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Abstract. Fermented black ginseng (FBG) is processed by 
the repeated steaming and drying of fresh ginseng followed 
by fermentation with Saccharomyces cerevisiae. It is known 
to possess anti‑oxidative effects. Skin wrinkle formation 
is associated with oxidative stress and inf lammatory 
reactions. The aim of this study was to determine whether 
FBG possesses anti‑wrinkle activity using human 
fibroblasts (HS68). According to the Korea Ministry of Food 
and Drug Safety (MFDS) guidelines for the evaluation of the 
efficacy of functional anti‑wrinkle cosmetics, we attempted 
to elucidate the effects of FBG on type  I procollagen, 
matrix metalloproteinase  (MMP)‑1, MMP‑2, MMP‑9 
and tissue inhibitor of metalloproteinase‑2  (TIMP‑2). In 
addition, the eye irritation potential of FBG was examined 
using the EpiOcular‑EIT kit. Our results revealed that 
FBG was not cytotoxic at concentrations <10 µg/ml. It was 
considered as safe for the eyes at concentrations of up to 
100 µg/ml. Treatment with FBG at concentrations from 0.3 to 
10 µg/ml significantly (P<0.05) increased the type I procollagen 
expression levels from 117.61±1.51 to 129.95±4.47% in the 
human fibroblasts. By contrast, FBG significantly (P<0.05) 
decreased the MMP‑1 expression level from 18.41±4.95 to 
27.41±3.96%. FBG at 3 µg/ml also increased the expression 
of TIMP‑2 up to  154.55%. However, FBG at 10  µg/ml 
decreased the expression levels of MMP‑2 and MMP‑9 to 
45.15 and 66.65%, respectively. These results suggest that FBG 
has potential anti‑wrinkle effects as a potential ingredient in 
cosmetics.

Introduction

Skin functions as a barrier to protect the internal organs from 
environmental toxins. Skin consists of the epidermis, dermis 
and subcutaneous tissue. The epidermis is the outermost layer 
composed mainly of keratinocytes that secrete keratin protein 
and lipids to form the extracellular matrix (ECM), melanocytes 
to produce pigment, and Langerhans cells to present antigen (1). 
The dermis is the layer of skin beneath the epidermis. It is 
composed of connective tissues to provide tensile force and 
elasticity to skin through the ECM composed of collagen 
fibrils, microfibrils and elastic fibers (2). The subcutaneous 
tissue below the dermis is composed of fibroblasts to produce 
ECM proteins, macrophages to eliminate pathogens and adipo-
cytes to conserve body fat (3‑8).

The aging of the skin is induced by complex processes, 
including intrinsic (e.g., genetic mutation, cellular metabolism and 
hormonal changes) and extrinsic factors [e.g., chemicals, toxins, 
pollutants and ultraviolet (UV) radiation] (5,9‑11). Aging skin is 
mainly associated with the general atrophy of ECM components 
with a decrease in the number of fibroblasts, reduced levels of 
collagen and elastin, and the disorganization of collagen fibrils 
and elastin fibers (12‑14). Alterations in the levels of collagen and 
elastin primarily cause clinical symptoms of aging skin, such as 
wrinkles, sagging and laxity (15). The degradation of collagen 
and elastin in aged or photodamaged (UV‑irradiation) skin is 
associated with matrix metalloproteinases (MMPs) released 
from epidermal keratinocytes and dermal fibroblasts (10,14‑17).

The root of the ginseng plant  (Panax ginseng Meyer, 
Araliaceae) is traditionally used as an herbal medicine in 
East Asian countries, including Korea, Japan and China. It is 
known to possess the ability to enhance physical performance, 
as well as to exert neuroprotective effects, enhance sexual 
function, and to exert anti‑cancer effects (18‑22). In addition, 
the antioxidant and/or anti‑inflammatory effects of ginseng 
are considered to be relevant to its anti‑aging effects on 
skin (23,24). Pharmacologically active components in ginseng 
include polysaccharides, polyacetylenes and gisenosides, 
with ginsenosides being considered as the most important 
component (25). To date, about 50 types of ginsenosides have 
been identified from the ginseng root. These natural ginsenosides 
from raw ginseng are converted to more stable, bioavailable 
and bioactive forms through the processes of drying and/or 
steaming (26).
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Raw ginseng is processed into white ginseng by a simple 
drying process or into red ginseng by steaming and drying 
processes to preserve or improve the efficacy  (27). Black 
ginseng is made from raw ginseng by repetitive steaming and 
drying processes. After being subjected to steaming and drying 
processes (9 times), raw ginseng will become black ginseng (28). 
The fermentaion of black ginseng using Saccharomyces 
cerevisiae can produce more active gisenosides  (29,30). 
Fermented black ginseng (FBG) has different ratios of bioactive 
ingredients and contents of ginsenosides compared to white 
or red ginseng (31,32). However, the effects of FBG on skin 
remain unclear. Thus, the aim of this study was to determine 
the in vitro toxicity and anti‑aging effect of FBG as a cosmetic 
ingredient on skin to provide safety and efficacy data to support 
the use of FBG as a comsmetic ingredient.

Materials and methods

Reagents. FBG was obtained f rom  (Ginseng By 
Pharm Co.,  Ltd., Wonju, Korea). Its detailed composition 
information has been previously described (26). All media 
required for cell growth, such as Dulbecco's modified Eagle's 
medium (DMEM) high glucose, fetal bovine serum (FBS), 
penicillin‑streptomycin, and trypsin‑EDTA  (0.25%) were 
purchased from (Gibco‑BRL Inc., Franklin Lakes, NJ, USA). 
3‑[4,5‑Dimethylthiazol‑2‑yl]‑2,5‑diphenyl‑tetrazoliumbromide 
(MTT), retinoic acid, Dulbeco's phosphate-buffered 
saline  (D‑PBS) were purchased from  (Sigma‑Aldrich, 
St. Louis, MO, USA). Cell lysis buffer, phenylmethylsulfonyl 
fluoride  (PMSF), antibodies against MMP‑9  (sc‑3852S), 
β‑actin  (sc‑1616), horseradish peroxidase‑conjugated 
anti‑rabbit  IgG (7074) and anti‑mouse  IgG (7076) were 
purchased from (Cell Signaling Technology, Inc., Danvers, MA, 
USA). Polyvinylidene fluoride (PVDF) and antibody against 
tissue inhibitor of metalloproteinase (TIMP)‑2 (MAB 3310) 
were purchased from Millipore (Billerica, MA, USA). All 
other reagents were of the highest quality available.

Cell culture. Human skin fibroblasts (HS68) were obtained 
from the American Type Culture Collection (ATCC, Manassas, 
VA, USA). The cells were cultured in DMEM containing 
10% FBS and 1% of penicillin‑streptomycin at 37˚C in a 
humidified atmosphere containing 5% CO2.

Cell viability assay. The HS68 human fibroblasts were seeded 
onto 96‑well plates at a density of 5x104 cells/well and incu-
bated for 48 h, as previously described (10). After 48 h of 
incubation, various concentrations of FBG (10, 25, 50, 100, and 
200 µg/ml in fresh medium) or distilled water (DW; control) 
were used to treat the cells. The cells were further cultured 
for 48 h. Subsequently, 200 µl of MTT (0.5 mg/ml MTT in 
fresh medium) was added to each well followed by incubation 
at 37˚C for 3 h. The MTT medium was removed by aspiration 
and 200 µl of dimethyl sulfoxide was added to each well. After 
reacting for 10 min at room temperature, formazan production 
was detected by measuring the optical density at 570 nm on 
a PowerWave XS microplate reader (BioTek Instruments, Inc., 
Winooski, VT, USA). Data were then expressed as a percentage 
of viable cells compared to viable cells in the DW‑treated 
control.

Eye irritation test. The ocular irritation potential of FBG 
was examined using the EpiOcular Eye Irritation Test 
(OCL‑200‑EIT; MatTek Corp., Ashland, MA, USA). Following 
incubation at 37˚C in 5% CO2 overnight, OCL‑200‑EIT was 
pre‑wet with 20 µl Ca++‑ and Mg++‑free D‑PBS (Sigma‑Aldrich) 
for 30±2  min. After pre‑wetting, 50  µl of FBG  (10 and 
100 µg/ml) was topically applied to the pre‑wet OCL‑200‑EIT 
and incubated for 30±2 min. Tissues included in OCL‑200‑EIT 
kit were then rinsed with 300 ml D‑PBS, post‑soaked with 5 ml 
fresh medium, and incubated for 2±0.4 h at 37˚C with 5% CO2. 
To measure cell viability, OCL‑200‑EIT was incubated with 
MTT solution (1 g/ml) for 3 h. After extracting isopropanol, 
the absorbance of formazan was measured at 570 nm on a 
PowerWave XS microplate reader (BioTek Instruments, Inc.). 
The mean value for each test substance was calculated from 
2 wells. D‑PBS was used as a control. Data were expressed 
as a percentage of the viability compared to that of the 
D‑PBS‑treated control.

Quantification of type I procollagen and MMP‑1 levels. The 
levels of type I procollagen and MMP‑1 in the human fibroblasts 
were quantified using the procollagen Type I C‑peptide (PIP) 
EIA kit (Takara Bio, Inc., Otsu, Japan) and the Human MMP‑1 
ELISA kit (Young In Frontier, Seoul, Korea), respectively. The 
human fibroblasts were seeded at a density of 5x104 cells/well. 
After 48 h, the cells were treated with DW (control), various 
concentrations of FBG (0.3, 1, 3 and 10 µg/ml), or 0.03 µg/ml 
retinoic acid for 48 h. The levels of type I procollagen and MMP‑1 
from the cultured media were measured using the Type I PIP 
EIA kit and Human MMP‑1 ELISA kit according to the manu-
facturer's instructions. Data were expressed as the percentage of 
expression compared to that of the DW‑treated control.

Quantification of MMP‑2, MMP‑9 and TIMP‑2 levels. The 
expresssion levels of MMP‑2, MMP‑9 and TIMP‑2 were 
measured by western blot analysis. The human fibroblasts 
were treated with DW (control), various concentrations of 
FBG (0.3, 1, 3 and 10 µg/ml), or 0.03 µg/ml retinoic acid for 48 h. 
To extract total protein, the treated cells were incubated with 
cell lysis buffer (Cell Signaling Technology, Inc.) containing 
1 mM PMSF (Cell Signaling Technology, Inc.) for 5 min on ice.  
Following incubation, whole cell lysates were briefly soni-
cated and centrifuged at 12,000 rpm for 20 min at 4˚C. The 
supernatant was stored at ‑80˚C until use. Before running on 
a gel, the protein concentration was determined by Bradford 
assay. Total protein (25 µg) was separated by 10% SDS‑PAGE 
and transferred onto PVDF membranes (Merck Millipore, 
Darmstadt, Germany) using a transfer apparatus (Bio‑Rad 
Laboratories  Inc., Hercules, CA, USA) according to the 
manufacturer's instructions. The membranes were incubated 
in blocking buffer  (5% w/v skim milk in TBST) for 3 h. 
Primary antibody (1:1,000 for MMP‑2, 1:500 for MMP‑9, 
and 1:500 for TIMP‑2) was incubated with the transferred 
membranes at 4˚C overnight. After washing the membranes 
with TBST, the membranes were incubated with the 
secondary antibody  (anti‑rabbit for MMP‑2 and MMP‑9, 
anti‑mouse IgG for TIMP‑2 at 1:1,000 dilution) for 2 h at room 
temperature for MMP‑2 or overnight at 4˚C for MMP‑9 and 
TIMP‑2. After washing the membranes with TBST, protein 
signal was detected by horseradish peroxidase detection 
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system (Sigma‑Aldrich). Data were expressed as a percentage 
of expression compared to that of the DW‑treated control.

Statistical analysis. The means ± standard deviations of the 
expression values were calculated using Microsoft Excel. 
The statistical significance (P<0.05 or P<0.01) of apparent 
differences in protein expression among pre‑dosing and 
treatments were assessed using analysis of variance followed 
by Bonferroni's test in Prism 5.01 (GraphPad Software, Inc., 
La Jolla, CA, USA).

Results

In vitro toxicity of FBG. The in vitro toxicity of FBG on the skin 
and eyes, the major exposure routes of cosmetic ingredients, 
was evaluated using human skin fibroblasts (HS68) and the 
EpiOcular Eye Irritation test  (OCL‑200‑EIT), respectively. 
When the HS68 cells were treated with 10, 25, 50, 100, 
and 200 µg/ml FBG for 48 h, cell viability was 96.17±6.36, 
93.68±5.64, 94.64±4.66, 90.31±4.97  and  88.01±3.87%, 
respectively. Only FBG at 10  µg/ml did not exhibit any 
significant difference in cell viability  (P>0.05) compared 
to the control  (without FBG treatment)  (Fig.  1A). The 
EpiOcular‑EIT results revealed that FBG at 10 and 100 µg/ml 
caused no potential eye irritation compared to the control (PBS 
treatment)  (Fig.  1B). These results suggest that FBG at a 
concentration of <10 µg/ml is not cytotoxic. In addition, FBG 
does not cause eye irritation at concentrations up to 100 µg/ml.

Effect of FBG on the production of collagen. To examine the effect 
of FBG on collagen synthesis in skin, the fibroblasts were treated 
with FBG at non‑cytotoxic concentrations. Our results revealed 
that FBG at 0.3, 1, 3, and 10 µg/ml significantly (P<0.05) increased 
type  I procollagen production to 117.61±1.51, 122.62±2.69, 
128.07±5.76, and 129.95±4.47%, respectively, compared to the 
control (without FBG treatment). The positive control, retinoic 
acid at 0.03 µg/ml, significantly increased  (P<0.05) type  I 
procollagen production to 120.88±5.82% compared to the 
control (without FBG treatment) (Fig. 2).

Effect of FBG on MMPs. Subsequently, we analyzed the levels 
of MMPs associated with collagen degradation in FBG‑treated 
HS68 fibroblasts. Our results revealed that FBG at concentra-
tions of 0.3, 1, 3 and 10 µg/ml significantly (P<0.05) decreased 
the MMP‑1 levels by 18.41±4.96, 19.35±6.39, 21.53±7.81 and 
27.41±3.96%, respectively compared to the levels of MMP‑1 in 
the control HS68 cells (without FBG treatment). The positive 
control, retinoic acid at 0.03 µg/ml, also significantly (P<0.05) 
decreased the MMP‑1 level by 37.78±7.71% compared to the 
level of MMP‑1 in the control HS68 cells not treated with 
FBG (Fig. 3). In addition, in the cells treated with FBG at 
concentrations of 0.3, 1, 3, and 10 µg/ml, the expression levels 
of MMP‑2 and MMP‑9 were 76.32, 74.28, 52.71 and 45.15% 
and 106.66, 100.00, 90.53 and 66.65% compared to those of 
the control, respectively. The positive control, retinoic acid at 

Figure 1. (A) Cytotoxicity of FBG. Human skin fibroblasts (HS68) were treated with DW or FBG (10‑200 µg/ml) for 48 h and cell viability was determined by 
MTT assay. The data are the means ± standard deviation values of 3 individual experiments. Each value was compared with the control using analysis of vari-
ance, followed by Bonferroni's test (**P<0.01). (B) In vitro eye irritation was tested for FBG (10 µg/ml and 100 µg/ml) using the OCL‑200‑EIT. D‑PBS was used 
as a control. FBG, fermented black ginseng; DW, distilled water; OCL‑200‑EIT, EpiOcular Eye Irritation Test; D‑PBS, Dulbeco's phosphate‑buffered saline.

Figure 2. Effect of FBG on type I procollagen in human fibroblasts. Human 
fibroblasts were treated with DW (Con; control), RA (0.03 µg/ml retinoic acid) 
or FBG (10‑200 µg/ml) for 48 h and the expression of type I procollagen was 
measured using the Procollagen Type I C‑peptide (PIP) EIA kit. The data 
are the means ± standard deviation values of 3 individual experiments. Each 
value was compared with the control using analysis of variance, followed by 
Bonferroni's test (**P<0.01). FBG, fermented black ginseng; DW, distilled 
water.
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0.03 µg/ml, decreased the expression of MMP‑2 and MMP‑9 
by 24.18% and 41.07% compared to control (Fig. 4). These 
results suggest that the levels of these MMPs were inhibited 
by FBG in a dose‑dependent manner. The reduction in the 
levels of MMPs may be associated with the increased in type I 
collagen production caused by FBG treatment.

Effect of FBG on the expression of TIMP‑2. TIMP‑2 expression 
was examined in the FBG‑treated HS68 cells. After the HS68 
cells were treated with FBG at 0.3, 1, 3 and 10 µg/ml, the expres-
sion level of TIMP‑2 was increased to 122.66, 137.45, 154.55 
and 126.76% compared to that of the untreated control. The 
positive control, retinoic acid at 0.03 µg/ml, increased the level 
of TIPM‑2 to 143.06 % compared to that of the control (Fig. 5). 
These results suggest that FBG increases the levels of TIMP‑2, 
thus causing the inhibition of MMPs.

Discussion

Ginsenosides are the major active components responsible 
for the pharmacological properties of ginseng  (25). 
Ginsenosides can be grouped into protopanaxadiol, 
protopanaxatriol and oleanolic saponins based on their 
chemical structures  (33). It has been previously reported 
that 20‑O‑b‑d‑glucopyranosyl‑20(S)‑protopanaxadiol 
(compound  K) of ginsenosides has anti-metastatic, 
anti‑angiogenic and anti‑allergic activities in vivo (34,35). In 
particular, skin wrinkles and xerosis can be ameliorated by 
the topical application of compound K that induces hyaluronan 
synthase 2 in human keratinocytes and increases hyaluronan 
content in aged hairless mouse skin  (36). In addition, skin 
wrinkles in humans can be improved by extracts from red 
ginseng roots with increased levels of type I procollagen (37). 
Collectively, these data suggest that the topical application of 
ginseng extracts can enhance its anti‑wrinkle effects on human 
skin.

FBG extracts display different compositions of ginsenosides 
by more complex processes, such as repetitive steaming and 
drying with fermentation using Saccharomyces cerevisiae 
compared to fresh, white, or red ginseng  (38,39). Such 
differences have been considered to be able to enhance their 
antioxidant and free radical scavenging activities (29,40‑42). 
However, the anti‑wrinkle effects of FBG extracts have not 
been studied on human skin. In the present study, FBG extracts 
significantly increased the expression of type I procollagen in 
human fibroblasts. This result indicates that FBG extracts have 
anti‑wrinkle effects by increasing type I procollagen level in 
human skin.

Figure 4. Effects of FBG on MMP‑2 and MMP‑9 in human skin fibroblasts. 
Human skin fibroblasts were treated with DW (Con; control), RA (0.03 µg/ml 
retinoic acid) or FBG (0.3‑10 µg/ml) for 48 h and the expression of MMP‑2 
and MMP‑9 was measured by western blot analysis and normalized to the 
expression of β‑actin. FBG, fermented black ginseng; DW, distilled water; 
MMP, matrix metalloproteinase.

Figure 3. Effect of FBG on MMP‑1 in human skin fibroblasts. Human skin 
fibroblasts were treated with DW (Con; control), RA (0.03 µg/ml retinoic 
acid) or FBG (0.3‑10 µg/ml) for 48 h and The expression of MMP‑1 was mea-
sured using the human MMP‑1 ELISA kit. The data are the means ± standard 
deviation values of 3  individual experiments. Each value was compared 
with the control using analysis of variance, followed by Bonferroni's 
test (**P<0.01). FBG, fermented black ginseng; DW, distilled water; MMP‑1, 
matrix metalloproteinase‑1.
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Type  I collagen is the most abundant protein in skin 
connective tissue. It maintains skin structure with other 
types of collagen  (III, V and VII), elastin, proteoglycans, 
fibronectin and other ECM proteins (43). Type I procollagen 
is synthesized in human dermal fibroblasts and secreted into 
the dermal extracellular space where it undergoes proteo-
lytic processing. Finally, type  I collagen forms collagen 
bundles (fibre bundles) that are responsible for the elasticity 
associated with other ECM proteins (5,13). Fibrillar (types I 
and III) collagen can characteristically reduce chronologically 
aged and photo‑damaged skin (14,44,45). The degradation of 
type I collagen is closely associated with MMPs, a family of 
zinc‑requiring endoprotease with the capacity to degrade all 
components of ECM (46). In particular, MMP‑1 of the MMPs 
initiates the degradation of types I and III fibrillar collagens, 
while MMP‑9 further degrades collagen fragments generated 
by collagenases (44). MMP‑2 and MMP‑9 together can cleave 
elastin, type IV collagen, and several other ECM molecules 
while MMP‑2 can digest interstitial collagen types I, II, and 
III (47). It has been previously suggested that the function of 
MMP‑1 is directly involved in the reduction of type I procol-
lagen. MMP‑2 and MMP‑9 also regulate the expression of 
type I procollagen (47,48). All known MMPs are inhibited by 
4 homologous TIMPs (49). TIMP‑2 of TIMPs inhibits ECM 
proteolysis in several tissues by directly inhibiting metallo-
proteinases, including MMP‑2 (50). TIMP‑2 is also known to 
be required for the activation of MMP‑2 through association 
with MMP‑14 (50,51). In this study, FBG extracts significantly 
inhibited the expression of MMP‑1 in human fibroblasts. In 
addition, the expression levels of MMP‑2 and MMP‑9 were 
dose‑dependently decreased by FBG. Moreover, the express-
sion of TIMP‑2 exhibited a generally increased tendency by 
FBG treatment. Collectively, these results suggest that the 
increase in the level of type I procollagen caused by FBG may 
be induced by the inhibition of MMP‑1, MMP‑2 and MMP‑9. 

The inhibition of these MMPs may correlated with the upregu-
lation of TIMP‑2 due to FBG treatment.

Retinoic acid can effectively attenuate the clinical 
symptoms of photodamaged skin. It can reverse the adverse 
consequences of chronological aged skin (14,45,52). Treatment 
with retinoic acid can stimulate fibroblast proliferation, new 
collagen synthesis and the degradation of out‑of‑date or 
damaged collagen (53). The effects of retinoic acid are mainly 
associated with the inhibition of MMPs (16,17). Additionally, 
retinoic acid results in the selective downregulation of MMP‑9 
and the simultaneous upregulation of TIMP‑1 in human 
bronchoalveolar lavage cells  (54). It can also reduce the 
expression of MMP‑2 in human breast cancer cells, suggesting 
that the inhibition of MMP‑2 may be due to upregulated 
TIMP‑2 (55). In this study, we demonstrated that the treatment 
of human fibroblasts with retinoic acid exerted similar effects 
with FBG treament as regards the expression patterns of type I 
procollagen, MMP‑1, MMP‑2, MMP‑9 and TIMP‑2. These 
results suggest that FBG and retinoic acid may share similar 
mechanisms as regards their anti‑wrikle effects on human skin.

In conclusion, our in vitro dermal study demonstrated that 
FBG treatment increased type I procollagen correlating with 
associated regulators. In addition, we assessed the non‑toxic 
concentration of FBG through cosmetic exposure routes using 
human fibroblasts and ocular tissues. Conclusively, we demon-
strated that FBG may be used as a safe cosmetic ingredient 
with anti‑wrinkle effects.
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