accuracy of the biomarker in groups of samples.

Authors/(Refs.)
Dataset	 Groups	 Samples	 Accuracy

Alexander et al (11)	 Data available	 265	 0.82
(indeterminate) 	 Male	 61	 0.82
	 Female	 204	 0.82
	 Age ≤47	 103	 0.79
	 Age >47	 162	 0.83

Alexander et al (11)	 Data available	 102	 0.94
(determinate)	 Male	 27	 0.91
	 Female	 75	 0.94
	 Age ≤47	 38	 0.91
	 Age >47	 64	 0.95

Borup et al (14)	 Data available	 69	 0.86
	 Male	 23	 0.71
	 Female	 46	 0.89

TCGA	 Data available	 555	 0.88
(https://tcga-data.nci.	 Male	 151	 0.89
nih.gov/tcga/)	 Female	 404	 0.87
	 Tumor size ≤3 cm	 323	 0.90
	 Tumor size >3 cm	 196	 0.86
	 Asian	 54	 0.94
	 African-American	 25	 0.86
	 Latino	 42	 0.94
	 Caucasian	 330	 0.90

Tomás et al (51)	 Data available	 105	 0.93
Dom et al (52)	 (no strata available)	 -	 -

Giordano et al (13)	 Data available	 89	 0.74
	 (no strata available)	 -	 -

Figure 4. Differences in correlation coefficients between benign and malignant samples. (A) Spearman correlation coefficients in benign and malignant samples 
of the genes involved in each difference for the Alexander Indeterminate dataset. Arrows mark differences >0.3. (B) Spearman correlation coefficients (horizontal 
axis) across datasets (vertical axis) in benign samples (top section of table) and the decrease in spearman correlation coefficients in malignant samples (bottom 
section of table). Columns sorted as in (A). Downward gray arrows mark a decrease >0.3 in correlation coefficients, while upward arrows show an increase >0.3 
in correlation coefficients (negative decrease). The ‘conserved’ cells show the number of datasets whose difference in correlation coefficients is >0.3. Ind, inde-
terminate; Det, determinate.
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suggests that indeterminate samples may contain transitional 
stages between benign and malignant subtypes.

The differences in gene expression allow for the easier 
measurement in widely used technologies, such as RT-PCR, 
thereby facilitating implementation in clinical practice. 
Surprisingly, most of the gene pairs in differences were highly 
correlated in the benign tumors and poorly correlated in the 
malignant tumors. This concurs with observations in pros-
tate (53), colon, lung, pancreatic, cervical and gastric cancers (54) 
where the tumor correlation distribution is different than in 
normal counterparts, generally sharper around zero. Notably, 
these results suggest that differences in correlations may be an 
important characteristic of tumor transformation, which may 
be exploited for biomarker identification, cancer prognosis and 
gene targeting. We hypothesized that these differences between 
malignant and non‑maligant samples were important for the 
multivariate search and the classifier to select the genes involved 
in the proposed biomarker. This may explain the high number 
of occurrences of the CPE gene, which showed the largest 
differences in correlation coefficients (ten in benign and one in 
malignant samples).

From the 15 genes identified in our biomarker, which is a 
subset of those from the study by Alexander et al (11), none are 
similar to those proposed by Prasad et al (HMGA2, MRC2, and 
SFN) (55) and Tomei et al (KIT, C21orf4, PDK3/Hs.296031, 
DDI2, CDH1, LSM7 and TC1) (29), and only two (MATN2 
and MPPED2) are included in the genes from the study by 
Borup et al (14). Thus, the proposed signature combined with 
the use of gene differences and a NC classifier appears to be 
distinctive.

The contribution of the multivariate search was important 
since the other methodologies tested, such as PAM-R  (56) 
and support vector machine recursive feature elimina-
tion (SVM‑RFE) (57), generated lower accuracies (65 and 75%, 
respectively) or higher numbers of gene differences (85 and 15, 
respectively). Besides the multivariate search, we believe that 
the use of the gene-pair difference was an important factor 
which enabled us to identify the highly accurate marker. We 
then showed that the gene-pair difference may also associated 
with the difference in correlation coefficients between genes and 
tumor subtypes. Nevertheless, this approach is almost prohibited 
in large datasets since a dataset of 20,000 genes would generate 
200 million differences combinations. Thus, the use of the 
173 genes (or a stringent gene filter) was also a critical factor.

As the proposed biomarker was only tested  in silico, a 
validation study is warranted to confirm the potential use of 
this biomarker in clinical practice. Although we aim to explore 
this line of research in the near future, the availability of the 
proposed biomarker and the methodology used may encourage 
other research groups to test the biomarker or to design better 
ones.

In conclusion, the proposed biomarker is composed of 
15 gene differences involving 15 genes. The majority of the 
genes have been associated with cancer and some specifically 
with thyroid cancer in the research literature. Our analysis 
suggests that the proposed biomarker is more accurate and 
robust than previous thyroid biomarkers in tumors and inde-
terminate FNA samples. Measuring the biomarker may be 
made relatively easy by RT-PCR facilitating implementation. 
Changes in the gene expression correlations between benign 

and malignant samples may be associated with tumor progres-
sion and may explain the presence and robustness of the gene 
differences that compose the proposed biomarker.
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