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Abstract. Type 2 diabetes mellitus (DM) is a progressive disease 
and the rate of progression from non-diabetes to DM varies 
considerably between individuals, ranging from a few months 
to many years. It is important to understand the mechanisms 
underlying the progression of diabetes. In the present study, a 
high-resolution metabolomics (HRM) analysis was performed 
to detect potential biomarkers and pathways regulating the 
mode of onset by comparing subjects who developed and did 
not develop type 2 DM at the second year in a 3-year prospective 
cohort study. Metabolic profiles correlated with progression to 
DM were examined. The subjects (n=98) were classified into 
four groups: Control (did not develop DM for 3 years), DM 
(diagnosed with DM at the start of the study), DM onset at the 
third year and DM onset at the second year. The focus was on 
the comparison of serum samples of the DM groups with onset 
at the second and third year from the first year, where these 
two groups had not developed DM, yet. Analyses involved 
sample examination using liquid chromatography-mass 
spectrometry-based HRM and multivariate statistical analysis 
of the data. Metabolic differences were identified across all 
analyses with the affected pathways involved in metabolism 
associated with steroid biosynthesis and bile acid biosyn-
thesis. In the first year, higher levels of cholesterol {mass-to 
charge ratio (m/z) 369.35, (M+H-H2O)+}, 25-hydroxycholes-
terol [m/z 403.36, (M+H)+], 3α,7α-dihydroxy-5β-cholestane 
[m/z 443.33, (M+K)+], 4α-methylzymosterol-4-carboxylate 
[m/z 425.34, (M+H-H2O)+], and lower levels of 24,25-dihydro-
lanosterol [m/z 429.40, (M+H)+] were evident in the group with 
DM onset at the second year compared with those in the group 

with DM onset at the third year. These results, with a focus 
on the cholesterol biosynthesis pathway, point to important 
aspects in the development of DM and may aid in the develop-
ment of more effective means of treatment and prevention.

Introduction

Type 2 diabetes mellitus (DM) is characterized by an increase 
in glucose levels or hyperglycemia due to pancreatic cell 
dysfunction and insulin resistance (1,2). In 2011, the preva-
lence of DM in Koreans aged 20-79 years was 7.5% (adjusted 
to world population). The prevalence is estimated to increase 
to 8.7% by 2030 (3). Since DM is a multifactorial disease influ-
enced by genetic as well as environmental risk factors (4), the 
exact etiology of DM remains elusive (5,6). Furthermore, the 
rate of progression varies markedly between individuals (7) 
and little is known about the mode of onset. It is important to 
understand the mechanisms or biomarkers that are associated 
with the rapid progression of diabetes. Delaying the onset of 
DM may specifically improve therapies and understanding the 
characteristics of those who progress slowly may aid in the 
management of patients with DM (8).

Recent technologies, including high-resolution metabo-
lomics (HRM), have enabled the discovery of potential 
biomarkers that may be beneficial for the diagnosis, 
management and treatment of various diseases (9-11). HRM 
generates comprehensive metabolic profiles by simultaneously 
measuring thousands of low-molecular weight metabolites 
in biological fluids, cells and tissues associated with certain 
diseases (12-14). The sensitivity and selectivity of HRM 
are best suited to the analysis of highly complex metabolite 
mixtures, such as biological extracts. HRM may also be used 
for the identification of potentially affected metabolites and 
pathways with the aid of the metabolite databases and in human 
metabolic pathway analyses, such as the Kyoto Encyclopedia 
of Genes and Genomes (KEGG) (15).

Metabolic profiling allows for the exploration of different 
types of metabolites that may be affected by the progression or 
development of diabetes (16). Various metabolites have been 
correlated with insulin resistance and diabetes prediction in 
studies that mainly focused on a general comparison of control 
and case groups of DM during follow-up (17-21). A recent 
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study from India reported that 45.1% of subjects with normal 
glucose tolerance developed dysglycemia. Various predictors 
of progression included advancing age, family history of 
diabetes and cholesterol levels (22). Thus, when performing 
metabolomics analyses, differences in the onset of DM among 
subjects must be taken into account, and an inter-patient vari-
ability in the affected metabolites is likely. The present study 
used HRM to detect low-molecular weight metabolites by 
comparing samples collected from subjects who subsequently 
developed DM. The aim was to identify factors associated 
with the mode of onset of DM even prior to the development 
of symptoms.

Materials and methods

Materials. Liquid chromatography-mass spectrometry (LC-MS) 
grade water (Tedia, Fairfield, OH, USA), acetonitrile (Burdick & 
Jackson, Muskegon, MI, USA) and formic acid (Fluka, St. Louis, 
MO, USA) were used as the mobile phase. For quality control, 
three isotopes were used: Caffeine (3-methyl-13C), L-methionine 
(13C5, 15N) and N,N-diethyl-M-toluamide (Cambridge Isotope 
Laboratories, Inc., Tewksbury, MA, USA).

Human participants. This pilot study was reviewed and 
approved by the Korea University Institutional Review Board 
(Sejong City, Korea) and conformed to the board's ethical 
guidelines (no. KU-IRB-15-19-A-1). Written informed consent 
was obtained from all participants. The subjects were from the 
Korean Cancer Prevention Study (KCPS-II Biobank), a pool 
of 159,844 participants who voluntarily underwent private 
health examinations and had provided informed consent in 
one of 11 centers located in Seoul and Gyeonggi provinces in 
South Korea from 2004 to 2013. Among all participants (age, 
30-60 years) were selected. Those with missing data on essen-
tial or metabolic syndrome-associated variables were excluded.

The included participants with or without type 2 DM were 
classified into four groups based on fasting blood sugar levels, 
with serum samples collected in a span of 3 years. G1NNN was 
the negative control group comprising non-diabetic (NDM) 
patients for the 3-year cohort study. G2DDD represented the 
positive control group comprising individuals who already 
had DM at the start of the study. G3NND represented patients 
who developed DM in the third year and G4NDD represented 
patients who developed DM in the second year (Fig. 1A). 
Type 2 DM was defined as fasting blood sugar levels 
of >125 mg/dl (Fig. 1B). The subjects' full demographics in 
the first year (baseline) are provided in Table I. Measurements 
of the body mass index (BMI) and fasting blood sugar were 
performed by utilizing COBAS INTEGRA 800 and 7600 
Analyzers (Hitachi, Tokyo, Japan) (23). Data were analyzed for 
significance using SPSS® 24 statistical software (IBM Corp., 
Armonk, NY, USA).

LC-MS. The samples (50-µl aliquots) were diluted with 
200 µl acetonitrile and centrifuged at 14,000 x g for 5 min 
at 4˚C to remove any protein (24). The samples were then 
randomized and analyzed using ultra performance LC 
(C18 Synchronis aQ, 1.9 µm, 100x2.1 mm; Thermo Fisher 
Scientific, Inc., Waltham, MA, USA) coupled with a quantita-
tive time-of-flight MS using a model 6550 apparatus (Agilent 

Technologies, Santa Clara, CA, USA). The mobile phases 
were water and acetonitrile, and contained 0.1% formic acid. 
LC was run using the following gradient program: 95% 
water for 1 min, a linear decrease to 55% water over 8 min, a 
descending gradient to 10% water over 3 min, a 1.5-min hold 
and return to 95% water over 0.1 min. Detection of the mass/
charge ratio (m/z) of ions set from 50 to 1,000 with a resolution 
of 20,000 over 15 min, LC runs with data extraction using the 
apLCMS algorithm provided a minimum of 6,000 reproduc-
ible features, with the mass accuracy being sufficient to allow 
for the prediction of the elemental composition in numerous 
instances.

Statistical analyses for metabolic profiling. After processing 
the data using apLCMS (25), all of the features of the samples 
were retrieved. The features from the LC-MS analyses were log2 
transformed and quantile normalized prior to applying bioin-
formatics. Statistical analysis was performed on the extracted 
data using MetaboAnalyst 3.0 (http://www.metaboanalyst.ca/) 
for additional statistical tests, including principal component 
analysis (PCA), orthogonal signal correction/partial least 
squares-discriminant analysis (OPLS-DA), hierarchical cluster 
analysis (HCA) and Manhattan plot, to specifically differen-
tiate between the profiles of all four categories in one analysis. 
Feature intensities were first log-transformed and auto-scaled 
prior to the performance of PCA and OPLS-DA with a 
confidence level of 95%. Statistical analyses, which included 
univariate analysis, Manhattan plot and false discovery rate 
adjusted P-value (FDR) (26), were performed to determine the 
metabolites that were significantly different between G3NND 
and G4NDD in the first year. The metabolic profiles were 
differentiated using Limma 2-HCA to distinguish between the 
two groups based on their metabolites (27).

Scheme of analysis. Utilizing samples from all 3 years, all 
groups were analyzed by multivariate analysis to discern 
metabolic differences. The present study focused on exploring 
the difference in metabolic profiles in the first year between 
G3NND and G4NDD, where the two groups were initially NDM 
but subsequently developed DM in the prospective cohort. 
Thus, a Manhattan plot and HCA were used to examine 
G3NND and G4NDD in the first year, looking for potential 
discriminating metabolites concerning diabetes progression. 
In addition, it was examined whether the metabolic changes 
were similar in the G3NND and G4NDD groups in the second 
and third year compared with those in the first year.

Annotation using METLIN and KEGG metabolic 
pathway analysis. An m/z feature is defined by m/z, ion 
intensity and retention time. The m/z values were anno-
tated using the METLIN Mass Spectrometry Database 
(https://metlin.scripps.edu) to identify the metabolites (28). 
Annotated features from the METLIN database are mapped 
on human metabolic pathways using the KEGG database. 
The human metabolic pathways of the KEGG database 
(http://www.genome.jp/kegg/tool/map_pathway2.html) were 
used for mapping the significant features from the Manhattan 
plot with an FDR of q=0.05. The matched features were 
displayed as black dots in the pathway maps to determine 
which pathways were affected by each case condition.
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Results

Statistical and group comparison. The four group categories 
were first analyzed using the unsupervised, multivariate statistical 
PCA procedure to determine whether any metabolic differences 
were present. PCA did not provide a good separation of the four 
groups (Fig. 2A). HCA exhibited a tendency to separate subjects 
into four groups based on auto-scaled and log-transformed 
features (Fig. 2B). In addition, supervised OPLS-DA was then 
used to analyze the data. As displayed in Fig. 2C, a score plot 
was generated to illustrate the metabolic differences throughout 
the four stages of DM acquisition. This OPLS-DA model 
demonstrated a clear separation of groups with an R2 value of 
goodness of fit of 0.956 and a Q2 value of predictive ability of the 
model of 0.835. A clear separation was expected to be evident 
between G1NNN, G2DDD, G3NND and G4NDD, indicating that 
groups could be distinguished based on certain serum metabo-
lites in their metabolic profiles. Further analyses focused on the 
comparison between G3NND and G4NDD in order to observe the 
effect of a different onset of DM on the metabolic profile.

A good separation between G3NND and G4NDD was clearly 
observed for each year on the OPLS-DA score plot (Fig. 3A), 
indicating that different onset times of DM caused metabolic 
alterations. A subsequent examination focused only on the 
first year, where the two groups had not developed DM, yet. A 
Manhattan plot and HCA were used to detect significant metab-
olites based on which the two groups could be distinguished.

The comparison was significantly different with an FDR of 
q=0.05. The FDR is a multiple testing correction applied in a 
statistical comparison to decrease the occurrences of false posi-
tives. The plot provides a visual presentation of the statistical 
test result with the application of multiple testing corrections. 
The x-axis displays the m/z values with a range of 50-1,000, 
while the y-axis displays the -logP values. The FDR criteria 
were indicated by the dashed lines. Features above the line 
(green dots) are considered to be significant between each of 
the two-way comparisons (samples and metabolites in HCA). 
Among a total of 3,462 features, the two-way comparison 
between the first year of G3NND and G4NDD revealed 183 to 
be statistically significant (Fig. 3B).

Figure 1. Experimental design to determine the mode of onset of DM. (A) Design of groups in the 3-year prospective cohort study. (B) Alteration of the levels 
of fasting blood sugar in the 3 years in all groups. Groups: G1NNN, control group (patients without DM); G2DDD, patients with DM from the beginning of 
study; G3NND, patients that progressed to DM at the third year; G4NDD, patients that progressed to DM at the second year. *P<0.05. DM, diabetes mellitus; 
NDM, no DM.

Table I. Demographics of subjects during the first year.

 G1NNN G2DDD G3NND G4NDD
Characteristic (n=24) (n=24) (n=25) (n=25)

Sex M/F (n) 19/5 20/4 20/5 22/3
Age (year) 39.29±7.33 45.13±7.01a 43.36±6.43 44.44±7.15
BMI (kg/m2) 24.13±2.67 26.41±3.56 25.71±2.89 25.18±3.12
Fasting blood sugar (mg/dl) 87.79±10.27 165.42±43.26a 104.8±11.38b 103.76±12.7b

Total cholesterol (mg/dl) 204.88±36.09 210.21±35.17 198.12±20.7 194.68±31.9
Triglycerides (mg/dl) 149.33±71.53 215.17±138.3 194.04±125.59 183.36±107.36
High-density lipoproteins (mg/dl) 48.16±8.18 45.44±9.18 49.00±4.03 48.6±5.94
Low-density lipoproteins (mg/dl) 128.73±37.72 131.37±37.57 114.30±22.51 111.86±37.22
Systolic blood pressure (mmHg) 118.88±13.06 125.58±14.65 121.08±16.9 119.32±15.34
Diastolic blood pressure (mmHg) 74.29±10.24 79.54±8.86 76.72±11.22 78.64±10.36

Values are expressed as the mean ± standard deviation. aP<0.05 vs. G1NNN; and bP<0.05 vs. G2DDD, based on analysis of variance with Tukey's 
post hoc test. Groups: G1NNN, control group (patients without DM); G2DDD-1, sample from the first year of patients with DM from the begin-
ning of study; G3NND, patients that progressed to DM at the third year; G4NDD, patients that progressed to DM at the second year. DM, diabetes 
mellitus; M, male; F, female; BMI, body mass index.
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A two-way HCA of the comparisons' significant features 
indicated a clear separation of one group from the other, as 
displayed by the upper bar (Fig. 3C). The top label indicates 
the separation distance among samples and the left-hand labels 
indicate the clustering among metabolites, which statistically 
differentiated between the two groups.

The significant features were annotated using the METLIN 
database and mapped on the KEGG human metabolic path-
ways. Upon mapping the 183 significant features, 34 were 
matched to human metabolic pathways. Among the possible 
affected pathways, the two of greatest interest were the primary 
bile acid biosynthesis and steroid biosynthesis metabolism 
pathways (data not shown). Additional analyses for the second 
and third year of G3NND and G4NDD were performed to 
observe the profiles of the significant metabolites. Among the 
183 significant features in the first year, 80 features remained 
significant in the second year and 90 features were significant 
in the third year.

Identification of potential biomarkers to distinguish between 
G3NND and G4NDD. Endogenous compounds were identified 

and annotated from the affected pathways (Table II). From 
the primary bile acid biosynthesis pathway, cholesterol, 
25-hydroxycholesterol and 3α,7α-dihydroxy-5β-cholestane 
in the G3NND-first year group were significantly different 
(P<0.05) from those of the G4NDD-first year group, even though 
patients in the two groups were NDM at the time. Similarly, 
in the steroid biosynthesis pathway, cholesterol, 24,25-dihy-
drolanosterol and 4α-methylzymosterol-4-carboxylate were 
significantly altered in the G3NND-first year group compared 
with those in the G4NDD-first year group prior to development 
of DM (P<0.05) (Figs. 4 and 5). These results indicated that 
only cholesterol [m/z 369.35, (M+H-H2O)+] affected the two 
pathways. However, when NDM progressed to DM, choles-
terol and 4α-methylzymosterol-4-carboxylate [m/z 425.34, 
(M+H-H2O)+] were not significantly different in the second and 
third year (P<0.05). In the second year, 25-hydroxycholesterol 
[m/z 403.36, (M+H)+] and 3α,7α-dihydroxy-5β-cholestane 
[m/z 443.33, (M+K)+] were still significantly altered (P<0.05). 
24,25-Dihydrolanosterol [m/z 429.40, (M+H)+] was signifi-
cantly decreased (P<0.05) throughout the 3-year time course 
(first, second and third year) (Figs. 6 and 7).

Figure 2. Multivariate statistical analyses to visualize the separation of groups. (A) PC analysis; (B) hierarchical cluster analysis and (C) orthogonal partial 
least-square discriminant analysis score plot (R2=0.956, Q2=0.835). Groups: G1NNN, control group (patients without DM); G2DDD, patients with DM from 
the beginning of study; G3NND, patients that progressed to DM at the third year; G4NDD, patients that progressed to DM at the second year. PC, principal 
component; DM, diabetes mellitus.

Figure 3. Determination of the mode of onset of DM from a non-diabetic status between G3NND and G4NDD. (A) Orthogonal partial least-square discriminant 
analysis score plot (R2=0.97, Q2=0.73) between G3NND and G4NDD. (B) Manhattan plot. The green dots above the dashed line represent significant metabolites 
with a false discovery rate adjusted P-value of <0.05. (C) A 2-way hierarchical cluster analysis of substances with significantly altered levels considering the 
false discovery rate. Groups: G3NND, patients that progressed to DM at the third year; G4NDD, patients that progressed to DM at the second year. DM, diabetes 
mellitus; m/z, mass-to-charge ratio.



INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE  41:  1069-1077,  2018 1073

Table II. Significant compounds associated with the two affected pathways.

Pathway/compound m/z Adduct P-value

Primary bile acid biosynthesis
  Cholesterol 369.3507 (M+H-H2O)+ 2.62x10-4

  25-Hydroxycholesterol 403.3593 (M+H)+ 4.40x10-5

  3α,7α-Dihydroxy-5β-cholestane 443.3325 (M+K)+ 1.77x10-3

Steroid biosynthesis
  Cholesterol 369.3507 (M+H-H2O)+ 2.62x10-4

  24,25-Dihydrolanosterol 429.4042 (M+H)+ 2.57x10-3

  4α-Methylzymosterol-4-carboxylate 425.3428 (M+H-H2O)+ 6.08x10-4

m/z, mass-to-charge ratio.

Figure 4. Steroid biosynthesis and primary bile acid biosynthesis pathway identified as key pathways affecting the progression to DM from a non-diabetic 
status. Green boxes indicate the 24-dehydrocholesterol reductase enzyme, regulated by 24-dehydrocholesterol reductase. Yellow boxes indicate the increase in 
concentration. The blue box indicates a decrease in concentration. G4NDD, patients that progressed to DM at the second year. DM, diabetes mellitus.

Figure 5. Significant metabolites altered in the first year between G3NND and G4NDD. *P<0.05. G3NND, patients that progressed to DM at the third year; 
G4NDD, patients that progressed to DM at the second year. DM, diabetes mellitus; m/z, mass-to-charge ratio.
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Validation of cholesterol was performed by selected reaction 
monitoring by detecting specific precursor-product ion transi-
tion using tandem MS mode and comparing the fragmentation 
pattern to its chemical standard, when available. Cholesterol 
ion fragmentation was detected: m/z 369.35 → m/z 147.11, 
m/z 161.13 and m/z 95.08 (Fig. 8).

Discussion

The present study explored metabolic profiling by comparing 
the mode of onset of type 2 DM in a 3-year prospective cohort 
study. The results indicated the dysregulation of certain 
pathways and metabolites prior to the development of DM. 

The baseline value of fasting blood sugar in the G3NND-first 
year and G4NDD-first year groups indicated that the values 
in subjects who had not yet developed DM were significantly 
different from those who had diabetes in the G2DDD group. 
In addition, five m/z values, which were mainly assigned to 
sterol compounds, exhibited statistical significance regarding 
the mode of onset (P<0.05).

The results indicate that the primary bile acid biosynthesis 
pathway was affected by the time of onset of DM (1 or 2 years 
prior to DM). Certain metabolites of the primary bile acid 
pathway tended to be higher in the G4NDD group-first year 
compared with those in the G3NND group-first year, such that 
25-hydroxycholesterol and 3α,7α-dihydroxy-5β-cholestane 

Figure 6. Intensity of the significant metabolites compared between G3NND and G4NDD in the second year. *P<0.05. G3NND, patients that progressed to DM at 
the third year; G4NDD, patients that progressed to DM at the second year. DM, diabetes mellitus; m/z, mass-to-charge ratio.

Figure 7. Intensity of the significant metabolites compared between G3NND and G4NDD at the third year. *P<0.05. G3NND, patients that progressed to DM at 
the third year; G4NDD, patients that progressed to DM at the second year. DM, diabetes mellitus; m/z, mass-to-charge ratio.



INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE  41:  1069-1077,  2018 1075

were elevated. This was in agreement with other studies 
reporting that bile acid synthesis was stimulated in association 
with DM, obesity and insulin signaling (29-31). The intensity 
of cholesterol, which is the precursor of bile acid biosynthesis, 
was elevated.

Cholesterol is a fundamental raw material for the cell. It acts 
as the building block for the cell membrane and other organ-
elles (32). It serves as a precursor of numerous biosynthetic 
processes in human metabolic pathways, including steroid 
hormone and bile acid biosynthesis (33). Fig. 4 (adapted from 
the KEGG database) depicts the central function of cholesterol 
as a bridge connecting the two pathways.

In the present study, cholesterol was significantly higher 
in the G4NDD group-first year, in comparison with that in 
the G3NND group-first year (P<0.05). This result indicated 
that cholesterol biosynthesis is modulated by DM progres-
sion. Fig. 4 presents part of the steroid biosynthesis pathway 
involving the generation of cholesterol, which stimulates 
primary bile acid synthesis in the G4NDD group-first year. In 
the present study, cholesterol production in the G4NDD group 
tended to be higher than that in the G3NND group, and the 
metabolite 4α-methylzymosterol-4-carboxylate was also 
elevated in the first year. In addition, 24,25-dihydrolanosterol 

was lower, explaining for the boost in cholesterol production. 
Of note, differences in this metabolite were significant in the 
first, second and third years (P<0.05).

This upregulated downstream effect of cholesterol produc-
tion may be due to the activity of one enzyme, δ24-sterol 
reductase (enzyme ID 1.3.1.72, also known as 24-dehydro-
cholesterol reductase). This enzyme participates in numerous 
processes and is regulated by the DHCR24 gene (34,35). This 
gene may be linked to diabetes progression. Berisha et al (36) 
indicated that DHCR24 is one of the transcripts affected 
by bariatric surgery in obese DM patients, with enzyme 
activity being correlated with changes of body weight, 
fasting plasma glucose and glycosylated hemoglobin content. 
Although focusing on endometrial carcinoma, another study 
revealed that the enzyme encoded by DHCR24 was induced 
by insulin stimulation via signal transducer and activator of 
transcription 3, which sensitizes to insulin signaling (37,38). 
This mechanism is possibly associated with the pathology of 
diabetes due to its link with hyperinsulinemia (39,40). Thus, 
these results indicated that the dysregulation of the metabolism, 
at the genomics to metabolomics level, had started to develop 
one year prior to the onset of DM. Cholesterol detected in the 
present LC-MS analysis was different from that determined 

Figure 8. Identification and validation of cholesterol. (A) EIC of standard, serum and spike sample. (B) The spike peak of cholesterol was increased at 13 min. 
The cholesterol fragmentation was observed from standard and sample with collision energy of 20 and 10 V. The red arrows represent the fragmented 
cholesterol from the standard and sample. ESI, electron spray ionization; CID, collision-induced dissociation; EIC, extracted ion chromatogram; rt, retention 
time; frag, fragmentor voltage.
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by routine biochemical analysis, since the latter was the total 
cholesterol value comprising triglyceride, low-density lipo-
protein (LDL) and high-density lipoprotein (HDL) values. In 
addition, the adduct of cholesterol, (M+H-H2O)+, had an m/z 
of 369.35 in the present study, while lipoproteins of LDL and 
HDL containing cholesterol have different m/z values (41).

The present study aimed to utilize HRM to further assess 
the mode of onset of DM. Primary bile acid biosynthesis and 
steroid biosynthesis metabolism, which focus on cholesterol 
biosynthesis, have important roles in different modes prior to 
the onset of DM. A future study on a larger population should 
be performed to validate the clinical value of the present 
results.
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