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Abstract. The endogenous signaling gasotransmitter, hydro-
sulfide (H2S), has been shown to exert cardioprotective effects 
against acute myocardial infarction (AMI) due to ischemic 
injury. However, the mechanisms responsible for these effects 
are not yet fully understood. In this study, we investigated 
whether sodium hydrogen sulfide  (NaHS), an H2S  donor, 
attenuates acute myocardial ischemic injury through glycogen 
synthase kinase-3β (GSK-3β)/β-catenin signaling. For this 
purpose, we utilized an in vivo rat model of AMI by occluding 
the left anterior descending coronary artery. NaHS  (0.39, 
0.78 or 1.56 mg/kg, intraperitoneally), the GSK-3β inhibitor, 
SB216763 (0.6 mg/kg, intravenously), or 1% dimethylsulfoxide 
(2 ml/kg, intravenously) were administered to the rats. The 
results demonstrated that the administration of medium- and 
high-dose NaHS and SB216763 significantly improved rat 
cardiac function, as evidenced by an increase in the mean arte-
rial pressure, left ventricular developed pressure, contraction 
and relaxation rates, as well as a decrease in left ventricular 
end-diastolic pressure. In addition, the administration of NaHS 
and SB216763 attenuated myocardial injury as reflected by 
a decrease in apoptotic cell death and in the serum lactate 
dehydrogenase concentrations, and prevented myocardial 
structural changes. The administration of NaHS and SB216763 
increased the concentrations of phosphorylated (p-)GSK-3β, the 
p-GSK-3β/t-GSK-3β ratio and downstream protein β-catenin. 
Moreover, western blot and immunohistochemical analyses 
of apoptotic signaling pathway proteins further established 
the cardioprotective potential of NaHS, as reflected by the 
upregulation of Bcl-2 expression, the downregulation of Bax 
expression, and a decrease in the number of TUNEL-positive 
stained cells. These findings suggest that hydrosulfide exerts 

cardioprotective effects against AMI-induced apoptosis 
through the GSK-3β/β-catenin signaling pathway.

Introduction

It is well known that coronary disease is the leading cause of 
mortality in the modern world (1). It is characterized by tran-
sient or chronic myocardial ischemia that is caused by reduced 
coronary blood flow and tissue hypoxia. Ischemia plays a 
critical role in cardiomyocyte necrotic and apoptotic death in 
the border area close to a myocardial infarct area and greatly 
affects left ventricular remodeling, which causes heart failure 
and mortality (2). Apoptosis, which is determined by a balance 
between pro- and anti-apoptotic factors, is frequently detected 
in ischemic heart tissue (3). Attenuating the induction of apop-
tosis that is triggered by tissue hypoxia is a major strategy for 
treating ischemic heart disease.

One of the several signaling pathways that are involved in 
the apoptotic process is glycogen synthase kinase-3β (GSK‑3β), 
which belongs to a family of conserved serine/threonine kinases 
present in eukaryotic cells. Its activity is regulated by various path-
ways, including the phosphatidylinositol-3-kinase (PI3K)/Akt, 
the extracellular signal-regulated kinase (ERK1/2) and the Wnt/
wingless signaling pathways (4-6). GSK-3β phosphorylation 
at Ser9 causes its N-terminal protein tail to act as a pre-phos-
phorylated substrate, leading to GSK-3β inactivation, and thus 
it differs from other protein kinases (7). Moreover, the selective 
inhibition of GSK-3β has been shown to exert cardioprotective 
effects by maintaining mitochondrial function during ischemia/
reperfusion injury (4). Together with adenomatous polyposis 
coli (APC) and Axin, GSK-3β forms a cytoplasmic multipro-
tein complex that can phosphorylate β-catenin, an important 
GSK-3β-regulated protein, leading to β-catenin degradation and 
limited β-catenin expression (8).

As with nitric oxide (NO) and carbon monoxide  (CO), 
hydrosulfide (H2S) is the body's third gaseous signaling mole-
cule (9-12). There is increasing evidence indicating that H2S 
exerts cardioprotective effects (13,14), such as the relaxation of 
vascular smooth muscle, the reduction of blood pressure (15), 
the inhibition of vascular smooth muscle cell proliferation, and 
the regulation of cardiac contractility (16). Sodium hydrogen 
sulfide (NaHS) is frequently used as an H2S donor (17). In addi-
tion, it has also been proposed that, in a model of myocardial 
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ischemia, the protective effects of NaHS on myocardial tissues 
may be associated with its anti-inflammatory and anti‑apoptotic 
properties (18,19); however, the underlying mechanisms remain 
unclear. This study was designed to determine whether NaHS 
exerts its cardioprotective effects through the activation of the 
GSK-3β/β-catenin signaling pathway. SB216763 was used as a 
GSK-3β inhibitor.

Materials and methods

Animals. Male Sprague-Dawley (SD) rats (n=96, provided by 
the Center of Experimental Animals of Hebei Province, China) 
with a body weight of 280-320 g were housed in a tempera-
ture‑controlled environment, exposed to a natural photoperiod 
(light/dark cycle of 12:12 h), and were allowed access to food 
and water ad libitum. All rats were housed for 1 week to adapt 
to their environment prior to the initiation of the expriments. 
The study was approved and carried out in accordance with 
the guidelines of Hebei Medical University. The experimental 
protocols were performed in adherence with the Institutional 
Animal Care and Use Committee of Hebei Medical University.

Chemicals and reagents. NaHS was purchased from Sigma 
Chemical Co. (St. Louis, MO, USA). The antibodies against 
phosphorylated (p-)GSK-3β (#9323), total (t-)GSK-3β (#12456) 
and β-catenin (#8480) were obtained from Cell Signaling 
Technology  (Beverly, MA, USA). Antibodies against Bax 
(sc‑526), Bcl-2 (sc‑492) and β-actin (sc‑7210) were obtained 
from Santa  Cruz Biotechnology,  Inc.  (Santa Cruz, CA, 
USA). SB216763 (purity >98%) was purchased from Selleck 
Chemicals (Houston, TX, USA). The TUNEL apoptosis kit 
was obtained from Roche Diagnostics (Boehringer Mannheim, 
Germany). The lactate dehydrogenase (LDH) assay kit was 
purchased from Nanjing Jiancheng Biotechnology (Nanjing, 
China).

Experimental design and surgical procedures. A total of 40 rats 
were randomly assigned to 5 groups as follows: i) the sham-oper-
ated group; ii) the group subjected to ischemia for 2 h (Is2h group); 
iii) the group subjected to ischemia for 3 h (Is3h group); iv) the 
group subjected to ischemia for 6 h (Is6h group); and v) the group 
subjected to ischemia for 9 h (Is9h group). The protein expres-
sion levels of GSK-3β and β-catenin were then determined by 
western blot analysis as described below.

The remaining 56  rats were randomly assigned to one 
of the following treatment groups  (n=8/group) as follows: 
i) the sham-operated group; ii) the group subjected to acute 
myocardial infarction (AMI; ischemia) and not treated with 
any agents (AMI group); iii) the group subjected to AMI and 
treated with low-dose NaHS (AMI + NaHS-L group); iv) the 
group subjected to AMI and treated with medium-dose 
NaHS (AMI + NaHS-M group); v) the group subjected to AMI 
and treated with high-dose NaHS (AMI + NaHS-H group); 
vi) the group subjected to AMI and treated with SB216763 
(AMI + SB group); and vii) the group subjected to AMI and 
treated with the vehicle (AMI + vehicle group). 

The rats were subjected to ligation of the anterior 
descending artery as previously described (20,21), resulting in 
acute myocardial ischemic injury. In brief, the rats were anes-
thetized with ketamine-xylazine (90 and 9 mg/kg, respectively, 

intraperitoneally), and intubated with a 14-gauge polyethylene 
catheter and ventilated with room air using a small animal 
ventilator. The heart was exposed via a left-sided thoracotomy, 
and the anterior descending artery was ligated using a 6-0 silk 
suture between the pulmonary outflow tract and the left atrium. 
The sham-operated rats underwent the same procedure except 
that the suture was passed under the coronary artery and then 
removed. The rats in the Is2h, Is3h, Is6h and Is9h groups were 
sacrificed at 2, 3, 6 and 9 h after ischemia, respectively. The rats 
in the treatment groups were sacrificed at 6 h after ischemia.

NaHS (0.78, 1.56, 3.12 mg/kg, intraperitoneally) was respec-
tively administered to the rats in the AMI + low-, medium-, and 
high-dose NaHS groups, SB216763 (0.6 mg/kg, dissolved in 
1% dimethylsulfoxide, intravenously) was administered to the 
rats in the AMI + SB group, and 1% dimethyl sulfoxide (DMSO; 
2 ml/kg, intravenously) was administered to the rats in the 
AMI + vehicle group. The doses of NaHS and SB216763 were 
established from prior investigations (22-26).

Determination of cardiac function. The rats were anesthetized, 
and a polyethylene Millar catheter was inserted into the right 
common carotid artery and then further advanced into the 
left ventricular chamber, and the cannula was connected to a 
pressure transducer. The mean arterial pressure (MAP), left 
ventricular developed pressure (LVDP), the left ventricular 
end-diastolic pressure (LVEDP) and the rate of contraction 
and relaxation (dp/dtmax and dp/dtmin) were recorded using an 
8-channel polygraph system (Powerlab 8s/30 ADInstruments, 
Castle Hill, NSW, Australia).

Measurement of serum LDH levels. Myocardial cellular damage 
and necrosis were evaluated by measuring the serum LDH 
levels. Blood samples were collected after the measurement of 
cardiac function. The LDH levels were measured in a blinded 
manner using a spectrophotometer (BioTek, Instruments, Inc., 
Winooski, VT, USA) in duplicate.

Morphological changes in the myocardium. The rats were sacri-
ficed by exsanguination (blood was taken from rats via the right 
carotid artery). The thoracic cavity was opened and rat hearts 
were obtained and washed with cold physiological saline. The 
non-infarcted left ventricular tissue was separated for determi-
nation. The non-infarcted left ventricular tissues were fixed in 
4% paraformaldehyde and then dehydrated in ascending grades 
of alcohol and embedded in paraffin, and sliced into 5-µm-thick 
sections using a microtome (RM2245; Leica Biosystems, 
Buffalo Grove, IL, USA). The myocardial sections (5-µm-thick) 
were stained with hematoxylin and eosin (H&E) to analyze the 
morphological changes in the myocardium.

Terminal deoxynucleotidyl transferase-mediated dUTP-biotin 
nick-end labeling (TUNEL) assay. The apoptosis of cardio-
myocytes was detected by TUNEL assay. Briefly, the apoptotic 
cells from the heart tissues were identified using an in situ cell 
death detection kit according to the manufacturer's instructions. 
Nuclei with brown staining indicated TUNEL-positive cells. 
For each group, 20 randomly selected fields (5 hearts/group, 
4 fields/heart) were observed under a microscope. The apoptotic 
index (AI), namely the percentage of apoptotic nuclei (TUNEL-
positive) vs. the total number of nuclei was measured.
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Western blot analysis of p-GSK-3β, total GSK-3β, β-catenin, 
Bax, Bcl-2 and β-actin. The hearts were excised and the left 
ventricles were immediately frozen in liquid nitrogen before 
being stored at -80˚C. Total protein from cardiomyocytes was 
extracted and the concentrations were determined by using 
the BCA protein assay kit (Boster Biotechnology, Wuhan, 
China). Proteins were separated by sodium dodecyl sulfate-
polyacrylamide gel electrophoresis (SDS-PAGE) and then 
transferred onto a polyvinylidene difluoride (PVDF) membrane, 
blocked, and probed with primary antibodies against p-GSK-3β, 
t-GSK-3β, β-catenin, Bax, Bcl-2 and β-actin. The membrane was 
then incubated with horseradish peroxidase (HRP)-conjugated 
goat anti-rabbit IgG. Finally, the bound antibody complexes 
were detected using the ECL Western blotting detection kit 
(Beyotime Institute of Biotechnology, Nanjing, China).

Immunohistochemical staining. Immunohistochemical staining 
for β-catenin, Bcl-2 and Bax was performed on the myocardial 
tissue. The non-infarcted left ventricular tissue was deparaf-
finized, rehydrated in a graded series of alcohol solutions, and 
washed twice with distilled water. The sections were incubated 
with endogenous peroxidase blocked in 50 ml of 3% H2O2 at 
room temperature for 10 min and then washed with phosphate-
buffered saline (PBS) (pH 7.4) 3 times for 5 min each. Following 
incubation in 2% BSA in PBS at room temperature for 30 min, 
the sections were washed once with PBS. The β-catenin, Bcl-2 
or Bax antibodies were added, and the sections were incubated 
at 4˚C overnight. The β-catenin, Bcl-2 and Bax proteins were 
assayed with an UltraSensitive SP kit (ZSGB‑BIO, Beijing, 
China). The sections were counterstained with hematoxylin. 

The incubation of the tissue sections with normal rabbit IgG 
served as the negative control. The cardiomyocytes were seeded 
on slides, and then counterstained with hematoxylin, mounted 
with DPX (Solarbio, Beijing, China) and visualized under a 
microscope (Olympus BX3‑CBH, Olympus, Tokyo, Japan).

Statistical analysis. All data are presented as the means ± stan-
dard error of mean (SEM). Statistical analyses were performed 
using the SPSS statistical package (SPSS, version  16.0; 
SPSS Inc., Chicago, IL, USA). Differences between the groups 
of rats were analyzed by one-way ANOVA. Differences between 
2 groups were analyzed using the Student-Newman-Keuls test. 
Probability values <0.05 were considered to indicate statistically 
significant differences.

Results

Protein expression of GSK-3β and β-catenin in rats with AMI. 
As shown by western blot analysis, no significant difference 
was observed in the total GSK-3β expression levels between 
the rats in the sham-operated group and the rats subjected to 
ishemia for various periods of time (Fig. 1A and B). However, 
the levels of p-GSK-3β and the p-GSK-3β/t‑GSK-3β ratio were 
significantly decreased in the rats subjected to ischemia for 2, 
3, 6 and 9 h compared with the rats in the sham-operated group 
when they were normalized to the GSK-3β total protein level, as 
illustrated in Fig. 1B and C (p<0.01). The levels of β-catenin, a 
downstream target of GSK-3β, were also significantly decreased 
in the rats subjected to ischemia for 2, 3, 6 and 9 h compared 
with those of the rats in the sham-operated group (p<0.05 and 

Figure 1. Expression of phosphorylated (p-)glycogen synthase kinase-3β (GSK‑3β), total (t-)GSK-3β and β-catenin in rats with acute myocardial infarction. 
Rats were subjected to ischemia for 2, 3, 6 or 9 h (Is2h, Is3h, Is6h and Is9h, respectively) as described in the Materials and methods. (A) Western blot analysis 
of the indicated proteins. Quantification of (B) p-GSK-3β and t-GSK-3β, (C) p-GSK-3β/t-GSK-3β ratio, and (D) β-catenin expression relative to actin. Data are 
expressed as the means ± SEM. *p<0.05 and **p<0.01 vs. sham-operated group.
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p<0.01; Fig. 1D). In addition, H&E staining of the rat hearts 
from the Is2h, Is3h, Is6h and Is9h groups showed that cardio-
myocyte mecrosis, edema and inflammatory cell infiltration 
were observed in the Is6h and Is9h groups (data not shown). 
Thus, in the following experiments, the rats were subjected to 
ischemia for 3 h and sacrificed at 6 h after ischemia.

Effect of hydrosulfide on cardiac function in rats with AMI. 
The MAP, LVDP and maximal positive and negative rate of 
left ventricular pressure (dp/dtmax, dp/dtmin) were decreased, and 
LVEDP was increased in the rats in the AMI group compared 
with the rats in the sham-operated group. However, the MAP, 
LVDP, dp/dtmax and dp/dtmin were significantly increased, 
and LVEDP was significantly decreased in the rats in the 
AMI + low-, medium- and high-dose NaHS groups compared 
with the rats in the AMI group (p<0.01; Fig. 2). Treatment with 
SB216763 had similar effects, increasing MAP, LVDP and dp/
dtmax and dp/dtmin, and decreasing LVEDP. 

Effect of hydrosulfide on myocardial injury (histopathology, 
necrosis and apoptosis) in rats with AMI. The disorganization 

of cell structures, the loss of cell-cell adherence between cardio-
myocytes and abnormally shaped cell nuclei were observed in 
the rat hearts from the AMI group compared with those of the 
rats in the sham-operated group. Compared with the hearts 
of the rats in the AMI group, cardiomyocyte necrosis, edema 
and inflammatory cell infiltration into the myocardium were 
significantly decreased in the rats in the AMI + low-, medium-, 
high-dose NaHS groups (Fig. 3A). Treatment with SB216763 
had similar effects to NaHS, attenuating myocardial injury.

The serum LDH level was significantly elevated in the rats 
in the AMI group compared with the rats in the sham-operated 
group (P<0.01). Compared with the rats in the AMI group, the 
serum LDH level was significantly decreased in the rats in the 
AMI + low-, medium- and high-dose NaHS groups (P<0.05 
and P<0.01; Fig. 3B). Therefore, treatment with the H2S donor, 
NaHS, decreased myocardial necrosis in  vivo post-AMI. 
Treatment with SB216763 had similar effects to NaHS, signifi-
cantly decreasing the serum LDH level (P<0.01) compared to 
the rats in the AMI group (Fig. 3B).

The expression of Bcl-2 was significantly increased and the 
Bax and Bax/Bcl-2 ratio was significantly decreased in the rats 

Figure 2. Effect of sodium hydrosulfide on cardiac function in rats with acute myocardial infarction (AMI). (A) Mean arterial pressure (MAP), (B) left ventricular 
developed pressure (LVDP), (C) left ventricular end diastolic pressure (LVEDP), and (D) maximal positive and negative rate of left ventricular pressure (dp/dtmax, 
dp/dtmin). Data are expressed as the means ± SEM. (n=8 rats /group). **p<0.01 vs. sham-operated group; #p<0.05 and ##p<0.01 vs. AMI group. Sham, sham-
operated group; AMI, rats subjected to AMI (ischemia) and not treated with any agents; AMI + NaHS-L, rats subjected to AMI and treated with low-dose (0.78 
mg/kg) NaHS; AMI + NaHS-M, rats subjected to AMI and treated with medium-dose (1.56 mg/kg) NaHS; AMI + NaHS-H, rats subjected to AMI and treated 
with high-dose (03.12 mg/kg) NaHS; AMI + SB, rats subjected to AMI and treated with the glycogen synthase kinase-3β (GSK-3β) inhibitor, SB216763 (0.6 mg/
kg); AMI + vehicle, rats subjected to AMI and treated with the vehicle (DMSO, 2 ml/kg).
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in the AMI + low-, medium-, high-dose NaHS groups compared 
with the rats in the AMI group (P<0.01; Fig. 4A-D). Moreover, 
the same results were shown by immunohistochemical analysis 
for Bax and Bcl-2 (Fig. 4E). Again, similar effects were observed 
following treatment with SB216763  (Fig. 4). In addition, as 
regards apoptosis, the number of TUNEL‑positive cells was 
significantly increased in the AMI group compared with that 
of the sham-operated group. However, compared with the 

AMI group, the number of TUNEL-positive cardiac cells was 
significantly decreased in the AMI + low-, medium- high-dose 
NaHS groups and in the SB group (P<0.01; Fig. 3C and D). Taken 
together, these data suggest that treatment with the H2S donor, 
NaHS, decreases AMI-induced cardiomyocyte apoptosis in vivo.

Effect of hydrosulfide on the phosphorylation of GSK-3β and 
the concentration of the downstream target, β-catenin. The 

Figure 3. Effect of sodium hydrosulfide on rat myocardial tissue necrosis and cell apoptosis. (A) Hematoxylin and eosin (H&E) staining to determine histo-
pathological changes under a light microscope (x20 magnification; scale bar, 100 µm). Circles indicate the disorganization of cell structures and inflammatory 
cell infiltration. (B) Serum lactate dehydrogenase (LDH) concentration, (C) cardiomyocyte apoptosis evaluated by TUNEL staining (x20 magnification; scale 
bar, 100 µm). (D) Quantification of TUNEL-positive nuclei. Data are expressed as the means ± SEM. **p<0.01 vs. sham-operated group; #p<0.05 and ##p<0.01 vs. 
acute myocardial infarction (AMI) group. Sham, sham-operated group; AMI, rats subjected to AMI (ischemia) and not treated with any agents; AMI + NaHS-L, 
rats subjected to AMI and treated with low-dose (0.78 mg/kg) NaHS; AMI + NaHS-M, rats subjected to AMI and treated with medium-dose (1.56 mg/kg) 
NaHS; AMI + NaHS-H, rats subjected to AMI and treated with high-dose (03.12 mg/kg) NaHS; AMI + SB, rats subjected to AMI and treated with the glycogen 
synthase kinase-3β (GSK-3β) inhibitor, SB216763 (0.6 mg/kg); AMI + vehicle, rats subjected to AMI and treated with the vehicle (DMSO, 2 ml/kg).
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p-GSK-3β/t-GSK-3β ratio and the content of β-catenin were 
significantly decreased in the AMI group compared with the 
sham-operated group. However, compared with the AMI group, 
the p-GSK-3β/t-GSK-3β ratio and the content of β-catenin 
were significantly increased in the AMI + low-, medium- and 
high-dose NaHS groups (P<0.01; Fig. 5). It should be noted that 
treatment with SB216763 had similar effects to NaHS (Fig. 5).

Role of GSK-3β/β-catenin signaling in hydrosulfide-induced 
cardioprotection. To investigate the molecular mechanisms 
underlying NaHS-mediated cardioprotection, we measured the 

levels of p-GSK-3β and t-GSK-3β, and the p-GSK-3β/t-GSK-3β 
ratio and the content of β-catenin by western blot analysis. 
Compared with the AMI group, the phosphorylation levels 
of GSK-3β, the p-GSK-3β/t-GSK-3β ratio, and the content of 
β-catenin were significantly increased in the AMI + SB group 
(P<0.05 and P<0.01; Fig. 5). In addition, the MAP, LVDP, dp/
dtmax and dp/dtmin were significantly increased, and the LVEDP, 
serum LDH level, the Bax/Bcl-2 ratio, and the number of 
apoptotic cells were significantly decreased in the AMI + SB 
group compared with the AMI group, as shown by our above-
mentioned results (Figs. 2-4).

Figure 4. Effect of sodium hydrosulfide on apoptotic protein in rats with acute myocardial infarctiom (AMI). (A) Western blot analysis of the indicated proteins. 
Quantification of (B) Bax/Bcl-2 ratio, (C) Bax and Bcl-2. (D) Quantification of Bax and Bcl-2 immunohistochemical analysis, (E) immunohistochemical 
analysis of Bax and Bcl-2 (x40 magnification; scale bar, 50 µm). Data are expressed as the means ± SEM. **p<0.01 vs. sham-operated group; #p<0.05 and 
##p<0.01 vs. AMI group. Sham, sham-operated group; AMI, rats subjected to AMI (ischemia) and not treated with any agents; AMI + NaHS-L, rats subjected to 
AMI and treated with low-dose (0.78 mg/kg) NaHS; AMI + NaHS-M, rats subjected to AMI and treated with medium-dose (1.56 mg/kg) NaHS; AMI + NaHS-H, 
rats subjected to AMI and treated with high-dose (03.12 mg/kg) NaHS; AMI + SB, rats subjected to AMI and treated with the glycogen synthase kinase-3β 
(GSK-3β) inhibitor, SB216763 (0.6 mg/kg); AMI + vehicle, rats subjected to AMI and treated with the vehicle (DMSO, 2 ml/kg).
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Discussion

In the present study, our data demonstrated that NaHS attenu-
ated AMI-induced injury in vivo through the activation of the 
GSK-3β/β‑catenin signaling pathway and exerted anti-apoptotic 
effects.

Evidence indicates that H2S plays an important role in 
vasodilation in different disease states (27-30), functions as a 
neuromodulator (31), and is also a novel mediator of lipopoly-
saccharide-induced inflammation (19,32). Furthermore, it is 
postulated that this gaseous signaling molecule acts as a regu-
lator of physiological cardiac function by exerting antioxidant 
and anti-apoptotic effects in cardiovascular and neurological 
diseases (33-35). Cardiomyocyte apoptosis is a major patho-
genic mechanism underlying AMI-induced injury; thus, 

inhibiting cardiomyocyte apoptosis may effectively minimize 
cardiac injury (36). As part of the intrinsic apoptosis pathway, 
the Bcl-2 protein family is an important regulator during 
cardiomyocyte apoptosis  (37). The anti-apoptotic protein, 
Bcl-2, and survivin (38) have been shown to block the release 
of cytochrome c from the mitochondria, and to inhibit caspase 
activity and decrease cell apoptosis (5,37,39). Therefore, the 
balance in apoptotic signaling is influenced by the Bcl-2/Bax 
ratio. In this study, we demonstrated that the administration of 
NaHS and SB216763 (GSK-3β inhibitor) increased the expres-
sion of Bcl-2, decreased the expression of Bax, and decreased 
TUNEL-positive staining in rat heart tissue. The administra-
tion of NaHS significantly ameliorated cardiac function, as 
reflected by an increase in MAP, LVDP and dp/dtmax and dp/
dtmin, and a decrease in LVEDP and the serum LDH level. 

Figure 5. Effect of sodium hydrosulfide on phosphorylation of glycogen synthase kinase-3β (GSK-3β) and β-catenin expression in rats with acute myocar-
dial infarction (AMI). (A) Western blot analysis of the indicated proteins. Quantification of (B) p-GSK-3β and t-GSK-3β, (C) p-GSK-3β/t-GSK-3β ratio 
and (D) β-catenin relative to actin. (E) Immunohistochemical detection of β-catenin (x40 magnification; scale bar, 50 µm). All values are expressed as the 
means ± SEM. **p<0.01 vs. sham-operated group; #p<0.05 and ##p<0.01 vs. AMI group. Sham, sham-operated group; AMI, rats subjected to AMI (ischemia) and 
not treated with any agents; AMI + NaHS-L, rats subjected to AMI and treated with low-dose (0.78 mg/kg) NaHS; AMI + NaHS-M, rats subjected to AMI and 
treated with medium-dose (1.56 mg/kg) NaHS; AMI + NaHS-H, rats subjected to AMI and treated with high-dose (03.12 mg/kg) NaHS; AMI + SB, rats sub-
jected to AMI and treated with the GSK-3β inhibitor, SB216763 (0.6 mg/kg); AMI + vehicle, rats subjected to AMI and treated with the vehicle (DMSO, 2 ml/kg).
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Treatment with NaHS preserved myocardial structural integ-
rity, thereby effectively restricting myocardial enzyme leakage.

The serine/threonine survival kinase GSK-3β is a point 
of downstream convergence for PI3K/Akt and Wnt signaling. 
It is known that ischemic pre- and post-conditioning activate 
PI3K/Akt  (25,40‑42), and promote the phosphorylation of 
downstream target molecules, such as GSK-3β, downstream 
of insulin receptor substrates (25,43,44). In contrast to other 
protein kinases, GSK-3β phosphorylation inhibits GSK-3β 
activity, thus inhibiting cardiomyocyte apoptosis, exerting 
cardioprotective effects (7,26). Kaga et al (7) reported that the 
activation of GSK-3β/β-catenin further increases Bcl-2 and 
survivin expression, thereby providing enhanced anti-apoptotic 
effects in the ischemic preconditioned myocardium. Therefore, 
we propose that the administration of NaHS exerts cardiopro-
tective effects through the GSK-3β signaling pathway. 

In the present study, our results revealed that AMI-induced 
injury led to decreased levels of p-GSK-3β and β-catenin. 
However, the administration of NaHS increased the phosphory-
lation levels of GSK-3β and the expression of β-catenin, and 
reduced cardiomyocyte apoptosis by regulating the expression 
of the Bcl-2 family proteins. A similar effect was also noted 
following the administration of SB216763, a potent inhibitor of 
the GSK-3β ATP binding site (45).

In conclusion, our data provide strong supportive evidence 
that the phosphorylation of GSK-3β by NaHS and its inhibitor, 
SB216763, exert cardioprotective and anti-apoptotic effects 
against AMI-induced injury through the activation of the 
GSK-3β/β-catenin signaling pathway. However, the specific 
subcellular mechanisms responsible for the NaHS-induced 
anti-apoptotic effects remain unknown, and this warrants 
further investigation.
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