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Abstract. Histone post-translational modifications (PTM) as 
one of the key epigenetic regulatory mechanisms that plays 
critical role in various biological processes, including regulating 
chromatin structure dynamics and gene expression. Histone 
lysine methyltransferase contributes to the establishment and 
maintenance of differential histone methylation status, which 
can recognize histone methylated sites and build an association 
between these modifications and their downstream processes. 
Recently, it was found that abnormalities in the histone lysine 
methylation level or pattern may lead to the occurrence of 
many types of cardiovascular diseases, such as congenital 
heart disease  (CHD). In order to provide new theoretical 
basis and targets for the treatment of CHD from the view of 
developmental biology and genetics, this review discusses and 
elaborates on the association between histone lysine methyla-
tion modifications and CHD.
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1. Introduction

Congenital heart disease (CHD) involves the anatomical struc-
ture abnormality caused by the formation of obstacles or the 
abnormal development of the heart and great vessels during 
the period of embryonic development, or a group of congenital 
malformations with actual or potential influence on heart 
function arising from the open tunnels which should have self-
closed after childbirth. CHD mostly occurs during 2-8 weeks 
after impregnation, and it is the most common cardiovascular 
malformation affecting children; it severely affects the health 
of infants and young children  (1-4). At present, CHD is 
regarded as a multigene disease influenced by the environment 
and heredity; however, the pathogenesis of the disease and the 
underlying molecular mechanisms and interations between 
genes remain unclear (5-8). Heart development is a very complex 
process, involving the expression of numerous genes at specific 
time points in the process of embryonic development, and it is 
regulated by many transcription factors (9,10). The realization 
of this process is not only determined by gene sequences, but 
is also largely generated by the transformation of epigenetics. 
In addition, an increasing number of studies have found that 
children with CHD have an extremely low occurrence rate 
of gene mutation, which can only explain a small number of 
CHD cases, as there is no pathogenic gene transformation for 
the majority of CHD cases (11-13). Some recent studies have 
found that ‘epigenetics’ may very likely participate or play an 
important role in the occurrence of CHD (14-16).

Epigenetics suggests that DNA sequence undergoes no 
transformation, but the gene expression occurs by heritable 
transformation, which is the other heritable material transforma-
tions in the cells apart from the heritage information and with 
stable heredity in the process of cell development and prolifera-
tion (17-19). Epigenetics is mainly the reversible and heritable 
transformation of gene function with the DNA sequences of 
the nucleus unchanged, and these transformations include DNA 
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modifications (such as methylation), various kinds of histone 
modifications (such as methylation, acetylation, ubiquitination 
and phosphorylation), chromatin remodeling, non-encoding 
RNA regulation  (20-26). In the field of ‘epigenetics’, by 
transforming the chromatin structure with the help of related 
enzymes and interacting with other regulator protein, histone 
modifications regulate gene expression, and influence occur-
rence and development of diseases, which is also known as ‘the 
second heritage code’, mainly including methylation, acetyla-
tion, phosphorylation, ubiquitin, adenosine, small ubiquitin 
related modification, ADP ribosylation and proline isomeriza-
tion (21,27,28). Histone methylation is one of the most common 
histone modifications, and mainly includes arginine methylation 
and lysine methylation (29-31). Comparatively speaking, histone 
methylation modification transforms loosen or agglutination 
state of chromatin mainly through influencing the affinity of 
histone and DNA, regulates gene expression by influencing 
the affinity of other transcription factors and structural gene 
promoters. Thus, it can be seen that histone methylation modifi-
cation has the gene expression regulatory function similar to the 
DNA genetic code, and plays an important role in the process of 
growth and development (32-34).

In recent years, studies have shown that histone lysine 
methylation is not only closely related to tumor occurrence and 
development, developmental defects, senile dementia, cardiac 
hypertrophy and other clinical diseases, but also participates in 
the occurrence of CHD, influencing the development of heart 
structure and CHD candidate gene expression (35-45). For 
this reason, this review aims to summarize the new progress 
of CHD epigenetic mechanism research from the aspect of 
histone lysine methylation modification, in order to provide a 
new scientific basis for the prevention and treatment of CHD.

2. Histone methylation

Histone methylation involves the methylation occurring 
at histone H3 and the N-terminal of H4 arginine  (Arg) or 
lysine (Lys) residues, catalyzed by histone methyltransferase. 
The function of histone methylation is mainly reflected in 
heterochromatin forming, genomic imprinting, X chromo-
some inactivation and transcriptional control (46-52). Apart 
from histone methyltransferase, the histone demethylase is 
also found (53,54). At first, it was considered that the histone 
methylation effect was stable and irreversible; however, the 
existence of methyltransferase renders the process of histone 
methylation more dynamical.

Modification sites of histone methylation. Histone methylation 
can occur on of Lys and Arg histone residues. Lysine residues 
can be single, double and triple methylated, while arginine resi-
dues can be single and double methylated (55-57). This varying 
degree of methylation largely increases the complexity of 
histone modifications and regulator gene expressions (29,58). 
Methylation action sites are in the N atoms at the side chains of 
Lys and Arg. Lys locus 4, 9, 27, 36 and 79 of histone H3 (H3K4, 
H3K9, H3K27, H3K36 and H3K79), Lys locus 20 of histone H4 
(H4K20), Arg locus 2, 17, 26 of histone H3 (H3R2, H3R17 and 
H3R26) and Arg locus 3 of histone H4 (H4R3) are the common 
loci of methylation (Fig. 1). Studies have shown that histone 
Arg methylation is a comparatively dynamical mark, and is 

related to gene activation; however, Arg methylation lacking H3 
and H4 is related to gene silencing (59-61). On the contrary, 
Lys methylation seems to be a stable mark of gene expression 
regulation. For example, H3K4 methylation is related to gene 
activation, while H3K9 and H3K27 methylation are related to 
gene silencing (38,62-66). In addition, H4K20 methylation is 
related to gene silencing, H3K36 and H3K79 are related to gene 
activation (67-72).

Related enzymes of histone methylation. Arginine methylation 
occurs at the equal locus of histone H3R2/R17/R26 and H4R3, 
and plays a promoting effect on gene expression (60). When the 
methylation process occurs, histone arginine methyltransferase 
or protein arginine methyltransferase (PRMT), as the collab-
orative activity factor, is recruited into the promoter region of 
the target gene and thus activates gene expression (73-75). The 
PRMT of catalyzing histone arginine methyltransferase includes 
two categories: the first type of PRMT being catalyzed to form 
single methylation arginine and unsymmetrical double meth-
ylation arginine, and the second type of PRMT being catalyzed 
to form single methylation arginine and symmetrical double 
methylation arginine (76,77). The family of PRMT includes 
PRMTl, PRMT3, RMTI/HMT, PRMT4/CAMRl and PRMT5. 
K4, K9, K27, K36, K79 of histone H3 and K20 of H4 all can 
be methylated. The methylation level is regulated and executed 
by a type of methyltransferase with SET structural domain 
with highly conserved nucleus and the pre-SET and post-SET 
structural domain with abundant cysteine sequence (31,78,79). 
The denomination of SET structural domain is constituted 
with 3 initial letters of 3 genes from expressing SET struc-
tural domain found at the earliest, which are Su(var)3-9, E(z) 
and Trx (80). Furthermore, histone demethylase can catalyze 
histone lysine to demethylation, and then affect the level of 
methylation. At present, the demethylase of histone mainly 
has two types: lysine specific demethylase (LSD1) and Jmjc 
domain-containing histone demethylase (JHDM) (81,82).

3. Histone lysine methylation and heart development

Epigenetic modification, including methylation and acetyliza-
tion plays an important role in the regulation of gene expression. 
Studies have indicated that histone methylation can reduce or 
increase its affinity for charged DNA, loosen or tighten the 
chromatin structure to affect the accessibility and interactions 
between transcriptional factors and DNA templates, ultimately 
promote or inhibit gene expression (83,84). Recent evidence 
supports a prominent role for histone methylation in normal 
and aberrant heart development (85-87). A recent study demon-
strated that changes in histone methylation levels in histone H3 
that binds with critical promoter parts of the ssTnI gene can 
cause the corresponding changes in ssTnI gene expression, 
which indicated that histone methylation was involved in the 
regulation of myofibril gene expression in the heart during 
development (88). Additionally, Hand2 and Irx4 transcription 
factors have been shown to be reduced in SMYD1-deficient 
mice, suggesting that SMYD1-mediated histone methyla-
tion is necessary for the expression of these essential cardiac 
transcription factors (89). Hence, these findings illustrate the 
pervasive roles of histone methylation in the process of heart 
development.
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4. Related enzymes of histone lysine methylation and congenital 
heart disease

CHD is the most common type of birth defect, manifesting 
as obstacles in the process of embryonic heart or blood vessel 
development, which may result in the morphology, structure, 
function and metabolic abnormalities of heart and blood 
vessels (2,3,5). According to the statistics, CHD has become 
the first reason for birth defects and the main cause of perinatal 
death and death in children (2). The causes of CHD are not yet 
completely clear; however, most scholars consider that many 
types of CHD are caused by a single gene mutation and chro-
mosome aberration, and most types of CHD belong to complex 
genetic diseases, which are caused by the interaction between 
genetic factors and environmental factors (90,91). Studies have 
shown that histone lysine methylation modification as part 
of the epigenetic regulation, is involved in the development 
of heart and blood vessels, which is also one of the causes of 
CHD (92,93). The level of histone lysine methylation is deter-
mined by the balance of histone methylation and demethylation, 
which is a process by which methyl groups are transferred 
onto or removed from the amino acids of histone proteins. 
Histone methyltransferase and histone demethylase catalyze 
histone methylation and demethylation, respectively. In most 
cases, under the action of the methylation and demethylation, 
the histone tails relax or surround, which can loosen or inhibit 
DNA of transcription factors so as to turn the genes in DNA 
‘off’ and ‘on’, resulting in the normal or aberrant expression of 
related genes and leading to abnormal heart development. To 
understand the research progress of histone lysine methylation 
and CHD, we summarize the known histone lysine modifying 
enzymes which regulates CHD in Table I.

H3K4 methylation and CHD
Trithotax group (TrxG) proteins. During heart development, 
several cardiac progenitor pools give rise to diverse cell 
lineages, such as cardiomyocytes, vascular smooth muscle 
cells, fibroblasts that form the connective tissues and endo-
thelial cells of the endocardium. The heart expresses many 
epigenetic factors, including both histone modifying proteins 
and chromatin remodelers. Among the epigenetic factors, TrxG 
proteins are special family of chromatin factors that regulate 
developmental gene expression in the heart (94). TrxG proteins 
function in multi-subunit complexes, three TrxG complexes, 
the MLL complex, the BRM/BAF complex and a supercom-
plex, and have been purified in mammalian cells (95). TrxG 

proteins are evolutionarily conserved H3K4 methyltransferases 
that maintain the transactivation states of lineage-specific 
genes during embryonic development. Multiple TrxG genes are 
normally expressed in the mouse heart. Due to the essential 
function of TrxG genes, constitutive knockouts of key TrxG 
genes often result in lethality during early embryogenesis 
before cardiac phenotypes can be analyzed. The differentiation 
of mouse embryonic stem cells (ESCs) toward mesodermal and 
endodermal lineages is severely altered and, in particular, the 
cardiac lineage differentiation of ESCs is completely abolished 
in the absence of MLL2, a TrxG member. Moreover, the expres-
sion of core cardiac transcription factors and the levels of H3K4 
trimethylation of these cardiac-specific promoters are signifi-
cantly decreased by the loss of MLL2 (96). Taken together, 
these results reveal a critical role for MLL2 in the proliferation 
and cardiac lineage differentiation of mouse ESCs, and provide 
critical insight not only into the novel role of the TrxG protein 
in cardiac development, but also into their clinical significance 
in related CHD.

SMYDs. SET and myeloid, nervy and DEAF-1 (MYND) 
domain-containing proteins (SMYDs), including SMYD1-5, 
have two functional protein domains, SET (mediates histone 
lysine methylation activity) and MYND (mediates the protein-
protein interaction and binds to DNA motifs) domains (80). 
SET-MYND-domain  1  (SMYD1/BOP) encodes an evolu-
tionary conserved histone methyltransferase containing a split 
SET domain interrupted by a MYND domain, which includes 
two members SMYD1a and SMYD1b, can catalyze H3K4 
methylation (97). The expression of SMYD1 is restricted to 
skeletal and cardiac muscles in humans, fish, chickens and mice. 
There is evidence to indicate that SMYD1 plays important roles 
in cardiac differentiation, development and function (98). The 
global knockdown of SMYD1a and SMYD1b in zebrafish has 
been shown to result in the disruption of myofibril formation 
and an absence of beating of the heart. Molecular and cellular 
experiments showed that myofibers in embryos in which 
SMYD1 was knocked down appeared as immature myofibers 
with centrally located nuclei and disorganized myofibrils, 
indicating that SMYD1 played a critical role in myofibers 
maturation and contraction (97). Conventional null SMYD1 
mice die in utero around embryonic day 10.5 (E10.5) due to 
heart defects, including disrupted maturation of ventricular 
cardiomyocytes and malformation of the right ventricle (99). 
However, Diehl et al recently reported that SET and MYND 
domain containing 2 (SMYD2), is capable of H3K4 methyla-
tion when bound to Hsp90a and acts on non-histone targets by 

Figure 1. The common methylation action sites in H3 and H4.
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Table I. Known histone lysine modifying enzymes involved in congenital heart diseases.

	 Abnormal
	 pattern	 Species	 Related cardiac phenotype

Modifiers of H3K4
  Trithotax group proteins
    MLL2	 Deficiency	 Mice	 Embryonic lethal
	 Deficiency	 Mouse embryonic	 Abnormal proliferation and cardiac lineage differentiation
		  stem cells
	 Mutation	 Humans	 Atrial/ventricular septal defects, aortic coarctation
  SMYDs
    SMYD1	 Deficiency	 Zebrafish	 Immature myofibers, non-beating heart
	 Deficiency	 Mice	 Embryonic lethal, hypoplastic right ventricle
    SMYD3	 Deficiency	 Zebrafish	 Pericardial edema, abnormal expression of heart-chamber markers
  T-box transcription factors
    TBX1	 Mutation	 Humans	 DiGeorge syndrome, double outlet right ventricle, 
			   ventricular septal defect
    TBX2	 Mutation	 Humans	 Ventricular septal defects
    TBX3	 Mutation	 Mice, humans	 Cardiac conduction dysplasia 
    TBX5	 Deficiency	 Mice	 Defective epicardial and coronary blood vessel formation
	 Mutation	 Humans	 Holt-Oram syndrome
    TBX18	 Deficiency	 Mice	 Defective epicardium and coronary vessels
    TBX20	 Mutation/	 Mice	 Failed heart looping, defective chamber differentiation, 
	 deficiency		  cardiomyopathy,  arrhythmias
	 Mutation	 Humans	 Septal defects, valvulogenesis defects, cardiomyopathy
  DPF3	 Mutation or	 Zebrafish	 Incomplete cardiac looping, defective ventricular
	 deletion		  contractility and muscular fibers
  PTIP	 Deficiency	 Mice	 Abnormal cardiac conduction system, ventricular arrhythmia
  SETD7	 Deficiency	 Zebrafish	 Developmental heart edema
  LSD1	 Deficiency	 Mice	 Ventricular septal defects, salt-sensitive hypertension
  BCOR	 Mutation	 Humans	 Oculo-facio-cardio-dental (OFCD) syndrome
Modifiers of H3K9
  G9a and GLP	 Deficiency	 Mice	 Embryonic lethality, atrioventricular septal defects
  EHMT1	 Mutation/	 Humans	 Chromosome 9q subtelomere deletion syndrome with
	 deficiency		  atrial/ventriculap septal defect
  Blimp-1/PRDM	 Deficiency	 Mice	 Ventricular septal defect and persistent arterial trunk
  Jarid2	 Mutation/	 Mice	 Ventricular/atrial septal defect, double-outlet right
	 deficiency		  ventricle, dilated atria
Modifiers of H3K27
  Polycomb group proteins
    PRC1	 Mutation/	 Mice	 Bone dysplasia and heart development defects
	 deficiency
    Ezh2	 Mutation/	 Mice	 Double outlet right ventricle, persistent truncus arteriosus, ventricular
	 deficiency		  septal defects, atrial septal defects, atrioventricular canal defects
			   and enlarged aortic valves, postnatal myocardial pathology
  UTX	 Deficiency	 Mice	 Embryonic lethality, reduced somite counts, heart malformation
	 Deficiency	 Mouse embryonic	 Failed to develop heart-like rhythmic contractions
		  stem cells
  Jmjd3	 Deficiency	 Mice	 Embryonic lethality
	 Deficiency	 Mouse embryonic	 Impaired mesoderm and subsequent endothelial
		  stem cells	 and cardiac differentiation
Modifiers of H3K36
  NSD1	 Mutation/	 Humans	 Sotos syndrome
	 deficiency
  WHSC1	 Deficiency	 Mice	 Perinatal lethal, atrial and ventricular septal defects
	 Mutation	 Humans	 Wolf-Hirschhorn sydrome
  Jmjd5	 Deficiency	 Mice	 Embryonic lethal
Modifiers of H3K79
  DOT1L	 Deficiency	 Mice	 Embryonic lethal, yolk sac angiogenesis defects, cardiac dilatation, 
			   cardiomyocyte death, systolic dysfunction, conduction abnormalities
Modifiers of H4K20
  NSD1	 Mutation/	 Humans	 Sotos syndrome, ventricular/atrial septal defect, patent ductus arteriosus
	 deficiency
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inhibiting the functional activity of p53 via methylation of 
p53, lysine 370, which was differentially expressed during 
cardiac development with highest expression in the neonatal 
heart (100). To elucidate the functional role of SMYD2 in the 
heart, they generated knockout mice harboring a cardiomyo-
cyte-specific deletion of SMYD2 and performed histological, 
functional and molecular experiments. Unexpectedly, cardiac 
deletion of SMYD2 was dispensable for proper morphological 
and functional development of the murine heart (100). H3K4 
methyltransferase SMYD3 is highly expressed within devel-
oping zebrafish heart and knockdown of it led to severe defects 
such as pericardial edema and abnormal expression of three 
heart-chamber markers in cardiac morphogenesis (101). These 
results indicate that SMYD3 plays an important role in heart 
development and its proper functioning is essential for normal 
heart morphogenesis during development.

T-box (TBX) transcription factors. TBX transcription factors 
share a highly conserved DNA-binding domain and play critical 
roles in embryonic development (102). Six members of TBX 
family (TBX1, TBX18 and TBX20 of the TBX1 subfamily, and 
TBX2, TBX3 and TBX5 of the TBX2 subfamily) are required 
for the cardiac morphogenesis in mammals  (103). TBX1 
interacts with H3K4 methyltransferase to enhance its H3K4 
monomethylation status through T-box, regulates expression of 
related genes by epigenetic patterns (104). TBX1 mutation can 
lead to DiGeorge syndrome (DGS), which is the most common 
microdeletion syndrome, and is characterized by congenital 
cardiac, craniofacial and immune system abnormalities (105). 
Additionally, Pan et al reported that a novel heterozygous TBX1 
mutation, p.Q277X, was identified in an index patient with 
double outlet right ventricle and ventricular septal defect (106). 
TBX2 gene is expressed in the myocardium of the atrioventric-
ular canal, outflow tract and inflow tract and plays a critical role 
in heart chamber formation (107). The genomic deletion and 
duplication of TBX2 gene have been found to be associated with 
ventricular septal defects (108). The evolutionary conserved 
TBX3 gene encodes T-box transcription factors and locus 
forms a CTCF independent autonomous regulatory domain 
with multiple combinatorial regulatory elements, which plays 
crucial roles in the development and homeostasis of the cardiac 
conduction system in humans and mice (109). Previous studies 
have found that TBX5 is expressed in the proepicardial organ 
or septum transversum, which is required for the normal devel-
opment of proepicardium/proepicardial organ cells, as well as 
proper epicardial formation and maturation (110). Additionally, 
TBX5 deficiency delays epicardiac cell attachment to the 
myocardium and impairs production of epicardial-derived 
cells and their migration into the myocardium, and results in 
abnormal coronary vasculogenesis and murine ischemic cardio-
myopathy (111). Clinical studies have shown that Holt-Oram 
syndrome is caused by mutations in TBX5, which is a human 
inherited disorder and manifests as left pericardium agenesis 
and anomalous coronary arteries along with ventricular septal 
defects (112-114). These findings all demonstrate that TBX5 is 
essential for epicardial development in hearts and establish-
ment of the coronary vasculature. Similar to TBX5, TBX18 is 
also highly expressed in proepicardial cells and proepicardium, 
TBX18-deficient proepicardium produces an epicardium and 
coronary vasculature with structural and functional defects, 
and that remodeling of the disorganized subepicardial plexus 

in TBX18-deficient hearts produced a mature coronary artery 
network with fewer distributing conduit vessels and smaller 
lumen profiles, which indicates that TBX18 plays critical role 
in coronary development (115). However, TBX20 is necessary 
in heart development by regulating cardiomyocyte proliferation 
and regional specification and formation of cardiac chambers 
and valves; TBX20 mutations in mice can result in the failure 
of heart looping, developmental arrest, and the lack of chamber 
differentiation, and loss of TBX20 in mice leads to cardio-
myopathy with associated arrhythmias and death (116,117). 
More seriously, mutations in human TBX20 result in cardiac 
malformations including septal defects, double outlet right 
ventricle and cardiomyopathy (118,119). These findings provide 
novel insight into the molecular mechanism underlying CHD 
and suggest potential implications for the development of novel 
preventive and therapeutic strategies for CHD.

DPF3. DPF3 is a member of the highly conserved d4 protein 
family, which is characterized by a double PHD finger in the 
C-terminal and has two splice variants DPF3a and DPF3b in 
human and mice (120). In the process of embryonic develop-
ment, DPF3 is expressed both in heart and somites of mouse, 
chicken and zebrafish, which is important epigenetic regulation 
factor for heart and muscle development by associated with 
the BAF chromatin remodeling complex and binds methylated 
lysine residues of H3K4 (121). Previous studies have found that 
DPF3 mutation or deletion leads to incomplete cardiac looping, 
attenuated ventricular contractility and disassembled muscular 
fibers caused by the transcriptional deregulation of structural 
and regulatory proteins in the heart, which all demonstrate 
that DPF3 is responsible for cardiac development imbalance, 
ventricular septal defect and other cardiac disorders (121).

Pax transactivation domain interacting protein (PTIP). 
PTIP is an essential cofactor for H3K4me by KMT2C/D, 
which is encoded by the Paxip1 gene and is essential for 
embryonic development in mice and flies  (122-124). As a 
critical component of the KMT2C/D complex, the loss of PTIP 
leads to reduced levels of H3K4me3 in whole embryos, ESCs 
and Drosophila larvae (125,126). Stein et al demonstrated that 
temporal and tissue-specific deletion of PTIP reduces H3K4 
methylation level and alters the transcriptional program in 
nondividing cardiomyocytes. It is suggested that a role for 
KMT2 complexes not just in establishing active chromatin 
domains but also in the maintenance of the differentiated state 
over time. Furthermore, the loss of PTIP-mediated H3K4me 
results in significant changes in the physiology of the cardio-
myocytes, suggesting that PTIP deletion is the direct cause of 
premature ventricular beats, a harbinger of lethal ventricular 
arrhythmias in nondividing cardiomyocytes (42,127).

SET domain containing protein 7 (SETD7). SETD7 also 
termed as SET7/9, is another type of histone lysine methyl-
transferase and only has SET domain for methyltransferase 
activity, but not MYND domain, which is initially discovered 
as a specific methyltransferase for nonmethylated H3K4. 
Tao et al found that the knockdown of SETD7 showed the 
defects in skeletal muscle formation and myofibril structures 
in a zebrafish developmental model  (128). To examine the 
function of SETD7 in heart development, Kim et al firstly 
demonstrated that SETD7 was highly expressed in developing 
zebrafish heart and knockdown of it led to severe defects in 
cardiac morphogenesis such as developmental heart edema. 
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Furthermore, the double knockdown of SMYD3 and SETD7 
caused synergistic defects in heart development. Similar to the 
knockdown effect, the overexpression of SETD7 also caused 
the heart morphogenesis defects in zebrafish (85). These results 
indicate that the histone modifying enzyme, SETD7, plays 
an important role during heart development and its proper 
functioning is essential for normal heart morphogenesis during 
development.

Lysine-specific demethylase 1 (LSD1). LSD1 (also known 
as AOF2/KDM1A), is a member of a group of enzymes with 
lysine specific demethylase activity. LSD1 performs enzymatic 
activity toward di- and monomethyl H3K4 and H3K9 respec-
tively; the specificity for H3K9 arises when LSD1 binds to 
the androgen receptor, resulting in a shift of its activity from 
H3K4 (129). LSD1 interacts with proteins mostly through the 
tower domain, an extended helical structure. Furthmore, there 
is evidence to indicate that LSD1-interacting proteins can 
regulate the activity and specificity of LSD1 in developmental 
processes (130,131). Nicholson et al found that mice homozy-
gous for a hypomorphic LSD1 allele exhibit a failure to survive 
after birth perinatally due to heart defects, with the majority 
of animals suffering from ventricular septal defects  (132). 
Therefore, the above-mentioned studies thereby illuminate 
a novel role for LSD1 in the development of the mammalian 
heart.

BCL-6 corepressor (BCOR). It was found that BCOR inhib-
ited gene transcription by interacting with BCL-6, and BCOR 
mutation resulted in abnormal activation of AP-2a, which was 
a key factor that mediated the differentiation of bone marrow 
mesenchymal stem cells (MSCs) (133). Fan et al also pointed 
out that BCOR recruited a histone demethylase JHDM1B to 
the target gene promoter, resulting in the demethylation of 
H3K4me3 and H3K36me2 and transcription repression of 
genes; however, BCL-6 mutation may impair the recruitment of 
JHDM1B to chromatin, resulted in increased methylation levels 
of H3K4 and H3K36 (133). Abnormal histone methylation due 
to BCOR mutation may affect BCL-6 binding to the AP-2a 
promoter, causing aberrant activation of gene and resulting 
in the in occurrence of oculo-facio-cardio-dental  (OFCD) 
syndrome, which is a rare genetic disorder characterized by 
teeth with extremely long roots, and craniofacial, eye and 
congenital cardiac abnormalities include septal defect and 
mitral valve defect abnormalities (133-135). On the whole, it 
was identified that BCOR mutation affected heart development 
and AP-2α played a role in congenial heart defects associ-
ated with OFCD patients, and indicated that BCOR may be a 
novel target for diagnostic and treatment strategies of OFCD 
syndrome.

H3K9 methylation and CHD
G9a and GLP. G9a and GLP are known as major H3K9 mono- 
and di-methyltransferases and contribute to transcriptional 
silencing, which play critical biological roles in various cells 
and tissues. For example, G9a and GLP are indispensable 
for mouse early development; G9a or GLP knockout mice 
exhibit embryonic lethality around E9.5 due to severe growth 
defects (38,136,137). In order to clarify the roles of G9a and GLP 
in cardiac development, Inagawa et al analyzed the phenotypes 
of cardiomyocyte specific GLP knockout and G9a knockdown 
mice, it was shown that the H3K9me2 level decreased mark-

edly in the nuclei of the cardiomyocytes of these mice, and the 
mice exhibited neonatal lethality and severe cardiac defects 
characterized by atrioventricular septal defects (138). These 
data indicated that G9a and GLP were required for H3K9me2 
in cardiomyocytes and performed an essential role in normal 
morphogenesis of the atrioventricular septum through regula-
tion of the size of the atrioventricular cushion.

Euchromatin histone methyl transferase  1 (EHMT1). 
EHMT1 is located on chromosome 9 and encodes 
Eu-HMTase1, which is a type of methyltransferase found in 
the region of the chromatin region. EHMT1 could specifi-
cally modify H3K9 methylation and thus inhibit the activity 
of related genes. Some studies have found EHMT1 mutation 
or deletion is the main cause of chromosome 9q subtelomere 
deletion syndrome (9qSTDS), approximately half of affected 
individuals have congenital heart defects primarily character-
ized by atrial septal defect or ventricular septal defect (139,140).

Blimp-1/PRDM. The PR/SET domain zinc-finger transcrip-
tional repressor Blimp-1/PRDM is initially cloned as a negative 
regulator of key transcription factors expression and encoded 
by PRDM1, which contains PR/SET domain in N-terminal and 
C2H2 zinc finger structure in C-terminal, and thus plays essen-
tial roles in primordial germ cell specification, placental, heart, 
and forelimb development, plasma cell differentiation, and T-cell 
homeostasis through regulating DNA binding, nuclear input 
and recruitment of histone modifying enzymes (141). Blimp-1/
PRDM causes H3K4 methylation by recruiting of histone modi-
fying enzymes, which inhibits relevant genes expression and 
thus regulates the development of embryos. In the development 
of embryos, Blimp-1/PRDM deficiency caused serious cardiac 
defects including ventricular septal defect and persistent arterial 
trunk (141,142).

Jarid2. Jarid2, also termed as Jumonji (jmj), the founding 
member of the Jumonji family, all of which contain the JmjC 
domain that generally confers histone demethylase activities, 
which can catalyze H3K9 methylation and function as a tran-
scriptional repressor and to interact with other nuclear factors. 
Lee et al found that the Jarid2 homozygous mouse embryos 
show heart malformations, including ventricular septal defect, 
noncompaction of the ventricular wall, double-outlet right 
ventricle, and dilated atria; furthermore, expression of Jarid2 in 
the interventricular septum, ventricular wall and outflow tract, 
which is correlated well with the locations of defects observed 
in the hearts of mutant mice. These results indicate that Jarid2 
plays an important role in embryonic heart development (143). 
At the molecular level, Kim et al demonstrated that Jarid2 can 
inhibit the proliferation of cardiomyocytes, and inhibit the 
expression of atrial natriuretic peptide (ANP) by repressing the 
interaction with transcription factor Nkx2.5 and GATA4 (144). 
Other studies have also found that mutations or deletions of 
Jarid2 could increase H3K9 and H3K36 methylation level, 
resulting in the abnormal expression of development-related 
genes and thus inducing atrial septal defect or ventricular septal 
defect and other cardiac defects (145,146).

H3K27 methylation and CHD
Polycomb group proteins. Polycomb group proteins are key 
regulators of gene expression during development and differ-
entiation, silencing genes via regulation of the chromatin 
structure, which act in complexes that have specific catalytic 
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functions important for transcriptional repression. In mammals, 
2 major Polycomb group complexes exist: polycomb repressive 
complex 1 (PRC1) and PRC2. Whereas PRC1 ubiquitinates 
histone H2A on Lys119,1 PRC2 catalyzes dimethylation and 
trimethylation of H3K27, generating H3K27me2/3  (147). 
Weston et al pointed out that Rae28 protein, the core compo-
nent of PRC1, which made PRC1 bind to H3K27me3 and then 
formed chromatin tight structure to prevent the occurrence of 
transcription. Rae28 mutation or deletion mice tend to perform 
bone dysplasia and heart development defects (148). However, 
Ezh2, the major histone methyltransferase of PRC2, trimethyl-
ates H3K27 and is essential for embryonic development (149). 
Delgado-Olguín et al have shown that Ezh2 stabilizes cardiac 
gene expression and prevents cardiac pathology, but Ezh2 
deletion in cardiac progenitors causes postnatal myocardial 
pathology and destabilizes cardiac gene expression, which 
suggests that Ezh2 is essential for stable postnatal heart gene 
expression and homeostasis (150). Furthermore, Chen et al 
demonstrated that a variety of cardiovascular structural 
malformations were observed in the Ezh2 mutant mice, 
including double outlet right ventricle, persistent truncus arte-
riosus, membranous and muscular ventricular septal defects, 
atrial septal defects, atrioventricular canal defects and enlarged 
aortic valves, which defined an indispensible role of Ezh2 in 
normal cardiovascular development (151).

Ubiquitously transcribed tetratricopeptide repeat, X chro-
mosome (UTX). Histone demethylase UTX, also known as 
KDM6A, that specifically targets the repressive H3K27me3 
modification plays an important role in the activation of 
‘bivalent’ genes in response to specific developmental cues. 
Welstead et al showed that UTX-deficient embryos had reduced 
somite counts, neural tube closure defects and heart malforma-
tion that presented between E9.5 and E13.5 (152). Other studies 
have also found that UTX-deficient ESCs failed to develop 
heart-like rhythmic contractions under a cardiac differentiation 
condition; UTX deficient mice exhibited severe defects in heart 
development and embryonic lethality; these data establish that 
UTX is required for heart development acts as a critical switch 
to activate the cardiac developmental program (153,154).

Jumonji domain-containing protein  3  (Jmjd3). 
Jmjd3  (KDM6B), another H3K27 demethylase, functions 
redundantly with UTX. Jmjd3 is induced and participates in 
Hox gene expression during development, neuronal differen-
tiation and inflammation, and recent data suggest that Jmjd3 
inhibits reprogramming by inducing cellular senescence (155). 
Jmjd3 deficient mice showed embryonic lethality before E6.5, 
suggesting a crucial role of Jmjd3 in early embryonic develop-
ment (156,157). The ablation of Jmjd3 in mouse ESCs impaired 
mesoderm and subsequent endothelial and cardiac differentia-
tion. These results clarify that Jmjd3 is necessary for mesoderm 
differentiation and cardiovascular lineage commitment (158).

H3K36 methylation and CHD
Nuclear receptor SET domain containing gene 1 (NSD1). NSD1 
is a structure containing the SET domain proteins, with specific 
H3K36 and H4K20 methyltransferase activity, which is associ-
ated with Sotos syndrome by haploinsufficiency (159,160). A 
very frequent feature among Sotos syndrome patients with 
intragenic mutations was the presence of congenital heart 
defects or heart conduction defects, including isolated atrial 

septal defect, atrial septal defect in association with other 
structural abnormalities (patent ductus arteriosus; aortic valve 
dysplasia; ventricular septal defect and aortic coarctation) (161). 
This evidence indicates that NSD1 may be a cause of a higher 
prevalence of congenital heart defect in Sotos syndrome 
patients, which may be a novel target of diagnosis and treat-
ment strategy for Sotos syndrome.

Wolf-Hirschhorn syndrome candidate 1 (WHSC1). WHSC1 
contains AWS-SET-PostSET domain structure with methyl-
transferase activity, is encoded by Wolf-Hirschhorn syndrome 
related regional gene, is homologous with H3K36 specific 
methyltransferase Set2 in yeast, which can make H3K36 
mono- di-, tri-methylated. WHSC1 regulates the expression 
of related genes through interaction with other transcription 
factors such as Nkx2.5, in embryonic heart, WHSC1 is found 
to interact with Nkx2.5 to repress Pdgfra expression (162). Loss 
of WHSC1 resulted in reduction of H3K36me3 at the Pdgfra 
locus and upregulation of Pdgfra. Loss-of-WHSC1 mice are 
perinatal lethal with significant growth retardation and die 
within 10 days after birth. Deletion of a critical region of 
human chromosome 4q16.3 containing WSHC1 gene is asso-
ciated with craniofacial malformations, growth retardation, 
learning disability and congenital heart defects. WHSC1-null 
mice display a variety of atrial and ventricular septal defects 
that manifest those in Wolf-Hirschhorn sydrome patients (163).

Jumonji C domain-containing 5 (Jmjd5). Jmjd5 is a histone 
demethylase that specifically removes methyl moieties from 
dimethylated H3K36 and exerts a pro-proliferative effect on a 
large of cells. Strong Jmjd5 expression was observed only in 
the yolk sac at E8.5, Jmjd5 was robustly expressed in E10.5 
embryos at several sites, including the heart and eye, which 
indicated that Jmjd5 may play an important role in heart and 
eye development. Jmjd5 deficiency mice embryos showed 
delayed development already at E8.5, embryonic lethal around 
E10 and were actively resorbed at E10.5 (164,165). Collectively, 
these data indicate that Jmjd5 is essential during embryonal 
development including heart development.

H3K79 methylation and CHD. H3K79 methylation is related to 
gene activation and DNA damage repair. Histone methylation 
occurs at H3K79 is catalyzed by yeast disruptor of telomeric 
silencing (DOT1) and its mammalian homolog, DOT1L. DOT1 
is a kind of evolutionary highly conservative histone methyl-
transferase, which does not contain the SET domain structure, 
can be specific to different methylation levels in the H3K79. 
Compared with other histone lysine methylation, in yeast, 
DOT1 activity is positively regulated during transcription elon-
gation through Rad6-Bre1 mono‑ubiquitination of H2B (166). 
Recently, loss-of-function experiments revealed a critical role 
of DOT1L during mouse embryogenesis, as germline Dot1L 
knockout caused lethality at E10.5 with growth impairment, 
yolk sac angiogenesis defects, and cardiac dilation (167). In 
addition, cardiac-specific knockout of DOT1L resulted in 
increased mortality rate with chamber dilation, increased 
cardiomyocyte cell death, systolic dysfunction and conduction 
abnormalities (168). These phenotypes mimic those exhib-
ited in patients with dilated cardiomyopathy. Interestingly, 
Nguyen et al demonstrated that DOT1L is downregulated 
in idiopathic DCM patient samples compared with normal 
controls (168). Therefore, the above studies not only establish 
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a critical role for DOT1L-mediated H3K79 methylation in 
cardiomyocyte function, but also open new avenues for the 
diagnosis and treatment of CHD.

H4K20 methylation and CHD. H4K20 can be catalyzed 
to different forms of monomethylation, dimethylation and 
trimethylation, PR-SET7 can only single methylate H4K20, but 
double and triple methylation of H4K20 are catalyzed by two 
other methyltransferases SUV4-20h1 and SUV4-20h2 (169). 
It is shown that H4K20 methylation is related to transcription 
silence, H4K20me3 plays a vital role in the regulation of DNA 
damage but not directly regulates the expression of genes (170). 
In addition, Tatton-Brown and Rahman have found that NSD1 
is a protein containing the SET domain structure, which with 
specific H4K20 and H3K36 methyltransferase activity (171). 
NSD1 mutation or deficiency is the main cause of Sotos 
syndrome which with a high incidence of CHD characterized 
by ventricular septal defect, atrial septal defects and patent 
ductus arteriosus (159,160).

5. Conclusion and prospection

Histone modification is the important content of epigenetics, 
which is not only showed as directly regulating gene expres-
sions, but also influencing gene activity through DNA 
modification because of its intimate touching with DNA. 
However, single histone modification usually cannot come 
into effect individually, and it determines together the gene 
expression of genome through collaborative effect of multiple 
histone modifications; but, yet so far, about the mechanism 
of histone modification, especially the specific mechanism of 
regulation of histone modification is not quite clear. Therefore, 
although the histone lysine methylation modification is related 
to CHD, further intensive research is still needed to illuminate 
relationship at the level of molecule. At the same time, besides 
the genetic factors of CHD pathogenesis, there still exist outer 
environmental factors, so that the complexity of diagnosing and 
treatment of diseases has been increased. However, it is clear 
that the comprehensive and meticulous investigation of histone 
lysine methylation modifications may provide new insight and 
understaning into the exploration of CHD pathogenesis and 
targeted prevention.
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