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Abstract. Mitochondrial dysfunction is involved in the 
pathology of Parkinson's disease, an age-associated neuro-
degenerative disorder. Phosphatase and tensin homolog 
(PTEN)-induced putative kinase protein 1 (PINK1) is respon-
sible for the most common form of recessive Parkinson's 
disease. PINK1 is a mitochondrial kinase that is involved in 
mitrochondrial quality control and promotes cell survival. 
PINK1 has been shown to protect against neuronal cell death 
induced by oxidative stress. Accordingly, PINK1 deficiency is 
associated with mitochondrial dysfunction as well as increased 
oxidative cellular stress and subsequent neuronal cell death. In 
addition, several mitochondrial chaperone proteins have been 
shown to be substrates of the PINK1 kinase. In this review, we 
discuss recent studies concerning the signaling cascades and 
molecular mechanisms involved in the process of mitophagy, 
which is implicated in neurodegeneration and in related aging 
associated with oxidative stress. Particular attention will be 
given to the molecular mechanisms proposed to explain the 

effects of natural compounds and/or food ingredients against 
oxidative stress. Knowledge of the molecular mechanisms 
involved in this cellular protection could be critical for devel-
oping treatments to prevent and control excessive progression 
of neurodegenerative disorders.
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1. Introduction

Oxidative stress is thought to play a significant role in the devel-
opment and progression of certain cell degenerative diseases 
and aging (1,2). Evidence supports the crucial role of mito-
chondrial dynamics in the pathogenesis of various diseases. 
For example, mitochondria are recognized to play an impor-
tant role in neurodegenerative disorders including multiple 
sclerosis, Parkinson's disease and Alzheimer's disease, which 
are characterized by progressive and selective loss of neuronal 
cell populations  (3-5). Aging and these neurodegenerative 
diseases are associated with a chronic state of oxidative stress 
and inflammation mediated via organized pathways  (6,7). 
Mitochondria are dynamic organelles and play an essential 
role in metabolic processes which are prominent targets of 
oxidative stress. Alterations in mitochondrial activity not only 
affect the function of individual cells but also metabolism and 
the lifespan (8). Thus, homeostasis is intensively regulated by 
a complex interplay between mitochondrial biogenesis and 
mitochondrial autophagy (mitophagy), an important control 
mechanism that clears damaged mitochondria, critical for 
cell survival and for normal cellular functions (9). Mitophagy 
may also play a key role in mediating apoptosis and in 
determining their own degradation. Phosphatase and tensin 
homolog (PTEN)-induced putative kinase protein 1 (PINK1) 
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is a mitochondrial-targeted serine/threonine kinase, which is 
linked to autosomal recessive familial Parkinson's disease (10). 
PINK1 has a protective role against mitochondrial dysfunction 
and apoptosis with mitochondrial quality control by activating 
a mitochondrial damage-response signaling pathway (11). It is 
now clear that mitochondrial oxidant production is controlled 
by redox signaling under precise physiological conditions. The 
pathway integrating environmental and genetic stimuli interacts 
with crucial mitophagy-related effectors to stimulate cellular 
stress response mechanisms modulating a healthy condition 
and long lifespan (12). Needless to state, there are many vari-
ables involved in how long we live and in maintaining a healthy 
life. However, it may be possible to help slow the aging process 
and/or avoid age-related diseases including neurodegenerative 
disorders, diabetes and heart disease. As aging may be the result 
of a number of factors, unraveling the regulatory network that 
governs the crosstalk between mitochondrial biogenesis and 
mitophagy may enhance our understanding of the molecular 
mechanisms that regulate mitochondrial function to control 
aging and age-related diseases. This review provides a concise 
overview of the cellular functions of mitochondrial kinase 
PINK1 and the relationship between aging/neurodegeneration 
and mitochondrial dynamics.

2. Characteristics of the PINK1 protein

Localization and stability of PINK1 require catalytic activity 
of presenilin-associated rhomboid-like serine protease (PARL) 
that can affect the proteolytic processing of PINK1 (13). In 
mitochondria, PARL facilitates the cleavage of PINK1, and 
then mediates differential cleavage of phosphoglycerate 
mutase family member 5 (PGAM5) depending on the status 
of the mitochondria (14). In addition, PINK1 processing and 
localization are indispensable in determining the interaction 
with E3 ubiquitin ligase Parkin. PINK1 recruits Parkin, a 
Parkinson's disease-related protein, to mitochondria in order 
to initiate mitophagy  (15,16). Therefore, PARL deficiency 
also impairs Parkin recruitment to the mitochondria (15,16). 
Optineurin and NDP52 are the primary receptors for PINK1-
mediated mitophagy (17). In addition, several molecules acting 
downstream of PINK1 are activated to maintain mitochon-
drial homeostasis. The PINK1 gene consists of eight exons, 
encoding a 581-amino acid protein with a calculated molecular 
mass of 66 kDa (18). PINK1 mRNA is ubiquitously expressed, 
and high expression is found in the brain, heart, testis and 
skeletal muscle (19). Mutations in the PINK1 gene are the most 

common causes of recessive familial Parkinson's disease (20). 
An amino terminal targeting signal domain is sufficient for 
mitochondrial introduction of PINK1, and the carboxyl 
terminal tail holds regulatory motifs capable of maintaining 
PINK1 kinase activity with homology to serine/threonine 
kinases  (21,22)  (Fig.  1). PINK1 protein can be processed 
into at least two shorter forms, which are distributed in both 
the mitochondrial and cytosolic space. Generally, PINK1 
is found on the outer and inner mitochondrial membrane. 
PINK1 phosphorylates a mitochondrial molecular chaperone 
heat shock protein 75 (Hsp75), also known as mitochondrial 
heat shock protein 75 kDa [or tumor necrosis factor receptor-
associated protein  1  (TRAP1)], which increases neuronal 
survival withstanding oxidative stress or heat shock by 
inhibiting the release of cytochrome c (22,23). Serine protease 
high temperature requirement protein A2 (HtrA2) is released 
from the inter-membrane space of mitochondria to the cytosol 
during apoptosis, which may also be regulated by PINK1 (24). 
However, whether HtrA2 is a direct PINK1 substrate is fairly 
uncertain. Targeted deletion of HtrA2 affects mitochondrial 
dysfunction leading to a neurodegenerative disorder with 
Parkinsonian phenotype in experimental mice (25). In addition, 
PINK1 may also interact with Beclin1, a crucial autophagic 
protein implicated in the pathogenesis of Alzheimer's disease 
and/or Huntington's disease (26). Interaction of PINK1 with 
Beclin1 was found to augment autophagy (27). Consequently, 
physiological PINK1 substrates may be localized in the 
outer membrane of mitochondria or possibly in the cytosol 
adjacent to the mitochondrial surface. Cytoplasmic PINK1 is 
degraded by proteasomes (28,29). It is feasible that differences 
in cell viability initiated from PINK1 inactivation may affect 
several substrates through other kinases such as p38 stress-
activated protein kinase (SAPK)/mitogen-activated protein 
kinase (MAPK) (28,29).

3. PINK1 functions in mitochondrial protection

The importance of PINK1 in the mitochondria is reflected by 
cell-protective properties for counteracting oxidative stress. 
When mitochondria are compromised by cellular depolar-
ization, PINK1 accumulates on the mitochondrial surface 
where it recruits the Parkin protein from the cytosol, which 
in turn mediates the degradation of mitochondria termed 
mitophagy (Fig. 2) (30,31). Knockdown of endogenous PINK1 
and/or loss of PINK1 leads to alterations in mitochondrial 
homeostasis as evidenced by increased mitochondrial 

Figure 1. Schematic illustration indicating the domain structures of PINK1 (upper) and Parkin (lower) molecules. Important domain structures for each protein 
are depicted. PINK1, phosphatase and tensin homolog-induced putative kinase protein 1; MTD, mitochondrial targeting domain; UbH, ubiquitin homology 
domain; RING1, RING2, RING finger domains; IBR, in-between RING fingers.
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reactive oxygen species (ROS) carrying an escalation in 
mitophagy (32). Protective activity of PINK1 in maintaining 
mitochondrial health depends on its mitochondrial localiza-
tion (33,34). Stable silencing of PINK1 may have an incidental 
role in the activation of mitophagy  (33,34). Thus, PINK1 
plays a pivotal role in mitochondrial quality control via the 
regulation of mitophagy and/or mitochondrial maintenance. 
However, excessive rates of mitophagy have been found to be 
harmful (35,36). In healthy mitochondria, PINK1 is promptly 
degraded in a process comprising mitochondrial proteases 
and proteasomes (37,38). As mentioned above, mitochondrial 
protease PARL may mediate differential cleavage of PINK1 
depending on the health status of mitochondria (14). Stability 
of PINK1 requires catalytic activity of PARL (14,15). PARL 
deficiency impairs Parkin recruitment to mitochondria (15), 
suggesting that PINK1 localization is important in defining 
the interaction with Parkin. Complete PINK1 is free to be 
released into the mitochondrial inter-membrane space or the 
cytosol. Blockage of PARL processing and the import of 
PINK1 upon depolarization of the mitochondrial membrane, 
leads to accumulation of PINK1 precursor (39). Targeting of 
this precursor protein to the outer mitochondrial membrane 
has been shown to initiate mitophagy  (22,40). Hence, the 
removal of PINK1 may act as a cellular checkpoint for the 
control of mitochondrial reliability, indicating that interac-
tions of PINK1 with Parkin promote healthy mitochondrial 
homeostasis. Expression of full-length PINK1 is essential for 
mitochondrial Parkin recruitment. Transient expression of 
Parkin further augments mitochondrial mitophagy, resulting 
in cytoprotection of mitochondrial networks (41). Following 
severe mitochondrial damage, however, PINK1 facilitates 
aggregation of depolarized mitochondria through interactions 
with Parkin (27). Under conditions of PINK1 deficiency, mito-
chondrial quality control is eventually compromised. Parkin 
can be phosphorylated by PINK1 in its RING finger domain, 
which may promote translocation of Parkin to mitochondria 

(42). It has been reported to facilitate the clearance of depolar-
ized mitochondria via mitophagy (43,44). Failure of this quality 
control ultimately results in cell death. Therefore, PINK1 and 
Parkin synergistically participate in a common mitochondrial 
complex signaling pathway. Recently, it has been reported 
that PINK1 phosphorylates ubiquitin to activate Parkin E3 
ubiquitin ligase activity (45) (Fig. 2). This phosphorylation 
may be required for the activation of Parkin for full activa-
tion to induce selective autophagy of damaged mitochondria. 
Phosphorylation of Parkin helps to prepare the ubiquitin ligase 
enzyme for activation by ubiquitin phospho-Ser65 (46). The 
phosphorylation-dependent interaction between ubiquitin and 
Parkin suggests that phosphorylated ubiquitin unravels auto-
inhibition of this signaling (47). These findings demonstrate 
that phosphorylated ubiquitin is a Parkin activator (47).

4. PINK1/Parkin/Sirt1/Sirt3/FoxO3 signaling network is 
related to longevity

Dysfunction of mitochondria is a common feature in aging 
and in neurodegeneration (48). In some cases, mitochondrial 
abnormalities appear to be caused by decreased activation 
of Sirt1 initiated by hyperactivation of the DNA damage 
sensor PARP‑1 [poly(ADP-ribose) polymerase 1] leading to 
mitochondrial membrane depolarization, PINK1 cleavage, 
and impaired mitophagy  (49). Notably, DNA repair is an 
essential mechanism for cell survival, and various defects in 
the DNA repair system lead to accelerated aging (49). Sirtuin 
1 (silent mating type information regulation 2, S. cerevisiae, 
homolog  1) (Sirt1) is the most prominent member of the 
mammalian class III histone deacetylase family implicated in 
healthy lifespan and longevity (50). A nuclear-mitochondrial 
crosstalk seems to be critical for the maintenance of mito-
chondrial health (48), in which the function of Sirt1 appears 
to be important (48,51). Sirt1 regulates the DNA repair and 
the related metabolism by deacetylating target proteins such 

Figure 2. Hypothetical schematic image of the PINK1 regulatory pathway with Parkin-mediated mitophagy. In healthy cells under a steady state, PINK1 
is degraded within mitochondria. This may be halted by mitochondrial damage resulting in PINK1 and Parkin accumulation in the outer membrane of 
mitochondria. Parkin is assumed to be ubiquitinated (ub) by an unidentified substrate (grey circle) resulting in the induction of mitophagy. In addition, PINK1 
phosphorylates ubiquitin to activate Parkin ubiquitin ligase activity. Note that some critical pathways have been omitted for clarity. PINK1, phosphatase and 
tensin homolog-induced putative kinase protein 1; OMM, outer mitochondrial membrane; IMM, inner mitochondrial membrane.
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as p53 tumor suppressor. The mitochondrial abnormalities 
may be caused by decreased activation of SIRT1 triggered by 
DNA damage. As PINK1 activates Parkin which translocates 
to depolarized mitochondria, the PINK1/Parkin/Sirt1 pathway 
may also act synergistically to promote mitochondrial degra-
dation by mitophagy in order to protect cells (52). In addition, 
several members of transcription factors control PINK1 tran-
scription. For example, it is known that mitochondrial Sirt3 
interacts and regulates the activity of FoxO3a, the Forkhead 
box subgroup O (FoxO), acting through the conserved FoxO 
binding elements in mitochondria. Overexpression of the 
Sirt3 gene increases FoxO3a DNA binding activity as well 
as FoxO3a-dependent gene expression including PINK1 (53). 
Induction of PINK1 by FoxO3a is crucial for critical survival 
signals in normal cells, as depletion of PINK1 sensitizes those 
cells to cell death (53). Furthermore, increased FoxO3a expres-
sion reduces both ROS and thereby apoptotic cell death (54). 
Multi-functional heat shock protein 40 kDa (HSP40) was found 
to decrease PINK1 mRNA level by binding to FoxO3a that 
interacts with the PINK1 promoter encouraging its transcrip-
tional activity (55). FoxO3a alteration is determinedly linked 
to the progression of various types of cancer, fibrosis, and 
other types of disease. Recently, several studies have revealed 
the importance of Sirt3 along with FoxO3a in addition to Sirt1 
with resveratrol in preventing premature aging (56,57). The 
favorable protective effect of resveratrol has been shown to be 
diminished upon pharmacological inhibition of Sirt1 by using 
sirtinol (56). Sirt1 in cooperation with Sirt3 activates FoxO3a 
thereby promoting the stimulation of the PINK-1/Parkin 
pathway leading to mitophagy. The importance of mitophagy 
has been revealed as it encourages a healthy pool of mitochon-

dria and prevents premature aging (49). In addition, the protein 
level of nuclear factor erythroid 2-related factor (Nrf2) is also 
involved in stress resistance and longevity (58,59). Notably, 
PINK1 expression is positively regulated by NRF2 activity 
and the Nrf2/PINK1 signaling axis is deeply involved in cell 
survival and longevity (60).

5. Diet may contribute to longevity by enhancing the 
PINK1 signaling network

Various anti-inflammatory drugs could be used as a supplement 
to scavenge ROS and hence improve the survival span of several 
types of cells (61). Antioxidants also act as inhibitors of radical 
production processes by removing harmful ROS formed during 
normal cellular metabolism (62,63). It is known that the poly-
phenolic natural antioxidant resveratrol, present in red wine and 
grapes, exhibits a number of pharmacological effects including 
anti-inflammation, antioxidation, anti-apoptosis, subsequently 
promoting longevity (64,65). Resveratrol can pass through the 
blood-brain barrier and is water soluble (66). The anti-aging 
effects of resveratrol are believed to be mediated by activa-
tion of Sirt1 and the consequent reduced oxidative stress. As 
mentioned above, several studies have revealed that Sirt3 along 
with FoxO3 in addition to Sirt1 are of importance in promoting 
the anti-aging function of resveratrol, which promotes the initial 
mitochondrial signaling response to activate PINK1 thereby 
promoting mitophagy. It is appealing to speculate that resve-
ratrol promotes anti-aging through this PINK1/Sirt1/FoxO3a 
signaling pathway comprising mitophagy (Fig. 3). For example, 
PINK1 is overexpressed in mitochondria of hepatocytes of 
ethanol-treated rats, in which treatment with a small amount 
of ethanol represent a possible protective mechanism via the 
stimulation of mitophagy (67). Dysfunctional mitophagy in 
response to gluco-lipotoxicities may play an important role in 
several liver diseases including hepatosteatosis (68). In addition, 
metformin is known to improve hepatosteatosis by inducing 
Sirt1-mediated mitophagy (68). Dysregulation of the Parkin 
pathway by metabolic malregulation may contribute to the 
pathogenesis of Parkinson's disease and metformin may exert 
a neuroprotective effect on neuronal disease via the restoration 
of Parkin (69). Furthermore, DHA attenuates insulin resistance 
in obese mice through the activation of Sirt1 (70). High fat diet-
fed animals were found to have reduced mRNA expression of 
PARL (71). Antioxidant vitamins and vitamin-like substances, 
such as vitamin E and coenzyme Q10, have been used in the 
treatment of neurodegenerative diseases with noteworthy 
efficacy (72). It is well known that a high intake of fruits and 
vegetables rich in antioxidant vitamins is inversely related to the 
incidence of neurodegenerative diseases. In contrast, treatment 
with an isoflavonoid pesticide, which inhibits mitochondrial 
complex I activity creating an environment of oxidative stress 
in cells, can produce nigrastriatal neuronal cell-loss and it 
produces an experimental animal model of Parkinson's disease 
with similar symptoms (73,74). The level of mitochondrial 
PINK1 protein has been shown to be increased after pesticide 
exposure (73,74). Cell protective proteins including Parkin and 
heat shock proteins (HSPs) may play fundamental roles even in 
slowing disease progression (73,74). Expression of Parkin and 
PINK1 was found to be significantly attenuated in a rat group 
fed a low-protein diet supplemented with various types of 

Figure 3. Implication of mitochondrial health induced by the PINK1, Parkin, 
Sirt1, Nrf2, FoxO3 and PARL network. Various food ingredients and specific 
diets may contribute to mitochondrial health via the PINK1 network, eventu-
ally leading to longevity. Note that some critical molecules have been omitted 
for clarity. PINK1, phosphatase and tensin homolog-induced kinase 1; Nrf2, 
nuclear factor erythroid 2-related factor; FoxO3, forkhead box group O3a; 
PARL, presenilin-associated rhomboid-like serine protease.
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keto-acids (75). Therefore, oxidative damage can be reduced by 
adhering to certain diets with specific vitamins and/or restric-
tion of calorie intake controlling hyperglycemia. Consequently, 
nutritional control related to metabolic antioxidation may 
encourage longevity followed by healthy mitochondria with 
minimal degeneration of cells.

6. Conclusion

Mitochondria are involved in cell stress-induced programmed 
cell death, which also contributes to the regulation of mito-
chondrial dynamics and mitophagy. In terms of the effect of 
specific ROS on mitophagy, future research is needed to ascer-
tain how to maintain mitochondrial quality and ensure cellular 
homeostasis. PINK1 protein may play key roles in the primary 
line of mitochondrial quality control and in monitoring respi-
ratory function under conditions of oxidative stress. However, 
low levels of redox signaling may be essential for normal 
mitophagy. Although the detailed physiological substrate of 
PINK1 is not fully determined, it is clear that kinase activity is 
important in many aspects of mitochondrial function in addi-
tion to mitophagy (76). Hence, reduction in PINK1 activity 
may have eventual lethal consequences on mitochondria and/
or cells. Enhancing pathways that promote dynamic mitophagy 
may delay age-related diseases by promoting a healthy pool of 
viable mitochondria in cells and by sustaining good energy 
metabolism. Future experimental research may further clarify 
the mitochondrial protective roles of PINK1 and Parkin.
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