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Abstract. Osteoporosis is a bone disease that poses a 
tremendous burden to health care. The receptor activator of 
nuclear factor-κB (RANK) and its ligand  (RANKL) have 
been a major focus of this research field. RANKL signaling 
not only activates a variety of downstream signaling path-
ways required for osteoclast development, but crosstalk with 
other signaling pathways also adjusts bone homeostasis both 
in normal physiology and in bone disease. Consequently, 
novel drugs specifically targeting RANK-RANKL and their 
signaling pathways in osteoclasts are expected to revolutionize 
the treatment of various bone diseases such as osteoporosis. 
Osteoclasts are the exclusive cells involved in bone resorption. 
Abnormal activation of osteoclasts can lead to reduced bone 
density, resulting in osteopenia, osteoporosis and other bone 
disorders. To date, the mechanism of how osteoclast precur-
sors differentiate into mature osteoclasts remains elusive. 
Cell proliferation and cell death may be key processes in the 

progression as well as other cell types. Oncogene products and 
tumor-suppressor molecules play a pivotal role in regulating 
the processes, which are important in regulating the configura-
tion of bone disorders. Based on the understanding of these 
processes, promising alternatives to the use of medications 
against osteoporosis include specific diets with plant-derived 
supplements to modulate the expression and/or activity of 
these molecules. In this review, we summarize the progress 
of research with a focus on the modulatory roles of oncogene 
products and tumor-suppressor molecules and suggest the 
scope of further research concerning the prevention of osteo-
porosis in this field.
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1. Introduction

Bone fracture is a health issue in patients with bone-related 
disorders such as osteoporosis as it is a common event (1). 
Healthy bone homeostasis depends on a balance between 
osteoblastic bone formation and osteoclastic bone resorp-
tion (2) (Fig. 1). Bone remodeling also requires a balance in 
growth, differentiation, and activity of osteoblasts and osteo-
clasts. Multinucleated osteoclasts resorb lamellar bone, and 
new bone is generated by osteoblasts. An imbalance can lead to 
impaired bone structure and/or small bone mass. Accordingly, 
osteoclasts are functionally indispensable for supporting bone 
health. Hyperactivation of osteoclasts and/or their increased 
number can lead to diseases characterized by bone loss, which 
is a key risk factor for bone fracture (3). Bone resorption leads 
to degradation of extracellular matrix which alters the environ-
ment of bone marrow stem cell binding and differentiation. On 
the other hand, bone morphogenetic proteins (BMPs), which 
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are members of the transforming growth factor  (TGF)-β 
superfamily and in charge of the development and function 
of different cell types, induce bone formation (4). It has been 
shown that BMP signaling in osteoblasts regulates bone mass 
in mice, suggesting a role of BMP in osteoclastogenesis along 
with osteoblastic action  (5). In  addition, postmenopausal 
osteoporotic bone loss may largely result from the stimula-
tion of bone resorption via increased osteoclast formation 
with insufficient osteoblastic bone formation (6). Clinically, 
medical orally available bisphosphonates targeting osteoclasts 
have been widely used to treat patients with osteoporosis and/
or prevent osteoporotic fracture. Bisphosphonates principally 
inhibit the activation of osteoclasts by binding to hydroxyapa-
tite (7); however, bisphosphonate-related side effects including 
hypocalcaemia, secondary hyperparathyroidism, renal 
toxicity, gastrointestinal tract problems and osteonecrosis have 
recently been reported (8). Colony‑stimulating factor 1 (CSF1) 
is a growth factor required for the differentiation of mono-
cyte-macrophage precursor cells into preosteoclasts  (9). 
Osteoblasts produce CSF1 and receptor activator of nuclear 
factor-κB ligand (RANKL) which is essential for the early 
development of osteoclasts from precursor cells derived from 
monocyte/macrophage lineage originating from the liver and 
spleen (10). Membrane-bound RANKL invites osteoclasts and 
initiates and/or activates their differentiation to form multi-
nucleated cells. The role of BMPs in osteoclast differentiation 
has also been demonstrated, which induce RANKL expres-
sion in osteoblasts. CSF1 is controlled by a Smad-signaling 
pathway (11). In addition, the involvement of the phosphati-
dylinositol 3-kinase (PI3K) and AKT signaling pathways has 
been shown to be critical both in osteoblast and in osteoclast 
differentiation in response to BMPs (11). Consequently, BMPs 
induce secretion of CSF1 dependent on PI3K/AKT signaling. 
Inhibition of PI3K/AKT signaling blocks the binding of 
Smads to the CSF1 BMP-responsive element present in the 
CSF1 promoter, resulting in attenuation of Smad-dependent 
CSF1 transcription (12).

Proto-oncogenes and tumor-suppressor genes, which are 
important in the normal development of cells, are involved in 
the regulation of the cell cycle and apoptosis (13). For example, 
the proto-oncogene c-Src has been implicated in the develop-
ment and mature function of the nervous system (14). The 
protein product of the c-Src gene is a tyrosine protein kinase 
that is enriched in fetal neural tissues. Nuclear transcription 
of c-Src and other proto-oncogenes such as N-ras, c-Myc and 

c-Fos have been observed in proliferating and differentiating 
cells (15). In general, oncogenes are critically positioned in 
various growth factor receptor signaling pathways and are 
relevant in cancer development (16). TP53 is a well-known 
tumor-related gene expressed ubiquitously in all cell types as 
an inactive transcription factor which undertakes activation in 
response to a variety of cellular stresses. TP53 acts both as an 
oncogene and a tumor-suppressor gene. The effects of TP53 
are mediated by different downstream effectors and target 
proteins. Among them, cyclin-dependent kinase (CDK) inhibi-
tors such as p21 are key mediators of TP53 action, in which 
p21 may be involved in cell differentiation (17). In addition, 
p21 regulates cell cycle progression, cell differentiation and 
senescence (18). Phosphatase and tensin homolog (PTEN) is 
also a well-known tumor-suppressor gene product of the pten 
gene. PTEN is a dual-specificity phosphatase that has been 
shown to prevent cell proliferation and migration (19,20). The 
PTEN/AKT pathway appears to be important in the regulation 
of inflammatory responses (21).

2. Oncogenes are involved in osteoclastogenesis

Osteoclasts are multinucleated cells that are formed by the 
fusion of mononuclear osteoclasts, which is an essential 
process in bone resorption leading to bone remodeling (22). 
Mechanical response is known to regulate bone remodeling, yet 
the molecular events involved in the mechanical signal trans-
duction are poorly understood. However, RANKL may be the 
most essential cytokine involved in the genesis of osteoclasts 
and/or osteoclast differentiation (23). The binding of RANKL 
to RANK provokes activation of signaling molecules including 
AKT and ERK that later induce the activation of transcription 
factors such as nuclear factor of activated T cells (NFATc1) 
and c-Fos to regulate the expression of genes required for 
osteoclast differentiation  (24,25). The expression of c-Fos 
and NFATc1 is regulated by the ERK signaling pathway (26). 
Proto-oncogene product c-Fos is an essential factor for the 
induction of NFATc1, which is a master transcription factor 
that regulates the process of osteoclast differentiation by 
controlling osteoclast-specific genes (27,28). NFATc1 plays 
a role as a transcription factor required for regulating the 
expression of osteoclast-specific genes including TRAP 
and c-Src (29). c-Src tyrosine kinase (Fig. 2) is also required 
for the maintenance of osteoclasts and control of bone resorp-
tion through actin cytoskeleton turnover  (30,31). Selective 
c-Src inhibitors induce osteoclast disruption and consequently 
reduce osteoclast numbers in vivo, which induce programmed 
cell death in mature osteoclasts  (32,33). Caspase-3 and  -9 
are momentarily activated by treatment with c-Src inhibitors 
probably involving continual ERK1/2 phosphorylation (34). 
Both c-Fos and  c-Src are proto-oncogenes. In  addition, 
proto-oncogene c-Myc is strongly upregulated in RANKL-
induced osteoclasts (Fig. 2), and is a transcription factor 
expressed at comparatively high levels in preosteoclasts (35). 
Consistent with this, a dominant-negative Myc could block 
RANKL-induced osteoclast formation (35). TRAP, a typical 
marker of osteoclast differentiation, is an enzyme that plays 
an active role in the process of bone resorption. The specific 
regulation of TRAP is performed at the transcriptional level 
by Myc, suggesting that Myc may play an active role in 

Figure 1. Schematic representation of bone homeostasis that depends on a bal-
ance between osteoblastic bone formation and osteoclastic bone resorption.



INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE  39:  261-267,  2017 263

suppressing the transcription of mature osteoclast genes (36). 
In addition, Myc has a function in the stimulation of FOXO1 
which plays key roles in bone development and remodeling 
by stimulating osteoclast formation (37). In addition to PI3K/
AKT signaling, small Ras GTPase also regulates osteoclast 
survival. Increased activity of Ras GTPase induces the binding 
with PI3K, whereas inhibition of Ras reduces PI3K-mediated 
osteoclast survival (38). Actually, the pharmacological inhibi-
tion of H-ras prevents the downstream mechanical repression 
of RANKL (39). Consistently, RNA interference (RNAi) of 
H-ras also retracts the mechanical repression of RANKL (39), 
suggesting that the mechanical repression of RANKL requires 
a specific form of Ras-GTP activity. Spatial arrangements in 
the lipid raft microdomain may be critical for downstream 
events in response to mechanical signals. In general, activa-
tion of Ras and the mitogen-activated protein kinase (MAPK) 
signaling pathway is known to underlie the proliferation and 
differentiation of different types of cell lineages including 
osteoclast progenitor cells (40).

3. Tumor-suppressor genes are involved in osteoclasto
genesis

Treatment with RANKL was found to induce an accumulation 
of TP53 protein in a dose-dependent manner, consequently 
activating TP53 target genes (41). TP53 is a known tumor-
suppressor molecule and also regulates osteoclast differentiation 
(Fig. 2). Mice with deficiency of the TP53 gene display a high 
bone-mass phenotype (42). In addition, TP53-deficient mice 
have an improved ability to prefer osteoclast differentiation 
with increased expression of CSF1 (42,43). Therefore, TP53 
acts as a regulator of osteoclastogenesis and subsequent bone 
remodeling (42,43). Bone loss induced by ovariectomy has 
been linked to enhanced bone turnover as a result of osteoclast 
activation (44), accompanied by increased expression of the 
senescence marker p16/p21 in bone associated with a decrease 
in Sirt1 (44). In general, bone cell senescence is associated 
with decreased Sirt1 expression and activation of TP53, p16 

and p21 (45). Sirt1 is a candidate anti-aging gene which may 
suppress p16 expression through deacetylation (45). Although 
the TP53 and p16 pathways act separately to promote cellular 
senescence, their contribution can be cell type-dependent 
depending on the process (46). Cellular senescence is a process 
of aging involving a permanent growth arrest of mitotic cells 
and is different from apoptosis and/or programmed cell death.

PTEN (Fig. 2) is a frequently mutated tumor-suppressor 
gene in human cancers  (47). PTEN has been found to 
regulate cell survival, growth, migration, adhesion, and 
invasiveness  (48). PTEN adversely regulates PI3K/AKT 
signaling as a lipid phosphatase for the phosphatidylinositol 
3,4,5-triphosphate second messenger. Inactivation of glycogen 
synthase kinase-3β (GSK-3β) via AKT plays an important role 
in RANKL-induced osteoclastogenesis (49). Downregulation 
of PTEN by RNAi increases AKT and GSK-3β phosphory-
lation by RANKL, thereby stimulating the development of 
osteoclasts (50). Notably, the phosphorylation defective mutant 
of PTEN at threonine 366 was found to result in increased 
osteoclastgenesis compared to that of wild-type PTEN. 
PTEN phosphorylation seems to reduce RANKL-induced 
osteoclastogenesis, whereas PTEN protein levels are unaf-
fected (50). Treatment with GSK-3β inhibitor SB216763 was 
found to dose-dependently suppress PTEN phosphorylation 
consequently increasing AKT phosphorylation. RANKL 
stimulates activation of AKT, which in turn is consistent with 
the role of an increased level of PTEN in decreasing AKT 
activity. These data strongly suggest that inhibition of GSK-3β 
during RANKL-induced osteoclastogenesis decreases PTEN 
phosphorylation, contributing to osteoclast differentiation 
through subsequent AKT activation. PTEN overexpression 
also blocks RANKL-triggered AKT activation that is related 
to cell survival and cell migration. Thus, PTEN overexpres-
sion suppresses RANKL-mediated osteoclast differentiation. 
On the contrary, the dominant-negative form of PTEN induces 
osteoclast differentiation and migration. In this way, multiple 
roles for PTEN have been shown in RANKL-induced osteo-
clast precursor cells (50,51).

Figure 2. Schematic structures of Src, Myc, TP53 and PTEN protein. The predicted consensual domain structures for each protein are depicted. The function-
ally important sites are also shown. Note that the sizes of the protein are modified for clarity. SH3, Src homology 3 domain; SH2, Src homology 2 domain; 
PTK, protein tyrosine kinase domain; TA, transactivation domain; HLH, helix-loop-helix domain; LZ, leucine zipper domain; PxxP, proline‑rich region; 
C2 domain, a protein structural domain involved in targeting proteins to cell membranes; PDZ, a common structural domain in signaling proteins (PSD95, 
Dlg and ZO-1).
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4. Strategy for the dietary treatment of osteoporosis

Potential therapeutic strategies exploit the observations made 
in the critical processes required for maintaining homeo-
stasis of the metabolic condition characterized by osteoblast/
osteoclast balance. Accordingly, dietary regulation of these 
cells is an important therapeutic strategy for preventing 
and/or treating bone disorders. As mentioned above, several 
oncogenes and tumor-suppressor genes are intensely involved 
in osteoclastogenesis and/or osteoporosis. Thus, it is a chal-
lenge to regulate the expression of these genes by dietary 
treatment. First of all, inhibition of oncogene expression such 
as c-Myc and c-H-ras by green tea and (-)-epigallocatechin 
gallate has been shown in mice (52). In addition, antioxidants 
such as retinoids (vitamin A), vitamin E (such as α-tocopheryl 
succinate), ascorbate  (vitamin  C) and carotenoids induce 
cell differentiation and growth inhibition in human cells by 
complex mechanisms including inhibition of the expression of 
c-Μyc and H-ras and induction of p21 genes (53). Moreover, 
dietary calorie restriction has been associated with reduced 
cancer risk, which is related to the abrogation of both Ras and 
PI3K signaling (54).

Praeruptorin A is the major bioactive component isolated 
from the dry root extract of Peucedanum praeruptorum Dunn, 
and has several biological activities such as anti‑hypertensive 
activity by acting as a calcium channel blocker (55). Prae
ruptorin A attenuates the RANKL-induced phosphorylation 
of p38 without affecting JNK and  ERK activity. The 
anti‑osteoclastogenic action of praeruptorin A may be due to 
its potential to inhibit both the p38 and AKT signaling path
ways that subsequently downregulate the expression of c-Fos 
and NFATc1  (56). Honokiol, a component of the Oriental 
herb Magnolia officinalis, inhibits RANKL-induced osteo
clastogenesis with nuclear factor-κB (NF-κB) activation (57). 
Studies have shown that honokiol blocks TNF-induced 
phosphorylation, degradation and ubiquitination of IκBα 
through the inhibition of AKT (58). Expression of c-Μyc is 
also downregulated by honokiol (59). Honokiol can diminish 
PI3K/AKT signaling by upregulation of PTEN expression (60). 
Magnolol, a honokiol isomer, has been shown to be equally 
active. Consumption of a blueberry‑containing diet may 
contribute to the prevention of bone loss (61). Blueberries are 
an admirable source of dietary polyphenols such as phenolic 
acids and anthocyanins, which were found to significantly 
decrease the gene expression of TP53 and  p21 in human 

HepG2  cells  (62). Resveratrol was also found to activate 
Sirt1, a member of the sirtuin family of nicotinamide adenine 
dinucleotide (NAD)‑dependent deacetylases (63). Stilbenes, 
which are related to resveratrol, have been shown to have an 
inhibitory effect on the expression of the c-Myc genes (64). 
In addition, resveratrol inhibits cell proliferation and induces 
cell apoptosis through regulation of TP53 expression (65). An 
extract from thorns of the medicinal herb, Gleditsia sinensis 
caused an increase in cell cycle arrest during the G2/M phase, 
associated with increased TP53 levels (66). Treatment with 
an ethanol extract of the thorns of Gleditsia sinensis was also 
found to be associated with upregulation of p21 levels (67). 
Both TP53 and p21 mRNA levels were increased following 
treatment with the Chinese herb Kanglaite, an extract from 
Coix seed (68). Kanglaite appears to extend the half-life of 
TP53 protein (68). A ginsenoside, one of the components of 
American ginseng herb, was found to activate TP53  (69). 
In addition, apoptosis induction by thymoquinone, the most 
abundant component in black seed, was found to be associated 
with an increase in TP53 mRNA and downstream TP53 target 
genes (70,71). Treatment with an extract of Magnolia officinalis 
upregulated the expression of p21 and p27 (72). Baicalin, a 
herb-derived flavonoid compound, enhanced the expression of 
p27 (73,74). Treatment with an extract of Saussurea involucrate 
was also found to induce p21 and p27 expression, independent 
of the TP53 pathway (75). Treatment with triptolide, a purified 
extract from the herb Tripterygium wilfordii Hook F resulted 
in increased p21 expression  (76,77). Curcumin, an active 
ingredient derived from the root of the plant Curcuma longa, 
restored PTEN expression  (78). In  contrast, various 
components of the herb rosemary inhibited the expression of 
PTEN in K562 myeloid cells (79).

Dietary intake of indole-3-carbinol was found to upregu-
late PTEN in an animal model (80). Indole-3-carbinol is a 
promising cancer‑preventive phytochemical found in various 
vegetables such as broccoli (81). In addition, PTEN expression 
at the mRNA and protein levels was found to be elevated in 
experimental animals fed whey protein which has been shown 
to possess multiple health benefits (82). It has also been reported 
that DHA and EPA raise the level of PTEN in breast cancer 
cells, providing a mechanism for the beneficial effects of fish 
oils on breast cancer cells (83,84). Fish oil rich in polyunsatu-
rated fatty acids may induce PTEN expression by activation 
of peroxisome proliferator-activated receptor (PPAR) (85,86), 
which attenuates cellular damage playing an important role in 
the activation of anti‑apoptotic signaling (87). The information 
discussed here may also be useful for supporting the design 
of further research concerning the prevention of osteoporosis.

5. Future perspectives

It will be a challenge to elucidate how to utilize natural 
compounds for the correction of critical processes required for 
maintaining cellular homeostasis and metabolic conditions to 
prevent osteoporosis (Fig. 3). Identification of effective target 
molecules relevant for osteoporosis allows the screening for 
natural products capable of modulating targets. In addition, 
combination therapy using two or more food ingredients is 
a promising therapeutic strategy over traditional approaches. 
For example, resveratrol and curcumin synergistically induce 

Figure 3. Schematic illustration of the tentative proposed model for osteo-
clastogenesis mediated by oncogenes and tumor-suppressor genes in addition 
to the stimulation of colony-stimulating factor 1 (CSF1) and receptor acti-
vator of nuclear factor-κB ligand (RANKL). Examples of molecules involved 
in osteoclastogenesis are shown. Note that some critical pathways have been 
omitted for clarity.
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apoptosis by increasing the level of p21 and decreasing the 
level of c-Myc (88). The information here may provide further 
insight into the molecular mechanisms of special diets under-
lying the daily use of certain foods as a therapeutic strategy 
for osteoporosis. This may also provide the basis for the devel-
opment of rational dietary treatments against other diseases. 
Future studies are required to demonstrate whether oncogenes, 
tumor-suppressor genes and/or their downstream targets could 
be used to modulate the cellular composition of tissue including 
bone, thereby enhancing metabolic stability. Knowledge of the 
local determinants of the phenotype of osteoclasts in critical 
lesions and how they interact with the risk factors of bone 
disorders may lead to significantly improved therapies with 
reduced side effects.
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