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Abstract. Oxidative stress-mediated proliferation of vascular 
smooth muscle cells (VSMCs) contributes to plaque formation 
and the progression of atherosclerosis. Polydatin is a derivative 
of resveratrol, and is widely present in certain herbal medications 
used for the treatment of cardiovascular diseases. In the present 
study, we examined whether polydatin was capable of attenuating 
VSMC proliferation induced by oxidative stress as well as the 
potential involvement of the endothelial nitric oxide synthetase 
(eNOS)/SIRT1 pathway. Briefly, VSMCs were exposed to H2O2 
for 24 h in the absence or presence of polydatin (10-100 µM) prior 
to performing a cell proliferation assay. In mechanistic studies, 
the cells were incubated with the silent information regulator 1 
(SIRT1) inhibitor, EX527, or the eNOS inhibitor, L-NAME, prior 
to polydatin treatment. The results showed that polydatin inhib-
ited VSMC proliferation and the level of reactive oxygen species, 
increased the expression of Kip1/p27, SIRT1 and eNOS, whereas 
the expression of cyclin B1, Cdk1 and c-myc was decreased. The 
number of cells in the G2/M phase was increased. Pre-treatment 
with L-NAME attenuated the inhibitory effects of polydatin on 
cell proliferation, inhibited the expression of SIRT1 and the phos-
phorylation of eNOS. Pre-treatment with EX527 also attenuated 
the inhibitory effects of polydatin on cell proliferation, but failed 
to reduce the activation of eNOS and the production of nitric 
oxide. Taken together, these findings suggest that, polydatin 
inhibited the oxidative stress-induced proliferation of VMSCs 
by activating the eNOS/SIRT1 pathway.

Introduction

Drinking wine in moderation, in particular red wine, may 
lower the incidence of cardiovascular diseases, presumably due 
in part to the benefits of resveratrol in the wine (1). Polydatin 
is a glycoside derivative of resveratrol, and widely present in 
various plant sources including red wine, grapes skins and 
Japanese knotweed (2). Polydatin is an ingredient of many 
herbal medications used for the treatment of cardiovascular 
diseases in China. Similar to resveratrol, polydatin has anti-
oxidant (3), anti‑inflammatory (4) and anti‑ageing (5) effects.

It has been shown that oxidative stress promotes the 
proliferation of vascular smooth muscle cells (VSMCs) and 
induces blood vessel remodeling (6), thereby contributing to 
the pathogenesis of atherosclerosis (7,8). Consequently, inhib-
iting VSMC proliferation may be used as a future therapeutic 
strategy for the treatment of atherosclerosis. Previous studies 
have indicated that polydatin may protect cardiac function 
from acute injury by reducing oxidative stress and inhibiting 
sarcoplasmic reticulum Ca2+ leakage (9), inhibiting platelet 
aggregation and intercellular cell adhesion molecule-1 
(ICAM-1) expression, and weakening white blood cell-endo-
thelial cell adhesion (10). However, the effect of polydatin on 
the oxidative stress-induced proliferation of VSMCs remains 
unclear.

Silent information regulator 1 (SIRT1) is a key factor that 
regulates cell responses to oxidative stress by deacetylating 
non-histone targets (11). Inhibiting SIRT1 expression has been 
demonstrated to accelerate cell senescence and promote cell 
injury (12,13). Knockdown of SIRT1 by small interfering RNA 
in HUVECs resulted in impaired antioxidant ability (14). A 
previous study from this laboratory revealed that the expres-
sion of SIRT1 was reduced in ageing (15). The improvement 
of endothelial function in the thoracic artery of ageing rats by 
atorvastatin was associated with the increased expression of 
SIRT1 and endothelial nitric oxide synthase (eNOS) (15).

In the present study, we demonstrated that polydatin inhib-
ited the oxidative stress-induced proliferation of VSMCs. We 
then examined the potential role of the eNOS/SIRT1 pathway 
with EX527, a SIRT1 inhibitor, and L-NAME, an eNOS 
inhibitor.
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Materials and methods

Cell culture. VSMCs were isolated from the thoracic aorta 
of 12-week-old male Sprague-Dawley rats (Experimental 
Animal Center, Southern Medical University, Guangzhou, 
China) as previously described (16). The present study was 
performed in strict accordance with the Guide for the Care 
and Use of Laboratory Animals (15). Experimental proce-
dures were approved by the Animal Research Committee 
of Nanfang Hospital. The purity of the isolated VSMCs was 
verified using immunohistochemical staining of smooth 
muscle α-actin. The cells were cultured in Dulbecco's modi-
fied Eagle's medium (DMEM; Gibco, Grand Island, NY, USA) 
containing 10% fetal bovine serum (FBS; PAA Laboratories 
GmbH, Australia), in a humidified incubator containing 5% 
CO2 at 37˚C. VSMCs at 4‑6 passages, and at 40% confluence, 
were used for the experiments.

Treatment. In the preliminary dose-finding experiments, 
VSMCs were exposed to the vehicle (0.1% DMSO) and 100 µM 
H2O2 (Sigma-Aldrich, St. Louis, MO, USA) (14) in the absence or 
presence of polydatin (purity ≥98%, HPLC) (10, 50 or 100 µM; 
Baoji Herbest Bio‑Tech Co., Ltd., Baoji, China) for 24 h prior 
to performing a cell proliferation assay using a CCK-8 assay 
kit (Beyotime Institute of Biotechnology, Nantong, China), 
as previously described (17). Absorbance was measured with 
an enzyme‑linked microplate assay reader (Thermo Fisher 
Scientific, Waltham, MA, USA) at 450 nm. In the subsequent 
set of experiments, the cells were treated with 100 µM eNOS 
inhibitor L-NAME (18) or 10 µM SIRT1 inhibitor EX527 (both 
from Sigma‑Aldrich) (13) for 2 h prior to treatment with H2O2 
and polydatin (100 µM).

Measurement of reactive oxygen species (ROS), superoxide 
dismutase (SOD) and nitric oxide (NO) levels. Re-suspended 
cells were incubated in pre-warmed DMEM containing 
2,7‑dichlorofluorescein diacetate (H2DCFDA; Gibco) fluo-
rescent probe (5 µM) at 37˚C for 30 min. The cells were 
washed with PBS twice. Intracellular ROS was examined 
using a spectrofluorometer (Agilent Technologies, Inc., Palo 
Alto, CA, USA) at an excitation wavelength of 485 nm and an 
emission wavelength of 530 nm, as previously described (19). 
A thiobarbituric acid method was used to detect SOD with 
WST-1 assay kit (Jiancheng Bioengineering Institute, Nanjing, 
China) (20). NO in the supernatant was examined using a 
Total Nitric Oxide Assay kit (Jiancheng Bioengineering 
Institute), as previously described (21). Since NO is rapidly 
converted to nitrite (NO2

-) and further to nitrate (NO3
-), NO 

content was reflected by nitrite plus nitrate, as measured with 
Griess reagent.

Western blot analysis. Total protein was measured using 
a bicinchoninic acid (BCA) method. Samples containing 
50 µg protein were separated by 10% SDS-PAGE and 
transferred to PVDF membranes (Millipore, Bedford, MA, 
USA). The membranes were blocked with 5% non-fat milk 
in Tris-buffered saline containing 0.1% Tween-20 at room 
temperature for 1.5 h, and then incubated overnight at 4˚C 
with anti-Kip1/p27 antibody (1:500), anti-cyclin B1 anti-
body (1:500), anti-cyclin dependent kinase (Cdk)1 antibody 

(1:500), anti-c-myc antibody (1:1,000), phosphorylated (p-) 
(Ser1177)-eNOS antibody (1:250), anti-eNOS antibody (1:250) 
or anti-SIRT antibody (1:500). Polyclonal primary antibodies 
against SIRT1, p-(Ser1177)-eNOS and eNOS were purchased 
from Cell Signaling Technology, Inc. (Boston, MA, USA) 
and Kip1/p27, cyclin B1, Cdk1 and c-myc were purchased 
from Santa Cruz Biotechnology, Inc. (Santa Cruz, CA, USA). 
Following incubation with a horseradish peroxidase (HRP)‑
conjugated secondary antibody (Bio‑Rad, Hercules, CA, 
USA) for 1 h, the blots were visualized using an enhanced 
chemiluminescence (ECL) method. Bands of interest were 
quantified using Image J software (National Institutes of 
Health, Bethesda, MD, USA). β‑actin (1:1,000; ZSGB‑BIO, 
Beijing, China) was used as the loading control.

Cell cycle analysis. The cells were fixed with ice‑cold 70% 
ethanol for 4 h, washed with PBS twice and stained with 
propidium iodide (PI). A minimum of 1x103 cells/sample were 
counted. Cells in distinct cell cycles were characterized by 
DNA amount (G0/G1 cells, diploid; S cells, DNA synthesis 
between diploid and tetraploid; and G2/M cells, tetraploid) 
using flow cytometry (FCM; Beckman Coulter, Inc., Brea, CA, 
USA), as previously reported (22).

Reverse transcription quantitative‑polymerase chain reac‑
tion (RT‑qPCR). Total RNA was extracted with RNAiso 
Plus (Takara Bio, Dalian, China) using a phenol-chloroform 
method. Reverse transcription was carried out in 20 µl reaction 
mixture containing 1 µg total RNA. The primers were designed 
using GenBank sequences and Primer-BLAST (Table I). The 
resulting cDNA was amplified using a SYBR-Green PCR 
method. Initial denaturation was performed at 94˚C for 5 min, 
followed by 40 cycles of denaturation at 94˚C for 30 sec, 
annealing at 60˚C for 30 sec and extension at 72˚C for 45 sec. 
SIRT1 and eNOS mRNA were calculated using a comparative 
threshold cycle (Ct) method (ΔΔCt method) with β-actin as a 
reference.

Statistical methods. Data were presented as the means ± stan-
dard deviation (SD) for at least three sets of independent 
experiments and analyzed using one‑way analysis of vari-
ance (ANOVA), followed by post-hoc analysis for pairwise 
comparison: LSD method upon homogeneity of variance, 
Dunnett's t-test. P<0.05 (two-sided test) was considered to indi-
cate a statistically significant difference. Statistical analyses 
were performed using SPSS 13.0 software (SPSS Inc., Chicago, 
IL, USA).

Results

Effect of polydatin on proliferation. Polydatin attenuated 
H2O2-induced VSMC proliferation in a concentration-depen-
dent manner (P<0.05 at 50 and 100 µM vs. H2O2-treated group 
alone; Fig. 1A). Polydatin concentrations of 50 and 100 µM 
were selected for subsequent experiments.

Effects of polydatin on ROS, SOD, NO, eNOS and SIRT1. 
At 50 and 100 µM, polydatin significantly decreased the 
level of ROS, and increased the activity of SOD and the level 
of NO (P<0.05 vs. H2O2‑treated group alone; Fig. 1B‑D). 
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Polydatin (100 µM) increased the mRNA level of SIRT1 
and eNOS in cells exposed to H2O2 (P<0.05 vs. 50 µM 
polydatin‑treated group; Fig. 2A and B). The results obtained 
with western blot analysis were generally consistent with the 
mRNA findings (Fig. 2C).

Effects of polydatin on the cell cycle. Treatment with polydatin 
increased the number of cells in the G2/M phase (from 3.78±0.26 
to 15.62±0.22% and 23.31±0.34% at 50 and 100 µM, respec-
tively) and decreased the number of cells in the G0/G1 phase 
(from 92.15±0.19 to 77.02±0.31% and 66.30±0.18% at 50 and 
100 µM, respectively) (P<0.05 at 50 and 100 µM vs. H2O2-
treated group alone; Fig. 3).

Effects of polydatin on the cell cycle proteins. H2O2 treat-
ment alone increased cyclin B1 and Cdk1 and decreased 

Kip1/p27 (P<0.05 vs. the control group; Fig. 4A). Polydatin 
decreased cyclin B1 and Cdk1 expression and increased 
Kip1/p27 expression in cells exposed to H2O2 (P<0.05 vs. the 
H2O2‑treated group alone). H2O2 increased the protein level 
of c-myc. Polydatin inhibited such a response (P<0.05 vs. the 
H2O2-treated group alone; Fig. 4B).

Effects of L‑NAME and EX527 pre‑treatment. The CCK-8 
assay revealed that polydatin inhibited VSMC prolifera-
tion (Fig. 5A). L-NAME pre-treatment reversed the effects of 
polydatin on SOD activity (Fig. 5B) and ROS levels (Fig. 5D). 
Additionally, L-NAME pre-treatment decreased NO 
levels (Fig. 5C). Polydatin (100 µM) increased the phos-
phorylation of eNOS protein (p-eNOS) at Ser1177 of its 
catalytic subunit, and L-NAME treatment attenuated such a 
response (P<0.05; Fig. 5E).

Figure 1. Effects of polydatin on vascular smooth muscle cells (VSMCs) under H2O2-induced oxidative stress. VSMCs were incubated with either vehicle 
(DMSO) or 10‑100 µM polydatin in the presence of H2O2 (100 µM) for 24 h. (A) Cell proliferation in different groups. (B) Superoxide dismutase (SOD) activity 
of VSMCs in different groups. (C) Nitric oxide (NO) level of VSMCs in different groups. (D) ROS level of VSMCs in different groups. Data are presented as 
the means ± SD; n=5 per group. *P<0.05 vs. control group; #P<0.05 vs. H2O2-treated group alone.

Table I. Primers used for RT-qPCR.

Target mRNA Forward primer (5' to 3') Reverse primer (5' to 3')

SIRT1 ACAACCTCCTGTTGGCTGATGAGA AGAATTGTTCGAGGATCGGTGCCA
eNOS GGATCCAGTGGGGGAAACTG TGGCTGAACGAAGATTGCCT
β-actin CCCATCTATGAGGGTTACGC TTTAATGTCACGCACGATTTC

SIRT1, silent information regulator 1; eNOS, endothelial nitric oxide synthase.
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Figure 3. Effects of polydatin on the cell cycle of vascular smooth muscle cells (VSMCs) in the presence of H2O2. Cells were co-treated with different con-
centrations of polydatin (50 and 100 µM) and H2O2 or vehicle-treated control for 24 h. Cell cycle analysis was then performed by measuring the cellular DNA 
content. Data are presented as the means ± SD; n=3 per group. *P<0.05 vs. control group; #P<0.05 vs. H2O2-treated group alone. 

Figure 2. Effects of polydatin on the mRNA level and protein expression of silent information regulator 1 (SIRT1) and eNOS. (A) Measurement of SIRT1 
mRNA level in different groups. (B) Measurement of eNOS mRNA level in different groups. (C) Measurement of SIRT1 and eNOS protein expression 
in different groups. Data are presented as the means ± SD; n=3 per group. *P<0.05 vs. H2O2‑treated group alone; #P<0.05 vs. H2O2 combined with 50 µM 
polydatin treatment group.
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EX527 pre-treatment attenuated the anti-proliferative effects 
of polydatin (Fig. 6A). EX527 pre-treatment also decreased 
SOD activity (Fig. 6B) and increased ROS levels (Fig. 6D). 
EX527 pre‑treatment significantly decreased SIRT1 expres-
sion at the protein level (P<0.05). There was no decrease in 
NO levels (Fig. 6C), and eNOS and p-eNOS expression at the 
protein level (Fig. 6E). L-NAME and EX527 pre-treatment 
decreased the expression of Kip1/p27 at the protein level, and 
increased cyclin B1 (Fig. 7).

Discussion

The results from the present study have shown that polydatin, 
an analog of resveratrol, attenuated the proliferation of 
VSMCs under oxidative stress. Such an effect may be attrib-
uted to G2/M-phase arrest, an increased antioxidant capacity, 
and activation of the eNOS-SIRT1 signaling pathway in the 
VSMCs.

Resveratrol has been previously reported to have anti-
proliferative (23), antioxidant (24) and anti-aging (25,26) 
properties in vitro and in vivo. Polydatin, also known as piceid, 
is a derivative of resveratrol. Polydatin and resveratrol have 
been demonstrated to produce their effects via the stilbene 
synthesis pathway (27). Previous studies have indicated 
that stilbene derivatives with more phenolic moieties and 

an increased number of OH groups on the phenol ring have 
improved biological effects compared with resveratrol (28), 
including lower toxicity, better anticancer activities and sirtuin 
activation (29). Hydroxystilbene analogues with more hydroxyl 
groups on the phenol rings of the stilbene structure tend to have 
higher anti-radical activity than resveratrol (29). Polydatin has 
more potent anti-proliferative effects on intestinal epithelial 
cells than resveratrol (30), possibly due to an increased number 
of hydroxyl groups on the ring-structure.

Cell proliferation is accompanied by the activation of 
cell cycle proteins (31). The cell cycle is controlled by many 
factors, including cyclins/CDK complexes and CDK inhibi-
tors (CDKI) (32). High activity of the cyclin B1/CDK complex 
allows the progression of cells through the G2/M phase, and 
thus, is critical for mitosis (33). Previous findings have shown 
that resveratrol inhibited VSMC proliferation by inducing 
cell cycle arrest and increasing DNA synthesis (22). The 
results from the present study indicated that the promotion 
of VSMC proliferation by oxidative stress was accompanied 
by an increased expression of cyclin B1 and Cdk1, and a 
decreased expression of Kip1/p27 (Fig. 4). A previous study 
indicated that the downregulation of CDKI and Kip1/p27, 
interfered with G2/M arrest in response to DNA injury 
stress, thereby increasing genetic instability (34). Consistent 
with those findings, our data indicated that polydatin 

Figure 4. Effects of polydatin on cell cycle‑related protein levels in the presence of H2O2. (A) Kip1/p27, cyclin B1 and Cdk1. (B) c-myc. The total cellular 
lysis products for protein extraction were prepared and adjusted for western blot analysis with proper dilutions of specific antibodies for Kip1/p27, cyclin B1, 
Cdk1, c-myc and β‑actin. Data are presented as the means ± SD; n=3 per group. *P<0.05 vs. H2O2‑treated group alone; #P<0.05 vs. H2O2 combined with 50 µM 
polydatin treatment group.
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inhibited oxidative stress-induced VSMC proliferation, in 
part by arresting the cell cycle at the G2/M phase (Fig. 3). 
This finding is associated with the upregulation of CDKI and 
Kip1/p27, and the downregulation of cyclin B1 and Cdk1. 
Pre-treatment with the eNOS inhibitor, L-NAME, or the 
SIRT1 inhibitor, EX527, attenuated Kip1/p27 expression, and 
increased cyclin B1 levels (Fig. 7). These results indicated 
that the effect of polydatin on VSMC proliferation is medi-
ated by eNOS and SIRT1.

The c-myc is an important oncogene that regulates cell 
growth. Activation of c-myc promotes the proliferation of 
many cells, including VSMCs (35). In our study, c-myc expres-
sion was significantly increased by H2O2 and this response was 
inhibited by polydatin.

Resveratrol is a trihydroxy stilbene that is effective 
against oxidative stress and in the treatment of cardiovascular 
diseases (36). Numerous stilbene analogues have been devel-
oped based on the structure of resveratrol. A previous study 

Figure 5. Effects of L-NAME in vascular smooth muscle cells (VSMCs). (A) Measurement of cell proliferation in VSMCs treated with L-NAME. 
(B) Measurement of SOD activity in different groups. (C) Measurement of NO levels in different groups. (D) Measurement of ROS levels in different groups. 
(E) Quantification of silent information regulator 1 (SIRT1), p‑eNOS and eNOS protein expression in different groups detected by western blot analysis. 
Data are presented as the means ± SD of three independent experiments. *P<0.05 vs. H2O2‑treated group alone; #P<0.05 vs. H2O2 combined with 100 µM 
polydatin treatment group.
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indicated that polydatin and resveratrol possess scavenging 
activity against hydroxyl radicals in vitro (36). To evaluate 
the effect of polydatin on H2O2-treated VSMCs, we assessed 
NO, SOD, and ROS levels. In our experiments, the levels of 
NO and SOD were significantly increased following treatment 
with 50 and 100 µM polydatin, with a concomitant decrease 
in ROS levels. The results suggested that polydatin plays an 
anti-oxidant role by increasing the cellular oxidative tolerance 

to extracellular oxidative environmental change, as well as by 
eliminating ROS caused by oxidative stress in VSMCs.

eNOS regulates VSMC proliferation (37). Several protein 
kinases, including Akt/PI3K and AMPK, activated eNOS by 
phosphorylating Ser1177 in response to various stimuli (38,39). 
A previous study showed that resveratrol increased eNOS 
mRNA and protein expression levels and promoted NO 
production in endothelial cells (40). Resveratrol has been 

Figure 6. Effects of EX527 in vascular smooth muscle cells (VSMCs). (A) Meaurement of cell proliferation in VSMCs treated with EX527. (B) Measurement 
of SOD activity in different groups. (C) Measurement of NO levels in different groups. (D) Measurement of ROS levels in different groups. (E) Quantification 
of silent information regulator 1 (SIRT1), p-eNOS and eNOS protein expression in different groups detected by western blot analysis. Data are presented as 
the means ± SD of three independent experiments. *P<0.05 vs. H2O2‑treated group alone; #P<0.05 vs. H2O2 combined with 100 µM polydatin treatment group. 
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shown to inhibit rat aortic VSMC proliferation through 
estrogen receptor-dependent NO production (41). The present 
study demonstrated that the inhibition of eNOS by H2O2 was 
accompanied by a decreasing NO expression level. Although 
eNOS/NO expression by polydatin was not equivalent to the 
restoration of VSMC function in the normal control group 
in the present study. Thus, polydatin may attenuate VSMC 
prolife ration. In our experiments, L-NAME, a reversible eNOS 
inhibitor, downregulated the expression of eNOS, SIRT1 and 
Kip1/p27, with the concomitant upregulation of cyclin B1 
protein expression. We hypothesized that L‑NAME reversed 
the inhibitory effects of polydatin on cell proliferation by 
inhibiting eNOS expression.

SIRT1 regulates many pathways for nutrient bioavailability, 
cellular energy status and various receptor signaling pathways. 
SIRT1 has been proven to inhibit oxidative stress (42), interact 
with eNOS to improve vascular function and retard endothelial 
senescence (43). Resveratrol induced VSMC differentiation by 
stimulating SIRT1 and AMPK (44). SIRT1 was regulated by 
NO when shuttled between the nucleus and cytosol, upregu-
lated ROS scavengers, Mn‑SOD and catalase, and catabolized 
toxic H2O2, which in turn was detoxified to water (45). SIRT1 
is a crucial regulator of radical scavengers and transcriptional 
activation, and inhibits inflammatory expression via induc-
tion of eNOS (46,47). Thus, the SIRT1-eNOS/NO signaling 

pathway may be regarded as a potential target against athero-
sclerosis (48). In the present study, the expression of SIRT1 
protein in VSMCs was significantly induced by polydatin. The 
peak effect on SIRT1 expression at 100 µM polydatin positively 
correlated with eNOS expression, suggesting that SIRT1 maybe 
involved in NO synthesis.

EX527, a specific inhibitor of SIRT1, did not affect the 
expression of eNOS in VSMCs. We hypothesize that SIRT1 
may act as antioxidant regulator by activating upstream 
eNOS/NO in VSMCs. Taken together with the findings 
regarding cell cycle-related proteins, results of the present 
study suggest that SIRT1 functions as a vital regulator of the 
anti-proliferative effect of polydatin in VSMCs.

There are some limitations to our study. Firstly, it remains 
undetermined whether polydatin and resveratrol are capable 
of enhancing the activation of the eNOS/SIRT1 pathway in 
VSMCs. Secondly, the H2O2 model does not faithfully repre-
sent the in vivo oxidative damage microenvironment. Thirdly, 
the present study did not include the AMPK/eNOS pathway, 
which is apparently important for cell proliferation.

In conclusion, our study has demonstrated that polydatin 
improves oxidative stress-related changes by increasing SOD 
levels, ameliorating the level of ROS, inhibiting cell prolife-
ration, upregulating eNOS/NO-SIRT1 expression during 
H2O2-induced oxidative damage in VSMCs. The present 
findings may contribute to the development of strategies for 
the prevention and treatment of oxidative lesions in the vascu-
lature by targeting the eNOS/NO-SIRT1 pathway.
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