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Abstract. MicroRNAs (miRNAs) participate in post-transcrip-
tional regulation by targeting the 3' untranslated region of target 
genes that are involved in diverse biological processes. To the 
best of our knowledge, the association between miR-152 and 
ERBB3 in ovarian cancer remains unclear. In the present study, 
a negative correlation between miR-152 and ERBB3 in ovarian 
cancer was observed. The luciferase reporter gene assay results 
demonstrated that miR-152 negatively regulated ERBB3 in 
SKOV3 and OVCAR3 ovarian cancer cells. Furthermore, our 
results revealed that miR-152 suppressed the ability of ovarian 
cancer cell proliferation, migration and invasion, and promoted 
apoptosis through inhibiting ERBB3 in vitro. Therefore, in 
the present study, miR-152 was found to be involved in the 
proliferation and metastasis of ovarian cancer cells through 
repression of ERBB3 expression. Therefore, miR-152 may be a 
potential therapeutic target for the treatment of ovarian cancer.

Introduction

Ovarian cancer comprises a large proportion of all gynecological 
cancers, is associated with a high mortality rate, and represents a 
major concern for women's health worldwide (1-5). The currently 
applied treatments for ovarian cancer mainly include radiotherapy, 
chemotherapy and/or chemoradiotherapy combined with surgery. 
However, the lack of early symptoms and effective biomarker 
screening make diagnosis difficult, with >70% of the diagnosed 
patients presenting with advanced epithelial ovarian carcinoma 
with distant metastases (6-8). At present, the molecular pathogen-
esis of ovarian cancer remains poorly understood. In addition, the 
lack of diagnostic biomarkers and effective therapeutic methods 
represents a major challenge in the management of this disease. 
Therefore, the molecular mechanism underlying the development 
of ovarian cancer must be urgently elucidated.

MicroRNAs (miRNAs), a type of endogenous, short and 
non-coding RNAs consisting of ~20 nucleotides, are involved 
in post-transcriptional regulation by targeting the 3' untrans-
lated region (UTR) of target genes and affect biological 
processes (6,9-13). miRNAs have been found to act as a 
class of regulatory factors, and are closely associated with 
the development and progression of diverse diseases, such 
as cancer (7,11,14-17). Various miRNAs have been reported 
to be involved in the development of ovarian cancer (18-25). 
The mechanism and function of miR-152 have been inves-
tigated in gastrointestinal (26), endometrial (27), liver (28), 
prostate (29) and ovarian cancer (30). However, the func-
tional relevance of miR-152 and ERBB3 in ovarian cancer 
remains unknown.

The aim of the present study was to investigate whether 
miR-152 downregulates ERBB3 in SKOV3 and OVCAR3 
ovarian cancer cells in vitro, suppressing their ability to prolif-
erate, migrate and invade and promoting their apoptosis, in 
order to determine whether miR-152 is a potential therapeutic 
target for ovarian cancer.

Materials and methods

Clinical specimens and cell lines. The clinical samples for 
the present study were obtained from 36 patients with ovarian 
cancer in The Affiliated Tumor Hospital of Harbin Medical 
University (Harbin, China) between 2015 and 2016. Informed 
consent was obtained from all patients and the study protocol 
was approved by the Ethics Committee of The Affiliated 
Tumor Hospital of Harbin Medical University. The histological 
diagnosis of ovarian cancer was evaluated according to the 
World Health Organization. The ovarian carcinoma cell lines 
(SKOV3 and OVCAR3) were obtained from the American 
Type Culture Collection (Manassas, VA, USA).

Transfection of miR‑152 mimics. Transfection of miR-152 
mimics was performed as previously described (31). The 
primer sequence of the negative control (NC) was 5'-UUC 
UCC GAA CGU GUC ACG UTT ACG UGA CAC GUU CGG AGA 
ATT-3'. miR-152-mimics with the following sequence were 
also designed: 5'-UCA GUG CAU GAC AGA ACU UGG AAG 
UUC UGU CAU GCA CUG AUU-3'. The RNA nucleotides were 
synthesized by GenePharma (Shanghai, China).
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EERB3 transfection. According to the manuscript protocol, 
pcDNA3.1 expressing ERBB3 or control vector were transfected 
into SKOV3 and OVCAR3 cells that had been transfected with 
miR-152-NC and miR-152-mimics using the FuGENE6 (Roche 
Diagnostics, Mannheim, Germany) reagent. Stable transfection 
cell lines were screened in medium containing 1 mg/ml G418 
(Sigma-Aldrich; Merck KGaA, St. Louis, MO, USA).

Quantitative polymerase chain reaction (qPCR). As described 
previously (32), the SYBR-Green PCR Master Mix kit (Takara, 
Dalian, China) was used to measure the mRNA expression 
levels. The primer sequences for glyceraldehyde 3-phosphate 
dehydrogenase (GAPDH), which was used as internal control, 
were as follows: Forward, 5'-TGT TCG TCA TGG GTG TGA 
AC-3' and reverse, 5'-ATG GCA TGG ACT GTG GTC AT-3'; the 
primer sequences for ERBB3 were: Forward, 5'-GCA GAT 
CAG TGT GTA GCG TG-3' and reverse, 5'-CGT GTG CAG TTG 
AAG TGA CA-3'; the primer sequences for miR-152 were: 
Forward, 5'-TCA GTG CAT GAC AGA ACT TGG AA-3' and 
reverse, 5'-GCT GTC AAC GAT ACG CTA CGT-3'; and the 
primer sequences for U6 were: Forward, 5'-CTC GCT TCG 
GCA GCA CA-3' and reverse, 5'-AAC GCT TCA CGA ATT TGC 
GT-3'. The Bio-Rad IQTM5 Multicolor Real-Time PCR detec-
tion System (Bio-Rad, Hercules, CA, USA) was used for qPCR. 
The PCR programs were set as follows: 95˚C for 30 sec as the 
first step in a loop; 95˚C for 5 sec, 60˚C for 34 sec as the second 
step, a total of 40 cycles. GAPDH or U6 were used as the 
internal reference, and the 2-ΔΔCt method was applied for calcu-
lating expression (1).

Western blot analysis. Whole lysates of the treated SKOV3 
and OVCAR3 cells were prepared by scraping cells with RIPA 
buffer supplemented with a protease inhibitor cocktail (P8340; 
Sigma-Aldrich; Merck KGaA), then separated on 8% sodium 
dodecyl sulfate-polyacrylamide gel electrophoresis gels. The 
primary antibodies used in this study were anti-ERBB3 (1:200; 
Abcam, Cambridge, CA, USA) and anti-GAPDH (1:1,000; 
Abcam, Cambridge, UK).

Luciferase reporter assay. The binding sites between miRNAs 
and ERBB3 were predicted by the TargetScan database 
(http://www.t argetscan.org). SKOV3 and OVCAR3 cells 
(5x104 cells/well) that were co-transfected with wild-type or 
mutated ERBB3 and miR-152 or anti-miR-152, respectively, were 
incubated in 24-well plates and co-transfected with the constructed 
ERBB3 plasmids by Lipofectamine 2000 (using Renilla plasmid 
as internal reference) for 48 h. According to the manufacturer's 
instructions, the luciferase activities were determined by the 
Dual-Luciferase Reporter assay kit (Promega, Madison, WI, USA)

MTT and colony‑forming unit (CFU) assays. The MTT assay 
was used to determine the proliferative ability of the cells. 
First, the treated SKOV3 and OVCAR3 cells (3,000 cells/well) 
were prepared and seeded in 96-well plates with the complete 
media. At 0, 12, 24 and 48 h, 20 µl MTT solution (5 mg/ml) 
were added to each well. After 4 h of incubation, the superna-
tant was discarded, and 100 µl dimethyl sulfoxide solution was 
added to dissolve the crystals. A microplate reader (BioTek 
Instruments, Inc., Winooski, VT, USA) was used to detect 
the absorbance at 570 nm. The treated SKOV3 and OVCAR3 

cells were incubated for 10 days. Methanol was used to fix the 
forming colonies and Giemsa was used to dye the colonies. The 
CFUs in the treatment and the control groups were counted.

Flow cytometric analysis of cell apoptosis. The Annexin V-FITC 
Apoptosis Detection kit II (BD Pharmingen, San Diego, CA, 
USA) was used to detect apoptotic cells according to the manu-
facturer's protocol. Briefly, the treated SKOV3 and OVCAR3 
cells were resuspended with binding buffer at a density of 
1x106 cells/ml. Annexin V-FITC (5 µl) and propidium iodide 
(1 µg/ml) were used to stain the cells. The flow cytometry 
results were analyzed by the FlowJo software (Tree Star 
Corp., Ashland, OR, USA). Cells were grouped into the viable, 
early-stage apoptotic, late-stage apoptotic and dead cell groups.

Wound healing assay. As described previously (33), the 
treated SKOV3 and OVCAR3 cells were incubated in 6-well 
plates. Small wounds were formed by scratching a line of 
cells. The small fragments of cells were gently washed with 
phosphate-buffered saline. After 24 and 72 h, the wounds were 
photographed under a microscope. The distance of cells from 
the edge of the scratch represented the degree of cell migration.

Migration and invasion assays. According to the manufacturer's 
instructions, the treated SKOV3 and OVCAR3 cells were starved 
overnight in serum-free medium and resuspended at a density of 
2.5x106 cells/ml in serum-free medium. Treated cells (200 µl) were 
seeded into the top chamber of the 8-µm pore cell culture insert, 
and complete medium was added into the bottom chamber. After 
24 h, the upper chamber cells were removed using a cotton swab 
and the migrating cells were fixed with 4% paraformaldehyde 
and stained with 0.1% crystal violet solution. The migrating cells 
were counted at 5 random fields. For the invasion assay, diluted 
Matrigel (BD Biosciences, San Diego, CA, USA) was paved into 
the upper well of the Transwell chamber (Corning, Inc., Corning, 
NY, USA) and incubated for 2 h at 37˚C.

Tumor formation in nude mice. This study was approved by the 
Institutional Committee for Animal Research and completed 
in accordance with the Institutional Animal Care and Use 
Committee. Treated SKOV3 cells (100 µl 2x107/mouse) were 
subcutaneously injected into the flanks of 5‑week‑old BALB/c 
male athymic nude mice for a total of 5 times over 4 weeks. At 
the specified time, the treated nude mice were sacrificed and 
the tumors were collected and measured.

Statistical analysis. All data are presented as the mean ± stan-
dard deviation from three independent experiments. P<0.05 
indicates statistically significant differences. Statistical 
significance was analyzed using GraphPad (GraphPad Prism 
Software, La Jolla, CA, USA) and the SPSS 20.0 software 
(variance and Student's t-test).

Results

Screening of miRNAs that are closely associated with ERBB3 
in ovarian cancer. In order to study the regulatory mechanism 
of the ERBB3 gene in ovarian cancer, the miRNA target 
sites in ERBB3 3'UTR were predicted by TargetScan. We 
found multiple miRNAs displaying target sites in ERBB3 
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3'UTR (Fig. 1A). Furthermore, the mRNA expression 
levels of ERBB3 were detected in SKOV3 cells transfected 

with miRNAs. The results revealed that the miR-125a-5p, 
miR-125b-5p, miR-22-3p, miR-205-5p and miR-152-trans-

Figure 1. miRNAs that are closely associated with ERBB3 were screened in ovarian cancer. (A) Diagrams of predicted miRNA target sites in ERBB3 3'UTR 
(TargetScan). (B) The mRNA expression levels of ERBB3 were determined by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) in 
SKOV3 cells. U6 was used as a reference mRNA. (C) The mRNA expression levels of ERBB3 3'UTR were measured by RT-qPCR in OVCAR3 cells. U6 was 
used as a reference mRNA. (D) Diagram of the interactions between ERBB3 and relevant miRNAs. UTR, untranslated region.

Figure 2. miR-152 downregulates ERBB3 expression in human ovarian cancer. (A) As predicted by TargetScan, the miR-152 target site in the sequence of 
ERBB3 and the mutational site of ERBB3 are shown. (B) The luciferase reporter gene assay was used to measure the activity of ERBB3 in SKOV3 cells that 
were co-transfected with wild-type or mutated ERBB3 and miR-152 or anti-miR-152, respectively (P<0.05). (C) The luciferase reporter gene assay was used 
to measure the activity of ERBB3 in OVCAR3 cells that were cotransfected with wild-type or mutated ERBB3 and miR-152 or anti-miR-152, respectively 
(P<0.05). (D) Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was used to determine the expression level of miR-152 in ovarian cancer 
and adjacent ovarian tissues (P<0.05). (E) The expression level of ERBB3 was measured by RT-qPCR in ovarian cancer and adjacent ovarian tissues (P<0.05). 
(F) Scatter diagram indicating the correlation between ERBB3 and miR-152 in ovarian cancer and adjacent ovarian tissues by RT-qPCR (r=-0.8745, P<0.05).
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fected SKOV3 cells have a significantly lower level of ERBB3 
mRNA (P<0.05; Fig. 1B). A similar tendency was observed 
in OVCAR3 cells (P<0.05; Fig. 1C). ERBB3 interacted with 
miR-125a-5p, miR-125b-5p, miR-22-3p and miR-205-5p in 
the oncomiRDB datebase (http://bioinfo.au.tsinghua.edu.
cn/member/jgu/oncomirdb/index.php) (Fig. 1D). However, the 
association between miR-152 and ERBB3 remains unclear.

miR‑152 downregulates ERBB3 expression in human ovarian 
cancer. According to the TargetScan prediction, wild-type and 
mutated ERBB3 vectors were structured and cotransfected 
with miR-152 or anti-miR-152 in SKOV3 cells, respectively. 
The miR-152 target site in the sequence of ERBB3 and the 
mutational site of ERBB3 are shown in Fig. 2A. It was indicated 
that miR-152 negatively regulated ERBB3 using the luciferase 
reporter gene assay in SKOV3 cells (P<0.05; Fig. 2B). A similar 
tendency was observed in OVCAR3 cells (Fig. 2C). In addition, 
the expression level of miR-152 in ovarian cancer tissues was 
found to be lower compared with that in adjacent non-cancerous 
tissues (P<0.05; Fig. 2D). Furthermore, the expression level of 

ERBB3 in ovarian cancer tissues was higher compared with 
that in adjacent non-cancerous tissues (P<0.05; Fig. 2E). Further 
analysis confirmed a negative correlation between miR-152 and 
ERBB3 in ovarian cancer tissues (P<0.05, r=0.8745; Fig. 2F).

miR‑152 suppresses the ability of ovarian cancer cell prolif‑
eration and promotes apoptosis through inhibiting ERBB3. 
To further study the function of miR-152 in ovarian cancer, 
functional assays were performed in ovarian cancer cell lines. 
The mRNA expression level of ERBB3 was decreased in 
SKOV3 and OVCAR3 cells transfected with miR-152 compared 
with scramble, and was significantly increased in SKOV3 and 
OVCAR3 cells transfected with both miR-152 and ERBB3 rela-
tive to the control group (P<0.05) (Fig. 3A). Similarly, the protein 
level of ERBB3 was also reduced by ERBB3 vector in SKOV3 
and OVCAR3 cells (Fig. 3B and C). Furthermore, the cell prolif-
eration ability was decreased in SKOV3 cells transfected with 
miR-152 compared with scramble, and this ability was signifi-
cantly increased in SKOV3 cells transfected with both miR-152 
and ERBB3 relative to both miR-152 and vector (Fig. 3D). 

Figure 3. miR-152 suppresses the ability of ovarian cancer proliferation and promotes apoptosis through inhibiting ERBB3. (A) Reverse transcription-quan-
titative polymerase chain reaction was used to determine the mRNA expression level of ERBB3 in SKOV3 and OVCAR3 cells transfected with scramble, 
miR-152, miR-152 and vector, or miR-152 and ERBB3 (P<0.05). (B and C) Analysis of the ERBB3 protein expression level in SKOV3 and OVCAR3 cells 
(P<0.05). (D and E) The MTT assay was performed to determine the proliferation capacity of SKOV3 and OVCAR3 cells transfected with scramble, miR-152, 
miR-152 and vector, or miR-152 and ERBB3. (F) The capacity of cell proliferation was analyzed by colony formation evaluation in SKOV3 and OVCAR3 cells 
(P<0.05). (G) The number of apoptotic cells was counted in SKOV3 and OVCAR3 cells transfected with scramble, miR-152, miR-152 and vector, or miR-152 
and ERBB3 (P<0.05). (H) Athymic mice were treated with SKOV3 cells transfected with scramble, miR-152, miR-152 and vector, or miR-152 and ERBB3 for 
7, 14, 21 and 28 days. The tumor volume was measured and calculated at the specified timepoints. OD, optical density.
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A similar result was observed in OVCAR3 cells (Fig. 3E). 
Similarly, the CFU assay results indicated that miR-152 inhib-
ited the proliferation ability of SKOV3 and OVCAR3 cells 
through ERBB3 (Fig. 3F). Apoptosis assay proved that miR-152 
accelerated the apoptosis of SKOV3 and OVCAR3 cells, and that 
ERBB3 can reverse miR-152-mediated promotion of apoptosis 
in vitro (Fig. 3G). Furthermore, to detect the effect of miR-152 on 
tumorigenesis in vivo, SKOV3 cells transfected with scramble, 
miR-152, miR-152 and vector, or miR-152 and ERBB3 were 
implanted subcutaneously into nude mice. The results indicated 
that miR-152 markedly inhibited tumor growth, while ERBB3 
was able to reverse this phenotype (Fig. 3H).

miR‑152 inhibits the ability of migration and invasion in 
ovarian cancer cells through ERBB3. The effect of miR-152 
on cell migration and invasion ability of ovarian cancer 
cells was further investigated. First, SKOV3 and OVCAR3 
cells were transfected with scramble, miR-152, miR-152 and 
vector, or miR-152 and ERBB3. The results of the invasion 
assay demonstrated that the invasion ability was significantly 
decreased in SKOV3 and OVCAR3 cells transfected with 

miR‑152 compared with scramble, and significantly increased 
in SKOV3 cells transfected with both miR-152 and ERBB3 
relative to both miR-152 and vector (P<0.05; Fig. 4A and B). 
The results of the migration assay also demonstrated that 
the migration ability was significantly decreased in SKOV3 
and OVCAR3 cells transfected with miR-152 compared 
with scramble, and significantly increased in SKOV3 cells 
transfected with both miR-152 and ERBB3 relative to both 
miR-152 and vector (P<0.05; Fig. 4C and D). In addition, the 
migration ability of SKOV3 and OVCAR3 cells transfected 
with scramble, miR-152, miR-152 and vector, or miR-152 
and ERBB3, were evaluated by the wound healing assay at 
1 and 3 days. The results indicated that miR-152 inhibited 
the migration ability of SKOV3 and OVCAR3 cells through 
ERBB3 (Fig. 4E and F).

Regulatory mechanism underlying the interaction between 
miR‑152 and ERBB3 in ovarian cancer. The gene network 
between miR-152 and ERBB3 was established in ovarian cancer 
as shown in Fig. 4G. miR-152 downregulated the expression 
level of ERBB3 by targeting the ERBB3 promoter-binding site 

Figure 4. miR-152 inhibits the ability of migration and invasion of ovarian cancer cells through ERBB3. (A and B) The number of invading cells was counted 
among SKOV3 and OVCAR3 cells transfected with scramble, miR-152, miR-152 and vector, or miR-152 and ERBB3 (P<0.05). (C and D) The migration assay 
was performed in SKOV3 and OVCAR3 cells transfected with scramble, miR-152, miR-152 and vector, or miR‑152 and ERBB3. Magnification, x200 (P<0.05). 
(E and F) The migration ability of SKOV3 and OVCAR3 cells that were transfected with scramble, miR-152, miR-152 and vector, or miR-152 and ERBB3 
was measured by the wound healing assay at 1 and 3 days. (G) The gene network between miR-152 and ERBB3 was established in ovarian cancer. Blue nodes, 
miRs; yellow nodes, target genes.

https://www.spandidos-publications.com/10.3892/ijmm.2017.3324
https://www.spandidos-publications.com/10.3892/ijmm.2017.3324


LI et al:  miR-152 TARGETS ERBB3 IN OVARIAN CANCER1534

and inhibited ovarian cancer cell proliferation, migration and 
invasion, while promoting apoptosis in vitro.

Discussion

Accumulating evidence reported that miRNAs play key roles 
in human cancer, including cancer cell proliferation, metas-
tasis, inflammation and angiogenesis (13,34). Recent studies 
proved that miR-152 served as a tumor inhibitor, and could be 
silenced by DNA hypermethylation in endometrial cancer (27). 
The combined effect of miR-152 and miR-185 played an 
important role in the treatment of ovarian cancer by targeting 
DNMT1, independent of decitabine (35). miR-152 affected 
the proliferation ability of ovarian cancer cells (30), whereas 
miR-152 reduced the invasion and angiogenesis capacity of 
glioma cells (36). Downregulated miR-152 affected aberrant 
DNA methylation in hepatitis B virus-related hepatocellular 
carcinoma (28). miR-152 inhibited migration and invasion 
through TGF-α in prostate cancer cells (29). However, their 
mechanism of action is not entirely clear in ovarian cancer. 
In the present study, miR-152 expression was found to be 
lower in ovarian cancer tissues compared with that in adja-
cent non-cancerous tissues. miR-152 suppressed the ability 
of ovarian cancer proliferation, migration and invasion, and 
promoted apoptosis in vitro.

ERBB3 is one of the four members of ERBB family, which 
may transduce extracellular signals into the cell, resulting in 
several changes in the regulatory processes of various cancer 
cells, including proliferation, survival, apoptosis, migration 
and invasion (37-39). It has been demonstrated that ERBB3 
significantly downregulates kinase activity (40). ERBB3 
overexpression has been proven to take part in the regulation 
of various physiological and pathological pathways in several 
types of cancer, such as melanoma, breast, prostate, lung and 
pancreatic cancer (41-44). It has also been reported that ERBB3 
may activate downstream phosphatidylinositol-3-kinase, which 
is associated with tumorigenesis and resistance to therapy (45). 
Therefore, an increasing number of studies indicate that 
ERBB3 is a potential target of cancer therapy. In the present 
study, ERBB3 expression was found to be higher in ovarian 
cancer tissues compared with that in adjacent non-cancerous 
tissues. There was a negative correlation between miR-152 
and ERBB3 expression in ovarian cancer tissues. ERBB3 was 
downregulated by miR-152 in ovarian cancer cells. ERBB3 
may reverse miR-152 mediated-inhibition of ovarian cancer 
proliferation, migration and invasion, and miR-152-mediated 
promotion of apoptosis in vitro. ERBB3 may also reverse 
miR-152-mediated inhibition of tumor growth in vivo.

In conclusion, the findings of the present study indicated 
that miR-152 is involved in the regulation of the proliferation 
and metastasis of ovarian cancer cells through repression of 
ERBB3 expression. First, it was demonstrated that the mRNA 
expression levels of miR-125a-5p, miR-125b-5p, miR-22-3p, 
miR‑205‑5p and miR‑152 were significantly downregulated in 
SKOV3 cells. Second, a negative correlation between miR-152 
and ERBB3 was identified in ovarian cancer tissues, and 
miR-152 downregulated ERBB3 expression in ovarian cancer 
cells. Furthermore, our results demonstrated that miR-152 
suppressed the ability of ovarian cancer cells to proliferate, 
migrate and invade, and promoted their apoptosis through 

inhibiting ERBB3 in vitro. Therefore, the present study 
demonstrated that miR-152 may be a potential therapeutic 
target for the treatment of ovarian cancer.
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