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Abstract. Sphingosine kinase (SphK) is an important signalling 
enzyme that catalyses the phosphorylation of sphingosine (Sph) 
to form sphingosine‑1‑phosphate (S1P). The multifunctional 
lipid, S1P binds to a family of five G protein‑coupled recep-
tors  (GPCRs). As an intracellular second messenger, S1P 
activates key signalling cascades responsible for the mainte-
nance of sphingolipid metabolism, and has been implicated in 
the progression of cancer, and the development of other inflam-
matory and metabolic diseases. SphK and S1P are critical 
molecules involved in the regulation of various cellular meta-
bolic processes, such as cell proliferation, survival, apoptosis, 
adhesion and migration. There is strong evidence supporting 
the critical roles of SphK and S1P in the progression of diabetes 
mellitus, including insulin sensitivity and insulin secretion, 
pancreatic β‑cell apoptosis, and the development of diabetic 
inflammatory state. In this review, we summarise the current 
state of knowledge for SphK/S1P signalling effects, associated 
with the development of insulin resistance, pancreatic β‑cell 
death and the vascular complications of diabetes mellitus.
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1. Introduction

Diabetes mellitus is one of the most prevalent metabolic 
diseases, affecting 347 million individuals worldwide (1). This 
heterogeneous disease ultimately arises from either the failure of 
pancreatic β cells to produce insulin, and/or the development of 
insulin resistance in peripheral tissues (2). Type 1 diabetes (T1D; 
juvenile‑onset, approximately 10% of all patients with diabetes) 
is often caused by an autoimmune attack on pancreatic β cells, 
resulting in the loss of insulin secretion. T1D represents the 
insulin‑dependent form of diabetes, requiring daily insulin 
therapy. Type 2 diabetes (T2D; adult‑onset, 90% of all patients 
with diabetes) is caused by insulin resistance, associated with 
relative hyperinsulinemia. T2D is usually a non‑insulin‑depen-
dent form of diabetes. Nevertheless, it requires active and often 
complex therapeutic interventions. Obesity and associated 
inflammation are common risk factors for T2D (3,4). Aberrant 
lipid metabolism and signalling are tightly interconnected with 
the pathogenesis of obesity, inflammation and diabetes. In this 
review, we highlight the mechanisms through which the key 
signalling sphingolipid molecule, sphingosine‑1‑phosphate (S1P), 
and S1P‑producing enzyme sphingosine kinase (SphK) have 
been shown to affect diabetes‑related pathologies.

There are two major isoforms of SphK (SphK1 and SphK2), 
each having diverse and compensatory biological functions 
(Figs. 1 and 2) (5). Both SphKs can phosphorylate sphingo-
sine (Sph) to form S1P, thus activating a variety of extracellular 
and intracellular signalling mechanisms. Controlled by SphKs, 
the conversion of pro‑apoptotic Sph into the pro‑survival 
molecule, S1P, maintains the equilibrium amid opposing 
cellular functionsm, such as cell growth, proliferation, secre-
tion and migration on the one side; and apoptosis, senescence, 
autophagy and growth arrest on the other (6,7). This balance, 
known as the ‘sphingolipid rheostat’, has been suggested to 
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be critical to cell fate (8,9). For example, tipping the balance 
in favour of Sph accumulation may cause insulin resistance, 
whereas an increased S1P level has been shown to promote 
insulin action (10‑12).

The highly bioactive lipid, S1P, is involved in maintaining 
metabolic stability; however, it can also mediate the develop-
ment of serious pathological conditions  (13‑15). S1P binds 
specifically to five (S1P1‑5) transmembrane G protein‑coupled 

Figure 1. Regulation of SphK1 signalling. SphK1 is located mainly in the cytoplasm. Various agonists (such as phorbol ester and TNF‑α) induce activation 
of SphK1 phosphorylation, activation and translocation to plasma membrane. This relocation is mediated by interaction with CIB1. S1P is exported from 
the cells and binds to S1P receptors (S1P1‑5) to activate classical GPCR signalling pathways, leading to control of cell survival, proliferation and migration. 
Alternatively, S1P binds to TRAF2 intracellularly and activates the NF‑κB pathway and its downstream targets. SphK, sphingosine kinase; CIB1, calcium and 
integrin‑binding protein 1; S1P, sphingosine‑1‑phosphate; GPCR, G protein‑coupled receptor; TRAF2, TNF receptor‑associated factor 2; NF‑κB, nuclear factor 
κ‑light‑chain‑enhancer of activated B cells; PLC, phospholipase C; PP2A, protein phosphatase‑2A.

Figure 2. Regulation and SphK2 signalling. Several agonists (such as EGF and cross‑linking of FcεRI) stimulate SphK2 activation via ERK1/2‑mediated 
phosphorylation. SphK2 in the EndRet induces apoptotic signalling through localised generation of S1P. The release of active SphK2 can also occur via 
caspase‑1‑mediated cleavage and allows extracellular generation of S1P. SphK2 localization in the nucleus is regulated via PKD‑mediated activation of nuclear 
export signals. Nuclear SphK2 generates S1P that regulates histone acetylation. S1P specifically binds to the HDAC1/2 and inhibits their enzymatic activity. 
SphK2 associates with HDAC1/2 in repressor complex at promoters of the genes, where it enhances local H3 acetylation and promotes gene transcription. SphK, 
sphingosine kinase; EGF, epidermal growth factor; EndRet, endoplasmic reticulum; S1P, sphingosine‑1‑phosphate; PKD, protein kinase D; HDAC1/2, histone 
deacetylase 1 and 2; H3, histone 3; Sph, sphingosine.



INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE  39:  243-252,  2017 245

receptors (GPCRs) (16) and activates cellular responses via S1P 
receptor‑mediated mechanisms and/or by targeting a complex 
network of intracellular messengers. The biological actions of 
S1P are cell type‑ and receptor subtype‑specific as reviewed 
previously  (17). In this review, we summarise the recent 
evidence implicating SphKs/S1P signalling in diabetes‑associ-
ated intracellular abnormalities and metabolic aberrations.

2. Divergence of SphK isoforms

The SphK isoforms (Sphk1 and SphK2) are structurally 
related, with five highly conserved domains (C1 to C5), 
although they differ in size, intracellular localization and 
function. SphK isoforms are encoded by two different genes, 
SPHK1 (chromosome 17, cytoband q25.1) and SPHK2 (chro-
mosome 19, cytoband q13.33). SphK1 is a 48 kDa protein 
first purified from rat kidney cells (18). There are three splice 
isoforms of SphK1 (1a, b and c); all are cytosolic proteins 
differing slightly in subcellular distribution. SphK2 is larger 
in size (69 kDa) and has sequence homology to SphK1. There 
are two recently discovered splice isoforms of SphK2 (a and 
b) (18). SphK2 contains an extended N‑terminal region with 
a proline‑rich polypeptide insertion and several other unique 
sites within the N‑terminal sequence. The N‑terminal region 
of SphK2 includes a nuclear export sequence (NES), important 
for shuttling the enzyme between the nucleus and cytoplasm. 
The SphK2 sulphite‑binding site facilitates the membrane 
localization of SphK2 (19), while the caspase‑1 cleavage site 
regulates SphK2 maturation and secretion from cells during 
the induction of apoptosis (21).

Furthermore, SphK isoforms differ in developmental 
expression, tissue distribution and subcellular localization (5,6). 
SphK1 predominates in the lungs and spleen (7,8,11), whereas 
SphK2 is more common in the heart, brain and liver (9,10,12,13). 
Notably, SphK1 and SphK2 have been shown to regulate 
different intracellular processes. For instance, SphK1 promotes 
cell survival and proliferation, whereas SphK2 is involved in 
the induction of apoptosis and cell growth arrest  (22). The 
divergent roles of SphK isoforms in diabetes‑related patholo-
gies will be discussed in greater detail below.

3. Mechanisms of SphK activation and subcellular 
localization

The different steady‑state localization of the SphK isoforms 
corresponds to the specific intracellular functioning of the 
enzymes. SphK1/2 are redistributed to distinct intracellular 
sites in an agonist‑dependent manner. SphK1/2 substrates 
(Sph and dihydrosphingosine) and product (S1P) are lipids and 
therefore, the subcellular membrane localization of SphK in 
close proximity to substrates is necessary for the enzyme to 
fulfill its housekeeping and signalling functions.

SphK localization to specific intracellular compartments 
is critical to the functional consequences of signalling, such 
as the stimulation of cancer cell growth  (23). Under basal 
conditions, SphK1 predominates in the cytosol where it main-
tains low levels of intracellular S1P required for normal cell 
metabolism (24). It has been documented that the translocation 
of SphK1 to the plasma membrane is required for its oncogenic 
effect (23). However, the targeting of SphK1 to a specialised 

subcellular compartment enables its regulation of different 
functions. For example, the translocation of SphK1 to the 
endoplasmic reticulum (EndRet) promotes cell apoptosis (25), 
whereas the translocation of SphK1 to the nuclear envelope 
promotes G1/S transition during cell division (22).

Various stimuli, such as growth factors and cytokines can 
activate SphK1 by phosphorylation of the enzyme at Ser‑225, 
mediated by mitogen‑activated protein kinase  (MAPK) 
ERK1/2 (20,21,26,27). This phosphorylation promotes SphK1 
to undergo conformational changes accompanied by a rapid 
increase in the catalytic activity of the enzyme and its subcellular 
translocation from the cytosol to plasma membrane (26). The 
continuous retention of SphK1 at the plasma membrane requires 
binding to phosphatidylserine or phosphatidic acid (20,21,27). 
In addition to phosphorylation, SphK1 membrane transloca-
tion can be also induced by protein‑protein interactions (28). 
SphK1 contains a calmodulin‑binding site that binds calcium 
and integrin‑binding protein 1 (CIB1) in a calcium‑dependent 
manner. CIB1 functions as a calcium‑myristoyl switch, 
providing a novel mechanism for SphK1 translocation to the 
plasma membrane (28).

In comparison to SphK1, SphK2 function‑associated 
localization is less well understood. However, it has been 
shown that SphK2 can be found both in the nucleus and the 
cytoplasm, shuttling between these two compartments (28). 
Similar to SphK1, SphK2 cellular levels and distribution are 
cell type‑specific, agonist‑dependent and modifiable by cell 
culture conditions. For example, SphK2 translocates to the 
EndRet following serum starvation, which coincides with the 
induction of apoptosis (29‑31). Notably, SphK2 can be released 
from apoptotic cells by caspase‑1‑mediated cleavage at its 
amino terminus (30) (Fig. 2).

Several stimuli, such as epidermal growth factor  (EGF) 
and phorbol ester (PMA) (protein kinase C stimulant) activate 
SphK2 through MAPK ERK1‑mediated phosphorylation at 
Ser‑351 and/or Thr‑578 (32). The EGF‑induced phosphoryla-
tion and activation of SphK2 has been linked to breast cancer 
cell migration and to the increased invasive capacity of tumor 
cells (32). The nuclear localization of SphK2 is required for 
the epigenetic regulation of specific target genes. For instance, 
SphK2 produces nuclear S1P that binds and, thus, inhibits 
histone deacetylase 1 and 2 (HDAC1/2) activity, preventing 
the deacetylation of histone 3. Nuclear SphK2 may also regu-
late cyclin‑dependent kinase inhibitor p21 and transcription 
regulator c‑fos activity (15,29). The overexpression of SphK2 
has been shown to stimulate the PMA‑induced expression of 
c‑fos mRNA, and, thus, indirectly influence a large group of 
genes controlled by c‑fos  (15,29). The SphK2 regulation of 
HDAC1‑dependent deacetylation of histone H3 also results in 
repression of p21 gene transcription, thus interfering with cell 
cycle progression and cellular senescence. The nuclear signalling 
of SphK is regulated by protein kinase D (PKD)‑induced phos-
phorylation, which promotes its export from the nucleus (30).

4. Dual mechanisms of S1P signalling: extracellular and 
intracellular effects

The multifunctional signalling lipid, S1P, mediates the effects 
of numerous biological stimuli, including cytokines, growth 
factors and hormones (8,33). S1P regulates diverse signalling 
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via five transmembrane GPCRs, S1P1‑5, originally known as 
endothelial differentiation gene (EDG) receptors (34). S1P may 
bind its receptors in a paracrine or autocrine manner, followed 
by differential coupling to specific G proteins (34).

According to the ‘inside‑out’ signalling model, activated 
SphK1 is translocated to the plasma membrane where it gener-
ates S1P. The lipid is then released locally and, in an autocrine 
manner, binds to one or more S1P receptor subtypes on the 
same cell, or, in a paracrine manner, activates the receptors on 
neighbouring cells (33). Activated SphK1 may also be secreted 
from cells to produce S1P from extracellular Sph (35).

Amongst its intracellular targets, S1P has been shown to 
interact with several cytoplasmic and nuclear proteins (33), 
including HDAC1/2, which is involved in regulating histone 
acetylation and the epigenetic regulation of specific target 
genes, such as p21 and c‑fos (36). S1P can also act as a co-factor, 
stimulating E3 ligase activity in TNF receptor‑associated 
factor 2 (TRAF2) and controlling the survival response (37). 
Moreover, S1P interacts with inner mitochondrial membrane 
protein prohibitin 2 (PHB2) to regulate cytochrome c oxidase 
assembly and mitochondrial respiration  (38). Finally, S1P 
has been shown to bind the transcription factor peroxisome 
proliferator‑activated receptor γ (PPARγ) (39), human telom-
erase reverse transcriptase (hTERT) (40) and beta‑site amyloid 
precursor protein‑cleaving enzyme 1 (BACE1) (41). The essen-
tial cellular effects of S1P are summarised in Fig. 3 and were 
recently reviewed in full detail elsewhere (42).

5. The role of SphK/S1P signalling in the development of 
diabetes and related pathologies

SphK signalling and hepatic insulin resistance. Reduced 
sensitivity to insulin of the hormone target tissues, such as 
skeletal muscle, liver and adipose deposits is defined as insulin 
resistance. Hepatic insulin resistance has been confirmed 
as the major risk factor for T2D onset. Previous studies have 
shown that SphK activation improves hepatic insulin signal-
ling in obesity and diabetes (43‑45,47). Notably, in a previous 

study, low total SphK activity was detected in the livers of 
mice fed a high‑fat diet (HFD). The mice also had elevated 
liver triacylglycerol (TAG) and diacylglycerol (DAG) levels, 
and demonstrated glucose intolerance. SphK1 overexpres-
sion in the liver reduced hepatic TAG synthesis and the total 
TAG content in the HFD-fed mice  (46). However, these 
SphK1‑overexpressing mice exhibited no changes in glucose 
metabolism, including the states of gluconeogenesis, glycogen 
synthesis and glucose tolerance (46), suggesting it has minimal 
influence on carbohydrate metabolism.

It was recently found that SphK2 is the major SphK 
isoform in the liver. The overexpression of the SphK2 gene 
has been shown to elevate hepatic S1P expression and improve 
glucose/lipid metabolism in KK/Ay diabetic mice. The adeno-
viral‑mediated expression of SphK2 activated the Akt pathway, 
a key signalling mechanism in the insulin‑induced regulation 
of glucose metabolism, thus, confirming an important role of 
SphK2 in regulating hepatic insulin signalling (47).

Insulin resistance is also associated with the pathological 
transformation of proteins and lipid biosynthesis in the EndRet. 
The perturbation of specific EndRet functions, the so-called 
EndRet stress, can be caused by excess nutrient intake (one 
of the major causes of obesity) that further induces the acti-
vation of multiple pathological chain‑reaction mechanisms, 
including the unfolded protein response (UPR) and aberrant 
lipid biosynthesis (48). Notably, SphK/S1P‑signalling activa-
tion ameliorates hepatic insulin resistance induced by EndRet 
stress. Accordingly, SphK2 activation improves insulin signal-
ling and its metabolic actions under conditions of EndRet stress 
in HFD-fed mice. Activated SphK2 also reduces hepatic lipid 
accumulation, thus improving the effects of insulin in these 
mice in vivo, an effect confirmed in vitro in primary hepato-
cytes (47).

SphK signalling and pancreatic β‑cell death. Decreased 
insulin secretion and T2D can be triggered by pancreatic β‑cell 
death that is often caused by excessive levels of circulating 
lipids (lipotoxicity) in obese or overweight patients. Increased 

Figure 3. SphK/S1P pathway ‘inside‑out’ signalling model. Various biologically stimulatory molecules bind and activate receptor tyrosine kinase that, in turn, 
induces the translocation of SphK1 from the cytosole to the plasma membrane. S1P is then locally produced and secreted from the cells. Extracellular S1P binds 
and activates S1P receptors to initiate further intracellular downstream signaling cascades such as cell proliferation, migration, and invasion. SphK, sphingosine 
kinase; S1P, sphingosine‑1‑phosphate; Sph, sphingosine.
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sphingolipid metabolites that are observed during lipotoxicity 
also induce β‑cell dysfunction, leading to apoptosis (49). For 
example, increased intracellular ceramide promotes an apop-
totic cascade and initiates β‑cell death in diabetic fatty rodent 
models of T2D in vivo and human β‑cells in vitro (50‑52).

Caspase activation mediates ceramide‑induced apop-
tosis (53). Studies using the MIN6 insulinoma cell line and INS‑1 
cells, which are used as cell models of glucolipotoxicity, have 
demonstrated that caspases‑3/7 are activated during apoptosis 
initiated by increased levels of intracellular ceramide (54,55). 
In addition to triggering apoptosis, ceramide has been shown 
to induce EndRet stress followed by insulin resistance in MIN6 
cells in vitro  (54). Insulin resistance initiated by ceramide 
treatment has been shown to be accompanied by reduced pro-
insulin mRNA levels in INS‑1 cells and isolated rat pancreatic 
islets in vivo  (56,57). The process is marked by attenuated 
ERK1/2 signalling (57). Thus, elevated ceramide accumulation 
in pancreatic cells promoted insulin resistance and β‑cell death. 
However, the detailed mechanisms of ceramide signalling and 
the development of associated pancreatic pathologies require 
further investigation.

Contrary to the deleterious effect of ceramide, SphK/S1P 
have been shown to promote insulin release, to stimulate the 
development of intra‑islet vasculature, improve glucose sensing 
and prevent inflammation‑linked attacks of the immune 
system (58). The relative intracellular balance of sphingolipid 
species, such as ceramide and S1P critically determines the 
direction of β‑cell fate; deciding between activating apop-
tosis or proliferation, or stimulating insulin secretion, and/or 
islet‑cell inflammatory responses (49).

There is abundant evidence demonstrating the pro‑survival 
role of S1P in pancreatic β‑cells. S1P has been shown to 
improve β‑cell function in the HIT‑T15 cell line and isolated 
mouse islets, through phospholipase C (PLC) activation (59). 
S1P has also been shown to protect pancreatic islet cells from 
IL‑1β‑induced apoptosis (60). The exposure of INS‑1 cells and 
isolated pancreatic islets to IL‑1β and TNF‑α has been shown to 
activate SphK2 as a self‑protective mechanism, reducing β‑cell 
inflammatory damage (61). Furthermore, SphK1 activation 
promotes β‑cell survival in diabetic obese mice in vivo (10). The 
roles of SphK/S1P in β‑cell survival processes have also been 
addressed in several cell lines and animal models following 
lipotoxicity‑induced β‑cell damage. It was previously demon-
strated that the inhibition of SphK/S1P signalling, activated in 
INS‑1 β‑cells by palmitate treatment, potentiated β‑cell apop-
tosis; however, SphK1 overexpression significantly mitigated 
β‑cell apoptosis under lipotoxic conditions (62). In another 
study, the assessment of SphK1(‑/‑) and wild‑type HFD‑fed 
mice demonstrated that HFD‑fed SphK1(‑/‑) mice developed 
evident diabetes, accompanied by reduced β‑cell mass and 
a 3‑fold decrease in insulin secretion (10). Furthermore, the 
oral administration of FTY720 (a S1P receptor agonist) to 
diabetic (db/db) mice facilitated β‑cell mass preservation and 
normalised fasting blood glucose (48,63). In addition to its 
pro‑survival effect, SphK activation has been shown to promote 
glucose‑stimulated insulin secretion (GSIS) in MIN6 cells and 
mouse pancreatic islets (64).

SphK activation and S1P formation have recently been linked 
to endogenic adiponectin signalling during the induction of 
β‑cell survival. The pro‑survival effect of adiponectin has been 

shown to be modulated by increased S1P formation, employing 
the AMP‑activated protein kinase  (AMPK)‑dependent 
pathway in obese mice  (44,65). Supporting these findings, 
S1P2 receptor inhibition has been shown to attenuate strepto-
zotocin (STZ)‑induced β‑cell apoptosis in T1D models (66). 
Collectively, current studies indicate divergent signalling 
mechanisms and positive involvement of the different SphK 
isoforms and S1P receptor subtypes in protecting pancreatic 
β cells from apoptosis and malfunction.

Sphingolipid signalling and the development of peripheral 
insulin resistance. Skeletal muscles consume energy and 
provide a sink for insulin‑stimulated glucose disposal and 
glycogen formation, thus contributing to the regulation of whole 
body metabolism. Skeletal muscle insulin resistance is often 
considered to be the initiating event for T2D, evident prior to 
β‑cell failure and overt hyperglycaemia. Previous studies have 
implicated SphK/S1P signalling in skeletal muscle insulin 
resistance, followed by decreased whole‑body insulin sensi-
tivity (67,68). Notably, SphK1 overexpression promotes basal 
and insulin‑stimulated glucose uptake in C2C12 cells (67) and a 
remarkable reduction in blood glucose in diabetic mice (12,67). 
In support of this, pharmacological SphK inhibition reduces 
insulin‑stimulated glucose disposal (69).

Rapizzi et al reported that S1P induced ligand‑independent 
trans‑phosphorylation of the insulin receptor and increased 
glucose uptake in C2C12 myoblasts  (70). The same group 
illustrated the involvement of SphK in a positive feedback loop 
during the sustained activation of insulin receptor involve-
ment (71). Taking into account the negative effects of ceramide 
in the development of insulin resistance, it is important to 
determine whether improved insulin signalling in skeletal 
muscle is a consequence of SphK overexpression/activation or 
the result of reduced ceramide intracellular levels.

Bruce et al demonstrated that the overexpression of SphK 
improved skeletal muscle insulin sensitivity and decreased 
intracellular ceramide in transgenic mice, although S1P 
abundance was only moderately increased, or remained 
unaltered (12). Moreover, Takuwa et al reported that SphK 
overexpression only moderately enhanced S1P in the tissues 
of transgenic mice, suggesting that decreased ceramide is the 
main mechanism for SphK‑dependent regulation of insulin 
sensitivity (72).

The adiponectin receptor is another alternative mechanism 
potentially explaining the protective effects of SphK. The 
overexpression of the adiponectin receptor AdipR1 improves 
local insulin sensitivity in rat skeletal muscle, at the same time 
reducing the concentration of both S1P and ceramide (73). 
Overall, experimental findings suggest a fundamental role 
of SphK signalling as a tool for ceramide utilisation and the 
modulation of skeletal muscle insulin resistance. However, 
the contribution of S1P to skeletal muscle insulin resistance 
requires further clarification.

Intriguingly, despite intensive research in the field, the 
role of SphK/S1P signalling in regulating insulin sensitivity 
remains controversial, as alternative studies demonstrate the 
pro‑inflammatory effects of the SphK/S1P pathway. However, it 
is well established that obesity and adipocyte‑triggered inflam-
mation give rise to insulin resistance in peripheral tissues, and 
that SphK1 signalling mediates lipolysis‑associated inflamma-
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tion in adipocytes. Excessive lipolysis can induce inflammation 
via the increased production of inflammatory cytokines, such 
as IL‑6 and/or the acute activation of β3‑adrenergic receptors. 
The pharmacological inhibition of SphK1 activity blocks 
ADRB3‑induced IL‑6 production in adipocytes, both in vitro 
and in vivo (74). Furthermore, the selective inhibition of SphK1 
protects adipocytes from lipopolysaccharide (LPS)‑induced 
inflammation in Zucker diabetic fatty rats  (75). SphK1 
deficiency upregulates the gene expression of the anti‑inflam-
matory molecules (IL‑10 and adiponectin) and improves overall 
insulin sensitivity in the adipose and muscle tissues of SphK1 
knockout mice in vivo  (68). Further detailed investigations 
of the involvement of SphK in inflammatory processes are 
required. However, taken together, the accumulating evidence 
indicates that the inhibition of the SphK/S1P axis is a potential 
therapeutic target for the treatment of insulin resistance.

6. The role of SphKs in the progression of diabetes‑related 
complications

SphK/S1P signalling has been linked to several diabetic 
microvascular complications, such as neuropathy (76‑78), reti-
nopathy (79,80) and nephropathy (81).

SphK signalling and diabetic nephropathy (DN). Aberrant 
sphingolipid metabolism and/or generation of specific 
sphingolipid metabolites are thought to aggravate diabetic 
complications, including the pathogenesis of DN. DN is 
characterised by a series of pathological events, such as early 
glomerular proliferation and hypertrophy, accumulation of 
extracellular matrix (ECM) components and renal fibrosis that 
may progress to end‑stage renal disease. The incidence of DN 
accounts for 30% of diabetic patients diagnosed with glomer-
ular sclerosis and/or tubulointerstitial  (renal) fibrosis  (82). 
S1P stimulates the survival, proliferation and migration of 
renal mesangial cells (83,84), and induces the upregulation 
of the pro‑fibrotic growth factors, collagen and fibronectin 
synthesis (81,85). Phosphorylated Smads, secreted phospholi-
pase A2 and matrix metalloproteinase‑9 mediate the effect of 
S1P in renal cells (81,85).

SphK/S1P signalling has previously been linked to 
glomerular proliferation. However, S1P can promote not only 
renal mesangial cell proliferation, but also renal inflamma-
tion and fibrosis (86). The stimulatory effect of S1P on renal 
mesangial cell proliferation was first demonstrated in Swiss 
3T3 fibroblasts (87). In a previous study, activated SphK and 
10‑fold upregulated S1P levels stimulated the proliferation of 
glomerular mesangial cells in rats with STZ‑induced diabetes 
in vivo  (88). Further studies have confirmed an association 
of SphK1 activation and S1P production with renal hyper-
trophy and increased levels of fibronectin (81,89). SphK1/S1P 
promotes glomerular mesangial cell proliferation via increased 
fibronectin production, but also through the activation of trans-
forming growth factor‑β1 (TGF‑β1) and AP‑1 signalling (90).

Expressed in glomerular mesangial cells, S1P2 and S1P3 
receptors mediate renal fibrosis, glomerular cell proliferation 
and pathological angiogenesis  (91,92). Lymphocyte migra-
tion to the site of inflammation is mediated through binding 
to the S1P1 receptor (93), indicating the involvement of this 
receptor subtype in potentially damaging immune reactions 

in kidneys and other organs  (94‑96). However, an inflam-
mation‑associated role of the SphK/S1P pathway remains 
controversial, as other authors have demonstrated that S1P can 
reduce inflammatory signals in cultured renal mesangial cells 
by downregulating prostaglandin E2 synthesis and the expres-
sion of pro‑inflammatory mediators, such as cytokine‑triggered 
secretory phospholipase A2 and inducible nitric oxide (NO) 
synthase (97).

The relevance of SphK/S1P signalling to DN progres-
sion was investigated in SphK‑deficient mice in vivo  (35). 
One study on SphK2‑deficient mice showed reduced plasma 
creatinine concentrations, suggesting that SphK2 protected 
cells from renal ischaemia (98), and another study detected 
the worsening of nephropathy conditions in SphK1‑deficient 
mice  (86). The loss of SphK1 activity has been shown to 
aggravate cytogenesis in a mouse model of polycystic kidney 
disease and renal injury (35). Similarly, the lentiviral‑medi-
ated overexpression of human SphK1 in mice subjected to 
ischaemia‑perfusion injury demonstrated less tubular necrosis 
and reduced inflammation (98). Overall, the current evidence 
suggests the involvement of both SphK isoforms, probably to 
a different degree and affecting distinct targets, in regulating 
microvascular complications, such as DN. Further studies are 
warranted in order to clarify which SphK isoform is involved in 
inflammation‑associated signalling and whether S1P receptors 
should be targeted for nephropathy drug design.

Involvement of the SphK/S1P signalling in diabetes‑related 
vascular complications. The risks of cardiovascular disease, 
atherosclerosis (99,100) and heart failure are critically elevated 
in patients with diabetes (99‑104). Multiple studies have indi-
cated a cardioprotective role of SphK/S1P pathway activation 
in vivo (67,105‑107). In a diabetic mouse model with increased 
myocardial glycogen accumulation leading to cardiomyopathy, 
SphK1 overexpression was shown to improve heart func-
tion (67). With regard to atherosclerotic complications, S1P 
reduces glucose‑stimulated monocyte‑endothelial interaction 
in the non‑obese diabetic mouse model NOD/LtJ (108,109).

Diabetic patients commonly present with silent myocar-
dial ischaemia  (110). SphK1 activation has been shown to 
protect isolated mouse hearts against ischaemia‑associated 
injury (94,111,112) and promotes the recovery of haemodynamic 
function following ischaemic injury  (94). Pharmacological 
SphK inhibition with N,N‑dimethylsphingosine  (DMS) 
confirms the SphK‑linked protection of murine hearts 
against ischemia/reperfusion injury employing protein kinase 
Cε‑dependent mechanisms (95). The overexpression of SphK1 
mediates myocardial ischaemic preconditioning‑induced 
cardioprotection in murine hearts (96). SphK1 is also impor-
tant maintaining the blood vessel integrity (113) and the wound 
healing process in diabetic rats (114). On the other hand, SphK1 
inhibition ameliorates angiotensin Ⅱ‑induced acute hyperten-
sion, suggesting a negative influence of SphK on vascular 
health (115).

However, several recent investigations have indicated 
a positive effect of S1P receptor signalling in maintaining 
vascular health. The transactivation of S1P1/3 receptors 
stimulates eNOS, increasing NO production and vasodila-
tion (116,117). The increased expression of S1P1/3 receptors 
improves recovery following cardiac microvascular dysfunc-
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tion associated with diabetes (118). The S1P1 receptor also 
mediates estrogen‑induced activation of Akt/eNOS signalling 
in endothelial cells  (119). Estrogen replacement therapy in 
post‑menopausal women prevents diabetes‑associated cardio-
vascular complications (120), thus indicating that S1P receptors 
should be further explored as potential drug targets for the 
treatment of diabetes‑associated vascular pathologies.

7. Summary

The complex interactions among members of the sphingolipid 
signalling pathway, insulin signalling and diabetic pathologies 
have been extensively investigated. Yet the role of SphK/S1P 
signalling in the development of diabetes mellitus remains 
unclear. The divergence of SphK/S1P signalling seems to be 
dependent on cell type, the expression pattern of S1P receptor 
subtypes and the relative expression of the specific SphK 
isoforms. In diabetes mellitus, SphK activation has been 
known to promote β‑cell survival and insulin secretion, prevent 
vascular pathologies related to diabetes (39,116,119), ameliorate 
peripheral insulin resistance and obesity in diabetic patients 
and animal models (121,122).A low S1P content has been linked 
to increased incidence of coronary artery disease (97,122‑124) 
and diabetes mellitus (97,125‑127).

In addition, emerging evidence has also linked SphK/S1P 
signalling to the development of diabetes‑related vascular 
complications, such as neuropathy  (76‑78), retinop-
athy (79,80,128,129) and nephropathy (81). However, the roles 
of the different S1P receptor subtypes and two SphK isoforms in 
the pathogenesis of diabetes remain to be confirmed in vivo and 
in future clinical trials. SphK therefore represents a potential 
therapeutic target for diabetes mellitus. The FTY720 (fingo-
limoid), an S1P receptor agonist has demonstrated promising 
therapeutic effects, including the stimulation of lipolysis, 
decreased accumulation of skeletal muscle ceramide, improved 
systemic glucose homeostasis, and β‑cell survival in diabetic 
mouse models (63,118,130). Combination therapy with FTY720 
plus insulin glargine has been shown to be a promising thera-
peutic strategy for the treatment of diabetes mellitus (130). A 
second generation of S1P3 modulators (siponimod, ponesimod, 
KRP‑203, ONO‑4641, RPC1063, CS‑0777 and GSK2018682) 
targets different S1P receptor subtypes (131). These substances 
promise to elucidate the mechanisms underlying the divergent 
outcomes of S1P signalling, and consequently, the potential 
efficacy of targeting the SphK/S1P pathway for the treatment 
of diabetes and associated pathologies.
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