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Abstract. Asbestos-related lung carcinoma is one of the most 
devastating occupational cancers, and effective techniques for 
early diagnosis are still lacking. In the present study, a system-
atic approach was applied to detect a potential biomarker 
for asbestos-related lung cancer  (ARLC); in particular 
asbestos-related squamous cell carcinoma  (ARLC-SCC). 
Microarray data (GSE23822) were retrieved from the Gene 
Expression Omnibus database, including 26  ARLC-SCCs 
and 30  non-asbestos-related squamous cell lung carci-
nomas (NARLC-SCCs). Differentially expressed genes (DEGs) 
were identified by the limma package, and then a protein-protein 
interaction (PPI) network was constructed according to the 
BioGRID and HPRD databases. A novel scoring approach inte-
grating an expression deviation score and network degree of the 
gene was then proposed to weight the DEGs. Subsequently, the 
important genes were uploaded to DAVID for pathway enrich-
ment analysis. Pathway correlation analysis was carried out 
using Spearman's rank correlation coefficient of the pathscore. 
In total, 1,333 DEGs, 391 upregulated and 942 downregulated, 
were obtained between the ARLC-SCCs and NARLC-SCCs. A 
total of 524 important genes for ARLC-SCC were significantly 
enriched in 22 KEGG pathways. Correlation analysis of these 
pathways showed that the pathway of SNARE interactions in 
vesicular transport was significantly correlated with 12 other 
pathways. Additionally, obvious correlations were found 
between multiple pathways by sharing cross-talk genes (EGFR, 
PRKX, PDGFB, PIK3R3, SLK, IGF1, CDC42 and PRKCA). 
On the whole, our data demonstrate that 8 cross-talk genes were 
found to bridge multiple ARLC-SCC-specific pathways, which 
may be used as candidate biomarkers and potential multi-effect 

targets. As these genes are involved in multiple pathways, it is 
possible that drugs targeting these genes may thus be able to 
influence multiple pathways simultaneously.

Introduction

Lung cancer has continued to be the most common type of 
cancer worldwide for several decades, with the highest incidence 
and mortality rates (1). Only 13% of patients with lung cancer 
survive for >5 years (2). As the second leading risk factor for 
lung cancer, asbestos exposure is responsible for an estimated 
5-7% of all these cancers (3). Asbestos-related lung carcinoma 
is considered to be one of the most devastating occupational 
cancers (4). Although the use of asbestos has been banned or 
severely restricted since the early 1970's in many developed 
countries, asbestos-related lung cancer still poses a great public 
health threat due to the long latency period from asbestos expo-
sure to the incidence of asbestos-induced cancer (5).

It has been widely accepted that early detection and precise 
diagnosis of cancer subtypes could greatly enhance the efficacy 
of targeted therapies and improve disease outcome, and in fact, 
markedly increase the patient survival rate (6). To date, many 
imaging and cytology-based methods have been applied for 
early detection (7-9). However, most techniques have limited 
sensitivity to detect asbestos-related lung cancer, as the histo-
pathological subtypes of lung cancer patients with and without 
asbestos exposure are quite similar (10).

Among asbestos-related lung cancer, non-small cell lung 
cancer (NSCLC) accounts for at least 80% of these cases (2). 
There are three primary subtypes of NSCLC distinguishable 
by the appearance and chemical makeup of the cells: adeno-
carcinoma  (LC-AC), squamous cell carcinoma  (LC-SCC) 
and large-cell carcinoma. It has been shown that gene expres-
sion profiles could be used to distinguish asbestos-exposed 
from non-exposed lung cancer patients (11). Gene expression 
profiles in asbestos-exposed epithelial and mesothelial lung 
cell lines have revealed that the expression levels of genes such 
as nuclear factor-κB (NF-κB) subunit 2 (NFKB2), IKBKB, 
thioredoxin (TXN), thioredoxin reductase (TXNRD1), BCL2 
interacting protein 3 like (BNIP3L), protein kinase C (PKC)δ 
and adducin (ADD)3 were significantly altered in response to 
asbestos exposure in all the cell lines (12). Moreover, accumu-
lating in vivo and in vitro studies have identified asbestos-related 
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gene expression changes involved in activation of the NF-κB 
pathway, p53 promoter activation, MAPK signaling pathway and 
cell proliferation induced by tumor necrosis factor-α (TNF-α) 
and TNF-β as well as PDGFA and PDGFB (13,14). The increase 
in available tumor samples of patients diagnosed with different 
subtypes of a certain tumor makes it possible to detect subtype-
specific biomarkers. Class comparison analysis of tumors 
of 36 patients with primary LC-AC identified ADAM28 as a 
potential oncogene involved in asbestos-related LC-AC, with 
expression verified in three independent test sets (15). Similarly, 
gene expression profiling of asbestos-related lung squamous 
cell carcinomas (ARLC-SCCs) identified MS4A1 as a poten-
tial candidate (10). However, immunohistochemical staining 
showed that expression of MS4A1 was primarily localized to 
stromal lymphocytes rather than tumor cells. Thus, identifica-
tion of candidate biomarkers in ARLC-SCC is needed.

Using the same data from Wright et al (10), we aimed to 
further identify differentially expressed genes (DEGs) according 
to a cut-off point of a log2 fold-change (FC) >1 or <-1 and 
P-value <0.05. Furthermore, the protein-protein interaction (PPI) 
network was constructed and a novel, pathway-deviation-based 
approach was proposed to detect potential ARLC-SCC-specific 
biomarkers from the networks. Notably, a new scoring method 
was developed to weight each DEG by integrating its expres-
sion deviation score and network degree. In addition, a newly 
defined parameter, pathscore, was used to measure the deviation 
in each pathway enriched by DEGs. Finally, the molecular path-
ways involved in the disease development of these two types 
of lung cancer samples and their molecular heterogeneity, were 
systematically analyzed by hierarchical clustering and pathway 
correlation analysis. Several candidate marker genes and multi-
effect targets were identified, which may provide insight into 
the development of novel diagnostic and therapeutic tools for 
ARLC-SCC. In addition, as these genes are involved in multiple 
pathaws, they may thus function as ‘multi-effect targets’, as it is 
possible, that drugs targeting these genes may influence multiple 
pathways simultaneously.

Materials and methods

Gene differential expression analysis. The microarray data 
were retrieved from Gene Expression Omnibus (GEO; https://
www.ncbi.nlm.nih.gov/geo/) database under accession no. 
GSE23822 (10). Total RNAs from 56 human lung squamous 
cell carcinoma samples, consisting of 26  ARLC-SCCs 
and 30  non-asbestos-related squamous cell lung carci-
nomas  (NARLC-SCCs), were hybridized to 48K  Illumina 
HumanHT-12 v3.0 Expression BeadChips, respectively. These 
cases were classified as ARLC-SCC if there were >20 asbestos 
bodies/gram wet weight (AB/g ww) in the non-tumor tissue, or 
NARLC-SCC if no asbestos bodies were found. No statisti-
cally significant differences in age, gender, smoking history 
or tumor stage was noted between the two types of samples. 
After background correction, the intensities of multiple probes 
for a gene were averaged into one expression value which was 
then transformed as a normalized expression value by Z-score. 
The differential expression analysis between the two groups of 
samples was performed using the R package known as linear 
models for microarray data (LIMMA) (16). To minimize the 
potential information loss caused by multi-hypothesis test 

and reserve more inter-group DEGs, a P-value before false 
discovery rate (FDR) adjustment was used to detect the signifi-
cant DEGs and the detailed criterion of DEGs was defined as 
P<0.05.

Protein-protein interaction (PPI) network construction. PPI 
data were downloaded from the Biological General Repository 
for Interaction Datasets (BioGRID; http://www.thebiogrid.
org) interaction database (17) and Human Protein Reference 
Database (HPRD; http://www.hprd.org)  (18), and merged 
into the background PPI network. Then, DEGs were mapped 
to the background PPI network to build the sub-network of 
DEGs which was extended with those proteins (not included 
in DEGs) interacting with at least three DEGs and trimmed by 
removing those orphan nodes. The PPI network was visualized 
using Cytoscape (http://cytoscape.org) (19).

Network topological analysis. The network topological anal-
ysis was performed using Network Analyzer (20) plug-in of 
Cytoscape. Five topological parameters were used in this study, 
including node degree, average shortest path length (ASPL), 
closeness centrality (CC), eccentricity (EC) and topological 
coefficient (TC).

Node degree. In the undirected network, the node degree of 
a node x is the number of edges linked to x. And a node with a 
high degree is referred to as hub.

Average shortest path length (ASPL). The length of a path 
between node x and y is the number of edges forming it. The 
ASPL is the average length of all the shortest paths between 
nodes in the network, which indicates the expected distance 
between any two connected nodes.

Closeness centrality (CC). The CC of a node x is the 
reciprocal of the ASPL from x to other nodes in the network. 
The CC of each node is a number between 0 and 1. Closeness 
centrality is a measure of how quickly information spreads 
from a given node to other reachable nodes in the network.

Eccentricity (EC). The EC of a node x is the maximum 
non-infinite length of a shortest path between n and another 
node in the network. Specially, the network diameter is the 
maximum node EC.

Topological coefficient (TC). The TC of a node x is a rela-
tive measure for the extent to which a node shares neighbors 
with other nodes.

Weighting of DEGs based on deviation score and node 
degree. For each gene, a reference interval (RI) was defined 
as [min, max] in which min refers to the mean - SD (standard 
deviation) based on the expression value vector of this gene 
in NARLC-SCC patients and max refers to the mean + SD. 
Those genes with an expression value within the RI were 
thought to resemble the expression pattern of NARLC-SCC 
patients; otherwise an ARLC-SCC pattern was preferred. Then 
for gene x, the difference beyond the RI in each ARLC-SCC 
patient was summed up as its deviation score of expression. A 
higher deviation score represents a larger difference between 
the expression values of the gene in ARLC-SCC patients and 
those in NARLC-SCC. Meanwhile, a higher node degree of 
gene x in the PPI network indicates that it has more neighbors 
and is of more biological importance. In this study, these two 
measures were integrated as following to weigh the importance 
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of a gene to ARLC-SCC carcinogenesis. The importance score 
W of gene x was calculated as below:

W = score x degree

in which di is the expression value of gene x in ARLC-SCC 
sample i, and n is the amount of ARLC-SCC samples. The value 
of d was set as max if di was larger than max, otherwise it was 
set as min. Each score in a sample was scaled into the range of 0 
and 10. The degree was log2 normalized. Finally all genes were 
sorted based on the value of W, and the top 50% of genes were 
selected as important genes which were used for further analysis.

Pathway enrichment analysis. To further investigate the 
functional pathways regulated by these important genes, the 
Kyoto Encyclopedia of Genes and Genomes (KEGG, http://
www.genome.jp/kegg) pathway (21) enrichment analysis was 
performed with the important upregulated and downregulated 
genes, respectively, using online tools from the Database for 
Annotation, Visualization and Integrated Discovery (DAVID; 
http://david.abcc.ncifcrf.gov) (22). At the significance cut-off 
P<0.1 in Fisher exact test, 22 enriched pathways were obtained, 
among which 12 were kept when the statistical significance 
was set as P<0.05. To keep sufficient amount of pathways for 
statistical analysis and subsequent hierarchical clustering, the 
cut-off of the P-value was set as 0.1. The pathways enriched 
by either upregulated or downregulated genes were combined 
together as important pathways for further analysis.

Hierarchical clustering based on pathway interference. For 
pathway p in important pathways, the interference (defined as 
pathscore) in each tumor sample was assessed as below:

Assuming there are m upregulated and n downregulated 
genes in pathway p, di refers to the mean of expression values 
of the i-th upregulated gene in NARLC-SCC samples, while 
di means that of the j-th downregulated gene. Each gene is 
weighted with its degree in the network as coefficient w. A posi-
tive pathscore means this pathway is upregulated in the tumor 
patients compared with the average level in all NARLC-SCC 
patients, while a negative pathscore means downregulated. 
Finally, hierarchical clustering was performed on both samples 
and pathways using the software Cluster 3.0 (http://bonsai.ims.u-
tokyo.ac.jp/~mdehoon/software/cluster/) (23). Before clustering, 
the pathscore matrix was log-transformed and median-center 
scaled. Then, the similarity matrix was calculated using the 
correlation center. The clustering results were visualized via the 
Java plugin TreeView (http://jtreeviewsourceforge.net/) (24).

Pathway correlation analysis. The correlation between two 
pathways was measured with Spearman's rank correlation 

coefficient of pathscores across all the samples via software 
SPSS 19.0 (IBM Corp., Armonk, NY, USA). The pathway pairs 
with a larger absolute value of r than 0.5 and a significance 
P<0.05 were assumed to be the significantly correlated pathway 
pairs. Based on the distribution of DEGs in each pathway, cross-
talk genes among these correlated pathways were obtained. 
The cross-talk genes may influence multiple functional corre-
lated pathways and could be used as critical biomarkers and 
multi-effect drug targets. Identification of these biomarkers is 
meaningful for both the understanding of the mechanisms and 
the clinical diagnosis and therapy for ARLC-SCC.

Results

Differentially expressed gene extraction. The gene expression 
difference between 26  ARLC-SCC and 30  NARLC-SCC 
patients was detected using package LIMMA in Bioconductor, 
and finally 1,333 DEGs were obtained, in which 391 genes 
were upregulated and 942 genes were downregulated in the 
ARLC-SCC patients.

PPI network construction. The background PPI network was 
constructed based on data from BioGrid and HPRD databases, 
including 14,553 proteins and 662,360 interactions. To obtain 
the interaction relationship among these 1,333 DEGs, they were 
mapped to the background PPI network. Then, the PPI sub-
network of DEGs (Fig. 1) was constructed using Cytoscape, in 
which 981 nodes and 2,568 interactions were kept.

A gene was represented as hub in the network if it could 
interact with multiple DEGs, and thereby this gene could regu-
late multiple biological processes. To highlight these hub genes, 
topological analysis was performed on each node in the network. 
As shown in Fig. 1, the high-degree nodes (red) were enriched 
at the center region of the network, while the low-degree nodes 
(green) were mostly distributed at the outer region.

Topological analysis of the PPI network. To further analyze 
the specificity of the PPI sub-network of DEGs, five topological 
parameters were measured for the sub-network and background 
PPI network, respectively. As shown in Table I, the sub-network 
of DEGs showed a decreased average node degree  (5.23) 
compared with that  (7.01) in the background PPI network. 

Table I. Comparison of network topological parameters in the 
ARLC-SCC-specific sub-network and the background PPI 
network.

	 ARLC-SCC-specific	 Background
Parameter	 sub-network	 PPI network

Degree	 5.23	 7.01
EC	 8.52	 6.51
ASPL	 4.17	 2.97
CC	 0.24	 0.35
TC	 0.24	 0.17

EC, eccentricity; ASPL, average shortest path length; CC, closeness 
centrality; TC, topological coefficient; ARLC-SCC, asbestos-related 
squamous cell carcinoma; PPI, protein‑protein interaction
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Meanwhile, the closeness centrality (CC, 0.24 vs. 0.35) was 
also reduced in the sub-network. On the contrary, the other 
three parameters derived from the sub-network were increased 
compared to those derived from the background network, specif-
ically the average shortest path length (ASPL, 4.17 vs. 2.97) 
and the eccentricity (EC, 8.52 vs. 6.51) were greatly increased 
and the topological coefficient (TC,  0.24  vs.  0.17) with a 
minor increase. Taken together, these five parameters consis-
tently showed an obvious network efficiency reduction in the 
sub-network of DEGs compared with that in the background 
network. The lowered average degree may suggest a reduced 
contribution of each node to the network, while the increase 
in ASPL, EC and TC together with the decrease in CC may 
imply that both the tightness of the network and the informa-
tion spreading efficiency among the genes were reduced.

Detection of ARLC-SCC-related important genes. To assess 
the importance of each DEG, an importance score was 
assigned by integrating its deviation score of expression and 
node degree in the network. The distribution of these two 
parameters among all the DEGs is presented as Figs. 2 and 3, 
respectively. Based on the descending order of importance 
score, the top 50% of DEGs were kept as ARLC-SCC-related 
important genes (524 genes in total). These important genes 
showed large deviations from the RI and higher node degrees. 
The higher node degrees indicated that they could interact with 
multiple DEGs and play a role in multiple biological processes. 
Thus, these genes are thought to be significantly associated 
with ARLC-SCC carcinogenesis. Moreover, further studies 
were carried out on these genes and the biological pathways in 
which they are involved.

Figure 1. Sub-network of differentially expressed genes in asbestos-related squamous cell carcinoma (ARLC-SCC). Differentially expressed genes (DEGs) 
were mapped to a background protein-protein interaction (PPI) network and the nodes that were found to interact with at least 3 DEGs were also kept in this 
sub-network. There are 981 nodes and 2568 interactions in the network. Nodes are colored based on their degrees, among which high-degree nodes are colored 
red and low-degree nodes are colored green.
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Biological pathways involved in ARLC-SCC carcinogen-
esis. To get insight into ARLC-SCC-related pathways, the 
524  important genes were uploaded to DAVID for KEGG 
pathway enrichment analysis. Twenty-two KEGG pathways 
were obtained by combining the enrichment results for the 
important upregulated and downregulated genes. Specifically, 
these genes were significantly enriched in specific pathways 
of cancer, proliferation-related pathways regulating cell cycle 
and apoptosis, and metastasis-related pathways involved in the 
regulation of cell adhesion and the cytoskeleton. These results 
indicated that cancer-related pathways may play an important 
role in ARLC-SCC development, and the deregulation in cell 
cycle and apoptosis process may be a major cause for SCC of 
the lung. Meanwhile, the changes in metastasis-related path-
ways may account for the poor prognosis and rapid spreading 
in ARLC-SCC patients.

Hierarchical clustering based on pathway interference path-
score. To measure the extent to which a pathway was interfered 
with in each tumor patient compared with the average level 
in all NARLC-SCC patients, a pathscore was calculated for 
each pathway integrating the deviation score and node degree 
of all DEGs in the pathway. Then, the pathscore matrix for 
those 22 pathways in 56 patients was used for hierarchical 
clustering analysis. The clustering dendrogram was visual-
ized via TreeView and is shown in Fig. 4. As shown in the 
dendrogram, ARLC-SCC and NARLC-SCC patients were 
clearly separated based on the pathscore of 22 KEGG path-
ways, except one NARLC-SCC sample which was grouped 
into the ARLC-SCC cluster. The clustering analysis in patients 
indicated a great difference in the expression pattern of these 
pathways between these two types of SCC samples. On the 
other side, it also suggests intrinsic associations among these 
pathways by sharing similar variation trends under different 
disease phenotypes. For example, the four KEGG pathways 
such as adherens junction (hsa04520), regulation of actin 
cytoskeleton (hsa04810), cell cycle (hsa04110) and pathway 
in cancer (hsa05200) were consistently upregulated in the 
ARLC-SCC patients compared with the average level of gene 

expression in all the NARLC-SCC patients. Thus, identi-
fication of the correlated pathways with the same or similar 
deviation pattern and the cross-talk genes between them are 
critical for the identification and functional analysis of ARLC-
SCC‑related biomarkers. For this purpose, a correlation study 
was subsequently applied on the 22 important pathways.

Pathway correlation study and cross-talk gene detection. 
The correlation between each two important pathways was 
measured with Spearman's rank correlation coefficient r based 
on their pathscore across the 56 lung cancer patients. According 
to the correlation result, 13 significantly correlated pathway 
pairs were obtained. For better visualization, a pathway-
gene bipartite network (Fig. 5) was constructed based on the 
pathway-gene relationship, gene-gene interaction and pathway-
pathway correlation, which included 109 nodes (22 pathways, 
87 genes) and 263 edges. As shown in Fig. 5, 12 pathways 
presented a significant correlation with SNARE interactions in 
vesicular transport pathway (hsa04130), which indicates that 
deregulation in the synaptic vesicle transport process may play 
a central role in the carcinogenesis of ARLC-SCC. Interactions 
were also found between genes in the same pathway, indicating 
that these genes interact with each other to regulate the same 
biological process. In addition, many pathways were not 
independent but were connected by sharing cross-talk genes. 
For example, 4  cross-talk genes (EGFR, PRKX, PDGFB 
and PIK3R3) were shared by 4  pathways such as MAPK 
signaling pathway, glioma, regulation of actin cytoskeleton and 
apoptosis. In the same way, the cell cycle, circadian rhythm, 
oocyte meiosis and neurotrophin signaling pathways were 
linked together through cross-talk genes [SLK, insulin-like 
growth factor (IGF1), CDC42 and PRKCA] among which IGF1 
and CDC42 codes two critical immunological proteins. This 
implies that the cross-talk genes between different pathways 
may take part in the regulation of specific biological functions. 
The abnormality in these genes may lead to an inbalance of 
the pathways regulated by them, and finally cause the onset of 
diseases. Thus, these cross-talk genes could be used as ARLC-
SCC-specific biomarker genes and even potential multi-effect 
drug targets. It is possible, that drugs targeting these genes may 
influence multiple pathways simultaneously

Figure 2. The degree distribution among the 1,333 differentially expressed genes 
(DEGs). The x-axis represents genes; y-axis represents log-transformed node 
degree. All the genes are sorted based on descending order of the node degree.

Figure 3. The deviation score distribution among the 1,333 differentially 
expressed genes (DEGs). The x-axis represents genes; y-axis represents devia-
tion score. All the genes are sorted based on descending order of deviation score.
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Discussion

To date, only one study has attempted to detect the genetic 
heterogeneity between ARLC-SCC and NARLC-SCC patients. 
In the study of Wright et al (10), 6 candidate genes (CARD18, 
MS4A1, ABHD12, API5, ANKRD20A3 and LOC402117) were 
identified as being differentially expressed between ARLC-SCC 
and NARLC-SCC cases, while subsequent validations failed to 
support any of them as markers of asbestos etiology. Compared 
to their research, a relatively less stringent statistical significance 

(P<0.05) was used to screen the DEGs in the present study. Hence, 
more candidate genes were reserved for systematical network 
and pathway analysis, and thereby provided a comprehensive 
landscape of ARLC-SCC specificity at the gene expression level.

To detect the genetic specificity and biomarker genes 
in ARLC-SCC patients, gene expression profiles from 
26 ARLC-SCC patients and 30 NARLC-SCC patients were 
systematically analyzed. As a result, 1,333 DEGs were found, 
for which 524 genes were ARLC-SCC-specific weighted by a 
novel scoring method. Based on pathway enrichment analysis, 

Figure 4. Heat map depicting the pathway interference profile of asbestos-related squamous cell carcinoma (ARLC-SCC) (yellow) and non-asbestos-related 
squamous cell lung carcinomas (NARLC-SCC) (blue) cases. Pathways were selected on the basis of enrichment statistical significance (P<0.1). Pathways are 
represented on the y-axis and tumor samples are represented on the x-axis. Red areas represent pathways that were upregulated in the tumor samples while 
green areas represent pathways that were downregulated in the tumor samples.
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dramatic deviation in 22 KEGG pathways was found between 
ARLC-SCC and NARLC-SCC patients. Subsequent pathway 
correlation study showed that functional correlations may 
exist between these 22 pathways by sharing similar expression 
deviation patterns or differentially expressed cross‑talk genes.

Notably, based on the result of the pathway correlation study, 
the pathway of SNARE interactions in vesicular transport was 
found to be significantly correlated with the other 12 enriched 
pathways of the ARLC-SCC-specific genes, which indicated 
that abnormal vesicular transport may play a latent role in 
ARLC-SCC carcinogenesis and development. To date, several 
transport mechanisms through which cells communicate with 
the outside environment (within its microenvironment or even 
at distant sites) have been identified. Among them, vesicular 
transport, particularly exosome-mediated transport stands 
out (25). A considerable number of studies over several decades 
have revealed that the exosome takes part in the transport of 
multiple biological materials such as proteins, RNAs (26), 
breakdown product of signaling pathways and viruses (27), and 
plays a critical role in disease development (28). Furthermore, 
emerging evidence suggests that exosome-secreted proteins can 
propel fibroblast growth (29), which may account for the fibrosis 
of the lungs induced by asbestos exposure in ARLC-SCC cases. 
To the best of our knowledge, this is the first study to elucidate 
the potential association between exosome-mediated transport 

and asbestosis, which may provide a novel direction of drug 
development for ARLC-SCCs.

Based on the pathway correlation study, the pathways with 
a similar deviation pattern often presented functional correla-
tion in the 56 SCC patients. These correlated pathways were 
bridged by the DEGs between them. The shared DEGs consti-
tute cross-talk genes of which the deregulation in expression 
may simultaneously disturb the function of two or more path-
ways. Together with PDGFB, PIK3R3 and EGFR, CDC42 is 
involved in the regulation of the actin cytoskeleton. Abnormal 
regulation or functioning in cytoskeletal components is often 
a cause of many diseases including cancers (30,31). Partial 
disassembly of cytoskeletal actin may account for the respira-
tory barrier function of pulmonary epithelium induced by 
ROS in response to asbestos exposure (32). Overexpression 
of PDGFB can stimulate increased collagen deposition and 
vascular smooth muscle hyperplasia following asbestos inhala-
tion (33). SLK may promote the cytoskeletal rearrangements 
and disassembly of actin stress fibers, focal adhesions and 
induced apoptosis (34), and therefore may contribute to the 
development of ARLC-SCC. Growth factors such as IGF1 
and platelet-derived growth factor (PDGFB) are also known 
to promote cell cycle re-entry through progression from G1- to 
S-phase after asbestos exposure (35). Activation of PRKCA 
is reported to have multiple effects on peribronchiolar cell 

Figure 5. Bipartite interaction network of the pathways and differentially expressed genes (DEGs). In the plot, there are 109 nodes and 263 edges. The nodes 
colored in orange represent asbestos-related squamous cell carcinoma (ARLC-SCC)-specific pathways, while the nodes in red represent the DEGs in any of 
these pathways. The affinity of genes and pathways are represented with blue lines and the gene-gene interactions are presented with purple lines. The lines 
colored in green refer to the pathway-pathway correlations based on the correlation coefficient (r>0.5 or r<-0.5) and statistical significance (P<0.05).

https://www.spandidos-publications.com/10.3892/ijmm.2017.2878
https://www.spandidos-publications.com/10.3892/ijmm.2017.2878


DU  and  ZHANG:  BIOMARKER DETECTION IN ASBESTOS-RELATED LUNG CANCER586

proliferation, pro-inflammatory and pro-fibrotic cytokine 
expression, and immune cell profiles in the lung, which may 
lead to asbestos-induced fibrogenesis (36,37). Taken together, 
the cross-talk genes deregulated in ARLC-SCC patients may 
be used as biomarkers and multi-effect targets for ARLC-SCC.

Due to the unavailability of these lung cancer patient 
samples, experimental validations were beyond our reach. 
Nonetheless, the present study provided a novel insight into 
the genetic heterogeneity in ARLC-SCC cases. In particular, 
the finding of the potential role of vesicular transport in 
ARLC-SCC development provides a new opportunity for the 
development of a novel therapy for ARLC-SCCs.

In the present study, a novel scoring approach was proposed 
to detect potential ARLC-SCC-specific marker genes. Based 
on network topological and pathway correlation analysis, 
obvious heterogeneity was found between the ARLC-SCC 
and NARLC-SCC cases. Notably, the undiscovered role of 
vesicular transport reported herein may provide new insight 
into the targeted therapy of ARLC-SCCs.
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