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Abstract. Glaucoma is the leading cause of irreversible blind-
ness worldwide and there is no effective treatment thus far. 
The trabecular meshwork has been identified as the major 
pathological area involved. Certain signaling pathways in the 
trabecular meshwork, including the Wnt, lysophosphatidic 
acid and transforming growth factor‑β pathways, have been 
identified as novel therapeutic targets in glaucoma treatment. 
Meanwhile, it has been reported that key proteins in these 
pathways, particularly the primary transcription regulator 
Yes‑associated protein (YAP) and transcriptional co‑activator 
with PDZ‑binding motif (TAZ), exhibit interactions with the 
Hippo pathway. The Hippo pathway, which was first identified 
in Drosophila, has drawn great focus with regard to various 
aspects of studies in recent years. One role of the Hippo 
pathway in the regulation of organ size was indicated by more 
recent evidence. Defining the relevant physiological function 
of the Hippo pathway has proven to be extremely complicated. 
Studies have ascribed a role for the Hippo pathway in an over-
whelming number of processes, including cell proliferation, 
cell death and cell differentiation. Therefore, the present review 
aimed to unravel the roles of YAP and TAZ in the Hippo 
pathway and the pathogenesis of glaucoma. Furthermore, a new 
and creative study for the treatment of glaucoma is provided.
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1. Introduction

Primary open‑angle glaucoma (POAG) is a major type of glau-
coma (1). High intraocular pressure (IOP), optic nerve damage 
and visual field defects are the main pathological features of 
POAG, with high IOP being the most common. Although the 
clinical features of glaucoma are well described, the pathological 
mechanisms that cause these features are likely to be diverse 
and require further elucidation. The main pathological region of 
POAG has been located at the trabecular meshwork (2), which 
is responsible for the regulation of the aqueous humor outflow. 
In addition, a balance between the production and outflow of 
the aqueous humor can control IOP. The trabecular meshwork 
is composed of layers of trabecular beams, and is surrounded 
by elastic fibers, fibronectin  (FN) and laminin  (LM). The 
outermost layer is formed of trabecular cells, which can secrete 
extracellular matrix (ECM) components and transduce ECM 
signals (2,3). Additionally, the structural abnormalities of the 
ECM, as well as the dysfunction of the trabecular meshwork and 
Schlemm's canal (SC), are involved in high IOP (4). In recent 
years, signaling pathways, including the Wnt, lysophosphatidic 
acid (LPA) and transforming growth factor‑β (TGF‑β) path-
ways, have been found to be associated with the development of 
glaucoma in the trabecular meshwork. In the study of the patho-
genesis of glaucoma, the Wnt pathway has been considered as 
a novel interventional path for the treatment of glaucoma via 
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regulation of the IOP (5). Simultaneously, the LPA pathway was 
also indicated as a novel target to reduce IOP. In glaucoma, LPA 
is upregulated and its inhibitors can reduce IOP (6). Furthermore, 
the concentration of TGF‑β in the aqueous humor of POAG 
patients is markedly high. TGF‑β enhances aqueous outflow 
resistance through promoting the synthesis of the ECM (7). 
Notably, in the process of understanding the Wnt, LPA and 
TGF‑β pathways, it was found that they are all closely linked to 
Yes‑associated protein (YAP) and transcriptional co‑activator 
with PDZ‑binding motif (TAZ), which are the radical tran-
scription regulators of the Hippo pathway (6,8,9). As a tumor 
suppressor pathway, the Hippo pathway serves important roles 
in diverse biological processes, including cell death, differentia-
tion and proliferation (10). However, study of the Hippo pathway 
in ophthalmology remains relatively rare. Therefore, the present 
review will focus on recent advances in our understanding of the 
molecular components of these major signaling branches and 
the various levels of regulation of signaling in glaucoma.

2. Regulation of the Hippo pathway

The Hippo pathway, which was first discovered in Drosophila, 
is a novel signaling pathway. Considered as a tumor suppressor 
pathway, it plays a fundamental role in the determination of cell 
death, cell differentiation (10,11) and cell proliferation (12‑15) 
during organ size development. The Hippo pathway in Drosophila 
includes Warts (Wts) (16), Salvador (Sav) (17), Hippo (Hpo) (18), 
Mob-as-tumor-suppressor (Mats) (19) and Yorkie (Yki) (12). 
Hpo phosphorylates Wts through its interaction with Sav, then 
phospho‑Wts phosphorylates Yki, which is the main down-
stream effect factor of the Hippo pathway (20). Subsequently, 
Yki binds with the transcription factor Scalloped (Sd) (21). Sd 
interacts with its downstream regulatory protein Mat (22), and 
this results in the inactivation of Yki (21). The inactivated Yki 
increases its nuclear distribution, enhances the protein stability 
and inhibits the expression of the downstream genes (12,13) 
to inhibit cell proliferation and induce apoptosis. The Hippo 
pathway has also been identified in mammals, and the corre-
sponding homologous proteins are Lats1/2 (Wts), Sav1 (Sav), 
Mst1/2 (Hpo), Mob1  (Mats) and YAP/TAZ (YAP and TAZ 
are each homologous proteins of Yki)  (20). Transcriptional 
enhancer factor TEF-1 (TEAD) is the ortholog of Sd and the 
major DNA‑binding domain of YAP (23) (Fig. 1). The revolution 
of the Hippo pathway is highly conserved in mammals (24), and 
it exhibits similar signaling to that found in Drosophila (23). The 
present review will mainly focus on the regulation of the Hippo 
pathway in mammals.

Fat is a kind of protein encoded by the fat gene. Pez is an 
evolutionarily conserved FERM domain protein containing a 
protein tyrosine phosphatase (PTP) domain. Fat (25,26), Pez (27) 
and junction‑related proteins, including Expanded (Ex) (28), 
Merlin (Mer) (28,29), Kibra (30), neurofibromin 2 (NF2) (28,31) 
and Crumbs (Crb) (32), have been identified as upstream regula-
tors of the Hippo pathway. Although the regulatory mechanism 
of the Hippo pathway remains unclear, an increasing number 
of studies have provided evidence that the Hippo pathway 
is tightly correlated with the external environment and regulated 
by the extracellular factors (15,33,34). The Fat complex that is 
composed of Ex, Mer and Kibra can activate the Hippo pathway 
through phosphorylating Hpo and increase the stability of Ex 

protein (35,36). Ex and Mer, membrane‑associated proteins, 
contain the four-point-one, ezrin, radixin, moesin (FERM) 
domain and can interact with a variety of cell scaffold proteins 
and transmembrane proteins through the N‑terminal region of 
Ex and the C‑terminal domain of Mer, which is characteristic 
of the protein 4.1 family. It has been reported that their interac-
tions are involved in regulating cell apoptosis, cell proliferation 
and the cell cycle (37). Kibra protein, which contains WW and 
C2 domains, activates Wts via interaction with Ex and Mer (38). 
In addition, NF2, as a homologous protein of Mer and a tumor 
suppressor gene, is a negative regulator of cell growth. The 
mutation of NF2 causes central nervous system tumors, such 
as neurofibromatosis (39). With conditional knockout of the 
NF2 gene in the mouse liver, the risk of cancer is increased 
greatly (40). Additionally, Crb, a transmembrane protein, can 
also regulate the Hippo pathway (41). Crb has a large extracel-
lular domain and a short intracellular domain. For the Crb 
cytoplasmic tail, it has two recognized motifs. One links to the 
spectra and actin cytoskeleton (PDZ‑binding motif) and the 
other is the juxtamembrane FERM‑domain binding motif (JM), 
which interacts with polarity regulatory factors, including 
Stardust (Sdt), PALS1-associated tight junction protein (Patj) 
and partitioning defective 6 (Par6). By interacting with the JM 
of Crb, Ex expression is inhibited, which ultimately results in 
an increase in Yki activity and increased organ growth (32,41). 
Pez, a newly found binding partner of Kibra (27,38), is a type of 
FERM domain protein containing the protein tyrosine phospha-
tase domain. Pez, as a component of upstream Hippo signaling, 
serves an important role in cell metabolism, proliferation and 
differentiation, particularly with regard to restricting the activity 
of Yki in the adult midgut epithelium (27). Meanwhile, transcrip-
tional levels of the target gene of Yki have been elevated in Pez 
mutant guts (42).

The core transduction pathway of Hippo is a kinase cascade. 
As a tumor suppressor, Mst1/2 was the first factor to be identi-
fied (43). Mst1/2, a member of the nuclear Dbf2‑related protein 
family, encodes kinase and can phosphorylate Sav1, Lats1/2 and 
Mob (44,45). Stimulus signals of the Hippo pathway activate 
Mst1/2, then Mst1/2 phosphorylates Lats1/2 through its interac-
tion with Sav1, which increases the activity of Mst1/2 (45). Sav1 
serves a pivotal role in connecting Msts1/2 to Lats1/2 (17), and 
it can increase or decrease the activity of Lats1/2 after being 
phosphorylated by Mst1/2 (46). Lats1/2 can negatively regulate 
the cell cycle, the ectopic expression of Lats2 can inhibit the 
transformation from the cellular G1 period to the S period (47), 
and the overexpression of Lats1/2 will lead to the stagnation of 
the cellular G2/M period and apoptosis (48,49). Subsequent to 
being phosphorylated by Mst1/2, Mob1 combines with Lats1/2, 
which leads to the activation of Lats1/2 (45). Afterward, Lats1/2 
phosphorylates YAP/TAZ (20) (Fig. 1). An increasing number 
of studies have illustrated that the highly conservative pecu-
liarity of Hippo pathway is involved in the growth of tissues and 
organs, and tumorigenesis (10,13,16,28,31,50,51). Deficiency of 
Mst1/2 will lead to the enlargement of the liver in mice, finally 
inducing a tumor (52). However, when upstream kinase is not 
activated, YAP/TAZ translocates into the nucleus to serve a 
role in gene expression (Fig. 1).

Found in 1994, YAP binds to the SH3 region of the Yes 
protein in the Src protein kinase family through the  sequence 
‘PVKQPPPLAP’ and is a protein with a molecular weight of 
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about 65 kDa (53,54). YAP is located on chromosome 11q22 
in humans (55,56). The YAP protein contains one or two WW 
structure domains, a 14‑3‑3 protein binding site, a SH3 binding 
motif, a PDZ binding motif of the C‑terminal, an insertion in 
the N‑terminal TEAD‑binding region, a proline‑rich domain 
of the amino‑terminal and a coiled‑coil structure domain of the 
transcriptional regulation structure (57). YAP can interact with 
a variety of proteins, includimg angiomotin family proteins, 
TEADs and Sd, and it can participate in multiple signaling 
transduction pathways in cells through the structure domains 
and amino acid sequences (57). YAP is a type of multifunctional 
cell connection protein and transcription activating factor, 
with a variety of structural domains and specific sequences 
that determine the diversity of its role. The transcriptional 
activity of YAP depends on its intracellular localization (24). 
When YAP is located in the nucleus, it can activate gene 
transcription through interaction with transcription activation 
factors, and then the phosphorylated YAP transposes into the 
cytoplasm and accumulates there (58). The cytoplasmic local-
ization of phosphorylated YAP can prevent or terminate its 
activation activity in the nucleus (51,59). Due to the interaction 
with phosphorylated Ser127 and 14‑3‑3 proteins, accumulating 
YAP cannot transpose into the nucleus, causing YAP to lose 
its role as a transcription activation factor (58,60).

First identified in 2000, TAZ can also combine with 
14‑3‑3 proteins and is a type of protein composed of 400 amino 
acids containing a WW domain and a PDZ domain  (61). 
Through sequence comparison, it has been revealed that TAZ 
is the homologous protein of YAP, as well as exhibiting the 
function of transcriptional activation (20). The coding gene of 
TAZ is located on chromosome 3q24, and its molecular weight is 
45 kDa (61). The combination of 14‑3‑3 proteins and TAZ requires 
phosphorylation of the 89th TAZ serine, as the TAZ Ser89 area 
is one of the best combination sequences of 14‑3‑3 proteins and is 
known as RSXpSXP. The other is RXY/FXpSXP, and both can 
be recognized by the varyiong types of 14‑3‑3 proteins (62). YAP 
possesses the same feature of the combination sequences (61,62). 
TAZ has the same transcriptional activation function as YAP. 
YAP, TAZ and Yorkie all lack DNA binding domains. Therefore, 
they can only regulate transcription via activation (little inhibi-
tion) of the activity of transcription factors. The upstream 
regulatory mechanisms produce the 14‑3‑3 protein binding sites 
via phosphorylation of TAZ Ser89 with a kinase, and then control 
TAZ cytoplasmic retention. Thus, the transcriptional regulation 
of TAZ is inhibited (61,63).

YAP/TAZ are the major downstream effectors of the Hippo 
pathway. Due to the lack of DNA‑binding domains, YAP/TAZ 
act by connecting with other transcription factors, including 

Figure 1. Core components of the Hippo pathway. Willin is the upstream signaling molecule. Mst1/2, Lats1/2, Sav1 and Mob are the core components of the 
Hippo pathway. Willin  stimulates Mst 1/2, then Mst 1/2 phosphorylates Lats1/2 via interaction with Sav1. Lats1/2 phosphorylates YAP/TAZ via interaction 
with Mob, leading to cytoplasmic retention and degradation of YAP/TAZ through phosphorylation of YAP Ser384 and binding of YAP Ser127 to 14‑3‑3 
protein. When the kinase cascade is inactivated, phosphorylated YAP/TAZ translocate into the nucleus and generate gene expression via interaction with 
TEAD. YAP, Yes‑associated protein; TAZ, transcriptional co‑activator with PDZ‑binding motif; Ex, expanded; Mer, Merlin; Sav,  Salvador; Hpo, Hippo; Wts, 
Warts; Yki, Yorkie; Sd, scalloped; S1P, sphingosine‑1‑phosphate; LPA, lysophosphatidic acid; GPCR, G-protein-coupled receptor; EGF, epidermal growth 
factor; IGF, insulin‑like growth factor; S1PR, sphingosine‑1‑phosphate receptor; LPAR, Lysophosphatidic acid receptor; Mst1/2, Hpo orthologs; Lats1/2, Wts 
orthologs; Sav1, Sav orthologs;  Mob, Mats orthologs; G1, the gap before DNA replication; S, DNA synthetic phase; TEAD, transcriptional enhancer activator 
domain.
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TEAD/TEF family transcription factors (50). When YAP Ser127 
is phosphorylated by Lats1/2, it generates a 14‑3‑3 protein binding 
site (58,63). Lats2 promotes the cytoplasmic accumulation of 
YAP by promoting YAP Ser127 phosphorylation and the combi-
nation of YAP and 14‑3‑3 proteins (60,64). YAP Ser384, which 
is phosphorylated by Lats1/2, promotes casein kinase 1 (CK1) 
to phosphorylate YAP Ser384, and leads to the degradation of 
YAP (65,66) (Fig. 1). Furthermore, the activity of YAP/TAZ can 
be regulated by serum‑derived sphingosine‑1‑phosphate (S1P), 
LPA, GPCR signaling and the actin‑myosin cytoskeleton (6). 
S1P and LPA can induce YAP dephosphorylation, nuclear 
localization, activation through the S1P2 receptor, Rho GTPase 
activation and F‑actin polymerization (6).

The Hippo pathway serves a crucial role in regulating organ 
size, cell proliferation and apoptosis, and it can maintain a stable 
internal environment. The inactivation of Mst1/2, Sav1, Lats1/2 
and Mob1, and the overexpression of YAP/TAZ can cause an 
increase in the organ size, cell proliferation  (14) and even 
tumorigenesis, including liver cancer (67), gastric cancer (68), 
breast cancer (69), high‑grade dysplasia and adenocarcinoma of 
the esophagus, gastric adenocarcinoma and metastatic gastric 
disease (70). Furthermore, the Hippo pathway regulates the inhi-
bition of cell contact (71). Studies have shown that normal cells, 
which highly express YAP, grow continuously due to mutual 
contact; hyperexpression of YAP can decrease contact inhibition 
and promote cell proliferation (14,60,67). Cell contact inhibits 
cell growth, which is a physiological characteristic of cells. 
Previous studies have found that soluble growth factors, including 
epidermal growth factor (EGF), insulin‑like growth factor, 
serum and LPA, can inhibit YAP/TAZ and reduce the effect 
of cell contact on the majority of occasions (72‑74). Two newly 
identified downstream factors, phosphoinositide 3‑kinase (PI3K) 
and phosphoinositide‑dependent protein kinase 1, for the Hippo 
pathway were found to inhibit the pathway and induce YAP 
nuclear retention via interaction with soluble growth factors, and 
finally, by activating growth genes (72) (Fig. 1). Cell contact is 
correlated with cell density. Cell density can control the local-
ization and phosphorylation of YAP (60). YAP locates in the 
nucleus at low cell density in NIH‑3T3 cells and the human breast 
epithelial MCF10A cell line. The decrease in cell density will 
increase the cell area. While at high cell densities, YAP locates 
in the cytoplasm and exhibits slower electrophoretic migration. 
The electrophoretic migration is density‑dependent due to the 
phosphorylation. Phosphorylated YAP migrates faster (60,71).

3. Regulation of the Wnt/β‑catenin signaling pathway in 
glaucoma and the interaction with YAP/TAZ

The Wnt/β‑catenin signaling pathway is an extremely conser-
vative pathway in biological evolution (75,76). Wnt can secrete 
glycoprotein through binding with receptors on the cell 
membranes (77) and can activate intracellular signaling path-
ways, which regulate the expression of target genes. Thus, cell 
proliferation, differentiation and apoptosis can be regulated, and 
various diseases will be caused, even tumorigenesis (75,78,79). 
Wnt pathways contain the canonical (Wnt/β‑catenin), 
non‑canonical (Wnt/JNK pathway) and Ca2+ pathways (80,81). 
At present, the mechanism of the canonical pathway is the most 
exhaustively researched. It has been found that β‑catenin is the 
principal regulation point of the canonical Wnt pathway, and it 

is also the major component of cell adhesion (75). Interaction 
between β‑catenin and E‑cadherin can connect the intracyto-
plasmic cadherins to the actin cytoskeleton, thus allowing cell 
contact, adhesion and motility (75).

The Wnt/β‑catenin pathway has two states, on and off (75). 
Wnt is inactive in the off‑state, and adenomatous polyposis coli 
(APC) (80), glycogen synthase kinase 3 (GSK3) (82), Axin (83) 
and CK1 form the β‑catenin protein destruction complex. The 
complex mediates the phosphorylation of β‑catenin, resulting 
in the transcription of the Wnt/β‑catenin target gene inhibited 
in the cytoplasm (84). In the on‑state, Wnt binds with Fzd recep-
tors on the cell surface, and they then bind with low‑density 
lipoprotein receptor‑related protein 5 or 6 (LRP5/6) to form 
the Wnt/Fzd/LRP5/6 complex, which phosphorylates and 
activates Dishevelled (Dvl) protein (85,86). Subsequently, Dvl 
inhibits the activity of β‑catenin protein destruction complex, 
leading to the cytoplasmic retention of β‑catenin. Later, 
β‑catenin translocates into the nucleus to form a complex with 
the T‑cell factor family (TCF/LEF). The β‑catenin/TCF/LEF 
complex activates the transcription of downstream target 
genes, including c‑Myc, c‑Jun and cylin D1  (87)  (Fig.  2). 
According to studies by Gan et al (88) and Itoh et al (89), Dvl 
is a core component of the β‑catenin/TCF/LEF complex.

The Wnt/β‑catenin and Hippo pathways regulate the expres-
sion of genes, cell proliferation, cell differentiation and cell 
apoptosis, so they interact mutually to a certain extent. On one 
hand, studies have reported that phosphorylated β‑catenin can 
promote YAP/TAZ degradation by serving as the presenting 
factor (90,91). On the other hand, through controlling β‑catenin 
stability, Wnt mediates YAP/TAZ stabilization and promotes 
YAP/TAZ to translocate into the nucleus in a manner independent 
of the Hippo pathway (90) (Fig. 2). Furthermore, Axin is not only 
associated with the β‑catenin protein destruction complex, but 
is also strongly associated with endogenous YAP/TAZ (92,93). 
When Axin1/2 or APC is knocked out, YAP/TAZ will accumu-
late in the nucleus, which indicates that Wnt regulates YAP/TAZ 
through promoting their nuclear accumulation (80,83).

YAP is the target gene of Wnt/β‑catenin. TEAD binds with 
the domain of phosphorylated YAP, and then directly connects 
to the N‑terminal of β‑catenin and promotes β‑catenin nuclear 
translocation. It has been demonstrated that the Hippo pathway 
antagonizes signal transduction of the Wnt pathway  (94). 
Meanwhile, TAZ is a downstream regulator of Wnt 
signaling (90). Based on the study by Varelas et al (8), TAZ can 
combine with Dvl protein and prevent the phosphorylation of Dvl 
by Wnt, resulting in the inhibition of the Wnt pathway (Fig. 2). 
The Hippo pathway may inhibit the expression of the target Wnt 
gene through altering the activity of β‑catenin. Studies have 
revealed that TAZ degradation requires β‑catenin phosphory-
lation, and the combination of phosphorylated YAP/TAZ and 
β‑catenin, which will cause the accumulation of β‑catenin in 
the cytoplasm; thus, the activity of β‑catenin transcription is 
inhibited (90,95). The localization of β‑catenin is enhanced in 
the cytoplasm and nucleus in TAZ mutant kidneys in mice (8). 
Together, these results suggest that the Hippo pathway can nega-
tively regulate the activity of β‑catenin transcription.

Studies have indicated that the Wnt/β‑catenin pathway is 
the chief Wnt pathway in human trabecular meshwork (HTM) 
cells and that it serves a role in regulating IOP (5). Secreted 
frizzled‑related protein 1 (sFRP1), the Wnt pathway inhibitor, 
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is found to be elevated in the glaucomatous trabecular mesh-
work, and exogenous sFRP1 brings about high IOP (96,97). In 
sFRP1‑perfused human eyes, the level of β‑catenin was shown 
to be significantly decreased. According to a recent study, 
sFRP1 is associated with cell stiffness (97). HTM cells have 
different responses to the stimulus of different concentrations 
of sFRP1 (97). It has been illustrated that sFRP1 is elevated in 
normal HTM cells grown on substrates that simulate the stiff-
ness of the glaucomatous HTM. The increase in stiffness of the 
HTM enhances the aqueous humor outflow resistance and is 
conducive to elevated IOP (97). Additionally, one study revealed 
that a small molecule GSK3β inhibitor can increase the activity 
of the Wnt/β‑catenin pathway and remit ocular hypertension, 
which is caused by sFRP1 in mouse eyes (96) (Fig. 2). It has been 
reported that there may be two effects of Wnt in glaucoma (5). 
On one hand, the nuclear translocation of β‑catenin influences 
gene expression (5). The glaucoma gene myocilin (MYOC) has 
been reported to be a regulator of Wnt/β‑catenin signaling (98). 
However, whether MYOC mutation affects Wnt in the HTM 
remains unclear. On the other hand, the aqueous humor outflow 
resistance is affected by the change in adhesion junctions and 
cell contact, and then IOP is regulated (5).

The Wnt/β‑catenin pathway is believed to be a novel 
interventional route for the treatment of glaucoma (99). The 
Wnt/β‑catenin pathway is influenced by YAP/TAZ, and 
YAP/TAZ exert an adverse effect on Wnt (5). Therefore, we spec-
ulate that there is a close association among the Wnt/β‑catenin 
pathway, the Hippo pathway and glaucoma. YAP/TAZ may be 
novel target genes for the treatment of glaucoma.

4. Regulation of LPA in glaucoma and the mutual 
regulation with YAP/TAZ

LPA, a glycerophospholipid‑signaling molecule, exists in all 
tissues and serum (100). LPA is a small molecule regulating 
YAP/TAZ, and it can indirectly inhibit the activity of Lats1/2 
and decrease the phosphorylation of YAP/TAZ at Ser127 (73). 
Various types of LPA isoforms have the same function (73). Only 
with cytoplasmic accumulation and 14‑3‑3 protein binding can 
YAP Ser127 be phosphorylated. Therefore, LPA also promotes 
the interaction between YAP and TEAD1 (Fig. 3). Aberrant 
expression of LPA receptors brings about the dephosphoryla-
tion and the nuclear accumulation of YAP/TAZ. YAP/TAZ 
serve a role in LPA‑induced gene expression (73). Subsequent to 

Figure 2. Regulation of the Wnt/β‑catenin signaling pathway. In the off‑state, APC, GSK3, Axin and CK1 form into the APC/GSK3/Axin/CK1 complex, which 
mediates the phosphorylation of β‑catenin, repressing Wnt/β‑catenin target gene transcription in the cytoplasm. In the on‑state, Wnt binds with receptor Fzd and 
LRP5/6, forming into the Wnt/Fzd/LRP5/6 complex, and then phosphorylates and activates Dvl. Next, Dvl inhibits the activity of the APC/GSK3/Axin/CK1 
complex, causing β‑catenin to accumulate in the cytoplasm and then translocate into the nucleus to form a complex with the TCF/LEF family and induce gene 
expression. Phosphorylated β‑catenin promotes degradation of TAZ via interaction with YAP/TAZ. sFRP1 inhibits β‑catenin, which is inhibited by GSK3β 
and induces OHT, resulting in primary open‑angle glaucoma. TEAD, transcriptional enhancer factor TEF-1; APC, adenomatous polyposis coli; GSK3, 
glycogen synthase kinase 3; CK1, casein kinase 1; LRP5/6, low‑density lipoprotein receptor‑related protein 5 or 6; Dvl, Dishevelled; TAZ, transcriptional 
co‑activator with PDZ‑binding motif; YAP, Yes‑associated protein; sFRP1, secreted frizzled‑related protein 1; OHT, ocular hypertension; sFRP1, secreted 
frizzled‑related protein 1; OHT, ocular hypertensive; FzdR, frizzled receptors; LRP5/6R, low-density lipoprotein receptor-related protein 5 or 6; TAZ, tran-
scriptional co‑activator with PDZ‑binding motif; YAP, Yes‑associated protein; Dvl, dishevelled;  Axin, axis inhibition protein; APC, adenomatous polyposis 
coli; GSK3, glycogen synthase kinase 3; CK1, casein kinase 1; β-cat, β‑catenin; TCF, T-cell factor family;  LEF, lymphocyte enhancer-binding factor.
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using short hairpin RNAs to knock out YAP/TAZ, the mRNA 
induction of CTGF, Cyr61 and ANKRD1 will be consumingly 
inhibited by LPA (73). In addition, LPA mediates cell prolifera-
tion (101), cell migration and the metastasis of certain cancer 
cells (102). Excessive expression of LPA receptors in mice leads 
to the hyperplasia of mammary glands and breast cancer (103).

LPA level increases in glaucoma and LPA inhibitors can 
reduce the IOP (6,104). Elevated IOP is one of the major risk 
factors for the development of POAG, and it is caused by 
obstruction of the aqueous humor outflow (105). The chief 
outflow resistance of the aqueous humor has been located in the 
trabecular meshwork. Changes in the trabecular cells and ECM 
can directly or indirectly affect the aqueous humor outflow 
resistance (106). A previous study showed that autotaxin (ATX) 
and LPA exist in the aqueous humor in humans and a range of 
animals (107). Concentrations of ATX and LPA in the aqueous 
humor of patients with POAG are significantly higher than those 
of healthy people (107). FN and LM are the chief components 
of the ECM in the trabecular meshwork. It has been found that 
FN and LM are excessively deposited in POAG, leading to an 
increase in the aqueous humor outflow resistance (108). ATX is 
a key cytokine in the aqueous humor and its major function is to 
catalyze the generation of LPA (107). LPA can promote a variety 
of cells to synthesize the ECM through autocrine and paracrine 
functions, and its signaling transduction pathway primarily acts 
through G‑protein‑coupled receptors (73) (Fig. 3). Meanwhile, 

LPA serves a major role in promoting proliferation, differentia-
tion and interaction between cells (109). Thus, the ATX‑LPA 
pathway may elevate IOP by promoting the synthesis of ECM 
in the HTM, and then increase the resistance of the aqueous 
humor outflow, participating in the process of POAG.

5. Regulation of the TGF‑β/Smad signaling pathway in 
glaucoma and the interaction with YAP/TAZ

TGF‑β, which was first identified by Delarco and Todar in 
1978, is a type of multifunctional cytokine (110-112). TGF‑β 
has been found in almost all human cells, where it has a 
significant role in apoptosis, differentiation, the cell cycle, 
immunoregulation and the synthesis of the ECM via binding 
with its receptors (113). TGF‑β has five subtypes, and three of 
these, TGF‑β1, TGF‑β2 and TGF‑β3, are present in mammals, 
with homology of 70‑80% (114). The signaling transduction of 
TGF‑β acts by combining its ligand with receptors that are the 
membrane‑associated proteins on the cell membrane. Receptor 
types I, II and III participate in TGF‑β‑mediated signaling 
transduction. However, receptor type III only has a supporting 
role during the incorporation of ligand and receptors I/II in 
the transduction, as it has no serine/threonine activity. TGF‑β 
combines with the type II receptor, then the latter phosphory-
lates the type I receptor, which leads to the activation of this 
receptor (115). Later, activated type I receptor activates target 

Figure 3. Regulation of LPA in glaucoma and the mutual regulation with YAP/TAZ. LPA inhibits the activity of Lats1/2 and decreases YAP/TAZ phos-
phorylation, leading to the inhibition of the interaction of YAP‑14‑3‑3 and YAP nuclear localization. LPA promotes the interaction of YAP and TEAD1. LPA 
promotes the accumulation of FN and LM in the human trabecular meshwork via a G‑protein‑coupled receptor, result in an increase in the aqueous humor 
outflow and OHT, finally, leading to POAG. LPA, lysophosphatidic acid; YAP, Yes‑associated protein; TAZ, transcriptional co‑activator with PDZ‑binding 
motif; TEAD, transcriptional enhancer factor TEF-1; FN, fibronectin; LM, laminin; OHT, ocular hypertension; POAG, primary open‑angle glaucoma; LPA, 
lysophosphatidic acid; ATX, autotaxin; ECM, extracellular matrix; TEAD,  transcriptional enhancer activator domain; FN, fibronectin;  LM, laminin; POAG, 
primary open‑angle glaucoma.
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protein, such as SMAD protein, resulting in the activation of 
the signaling transduction of TGF‑β (115). The Smad family of 
proteins are key proteins in the process of TGF‑β signal trans-
duction, and has numerous subtypes (116) (Fig. 4). The PI3K 
signaling pathway can be regulated by TGF‑β. Inhibiting PI3K 
can reduce the activity of Smad3 (receptor activation SMAD 
protein) (117). Pyruvate dehydrogenase phosphatase can specif-
ically dephosphorylate SMAD in Drosophila, indicating that 
SMAD is the core protein that mediates the signal transduction 
of TGF‑β (118). TGF‑β has numerous biological effects and can 
be expressed in various types of cells, with an important role 
in regulating cell proliferation, cell differentiation, synthesis, 
deposition and degradation of the ECM (119). In addition, 
TGF‑β mediates the individual development of growing, 
inflammatory process and the immune regulation (119).

Increasing aqueous outflow resistance is associated with the 
abnormal contraction and movement of the trabecular meshwork, 
as well the abnormal synthesis and secretion of the ECM. These 
abnormal activities cause the deposition of the ECM, and finally 
lead to a high IOP, and the damage of the structure and function 
of the eyes (4). A previous study proved that the human corneal 
endothelial layer, ciliary body, iris and trabecular meshwork can 
express and transcribe the RNA of TGF‑β1 and TGF‑β2 (120). 
Evidence has shown that the concentration of TGF‑β in the 
aqueous humor of patients with POAG is markedly higher 
than that in patients without POAG (121). In HTM cells, the 
constitutive expression and release of biologically active TGF‑β2 

can be mediated by ρ‑GTPase signaling (122). ρ‑associated 
kinase inhibitors directly affect the TM and SC by controlling 
the synthesis of actin stress fibers, focal adhesion and cellular 
contraction (123,124). Trabecular meshwork cells synthesize and 
secrete the components of the ECM, including laminin, fiber 
adhesion proteins, hyaluronic acid and enzymes that can degrade 
the ECM (7). Research has revealed that Smad2/3, which can 
stimulate the cell to synthesize ECM, is the key protein in the 
process of ECM reconstruction (115). The increasing secretion 
of the ECM and the reduction of Smad2/3 will lead to the accu-
mulation of ECM and stop the aqueous outflow from increasing. 
Studies have indicated that TGF‑β can promote the synthesis 
of the ECM via regulation of trabecular meshwork cells, and 
then affect the aqueous human outflow resistance (7,120,125). 
Experiments in pig eyes have found that TGF‑β2 can promote 
the synthesis of collagen protein and fiber connection protein. 
The synthesis of collagen protein and fiber connection protein 
inhibits the synthesis of hyaluronic acid and regulates the molec-
ular structure of fiber connection protein. The proteolytic enzyme 
reduces the degradation of fiber link protein and then leads to 
the deposition of fiber connection protein, ultimately causing 
glaucoma (126) (Fig. 4). TGF‑β can also promote the synthesis 
of metalloproteinase tissue inhibitors to inhibit matrix metal-
loproteinases and the degradation of the ECM, which causes the 
deposition of ECM in the trabecular meshwork (7,125). Overall, 
TGF‑β promotes the deposition of the ECM by promoting the 
synthesis of the ECM, regulating trabecular cells and altering 

Figure 4. Regulation of the TGF‑β/Smad signaling pathway in glaucoma. TGF‑β combines with the type II receptor, then phosphorylates the type I receptor, 
leading to the activation of this type I receptor. TGF‑β2 promotes the synthesis of collagen protein and fiber connection protein, and inhibits the synthesis of 
hyaluronic acid. TGF‑β2 promotes enzymes to inhibit the accumulation of the ECM. The TMC can secrete enzymes, promoting the accumulation of the ECM 
and increasing the aqueous outflow resistance. SMADA2/3 promotes the accumulation of the ECM in the HTM, leading to an increase in the aqueous outflow 
resistance and ocular hypertension, finally resulting in primary open‑angle glaucoma. TGF‑β, transforming growth factor‑β; ECM, extracellular matrix; TAZ, 
transcriptional co‑activator with PDZ‑binding motif; TMC, trabecular meshwork cell.
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the structure of the ECM. Enhancing the levels of inhibitors of 
protease can reduce the degradation of the ECM.

It has been found that TGF‑β can inhibit the prolifera-
tion of human trabecular cells stimulated by EGF (127). The 
reduction in the number of trabecular meshwork cells indi-
cates that TGF‑β can inhibit trabecular cell proliferation and 
then participate in the pathogenesis of glaucoma. TGF‑β1 
can enhance the expression of α‑actin mRNA in human and 
monkey trabecular meshwork cells. TGF‑β1 can promote the 
transfomation of the trabecular meshwork into fibroblasts, 
resulting in an increase in the contraction and motor function 
of the trabecular meshwork (128). Trabecular cell microfila-
ment actin levels increased by TGF‑β1 can promote the ability 
of cell shrinkage and movement, which is conducive to the 
outflow of the aqueous humor. If the abilities of shrinkage and 
movement are excessively enhanced, the trabecular meshwork 
shrinks and loses elasticity. Atrophy and inelasticity of the 
trabecular meshwork act against the outflow of the aqueous 
humor and may cause the IOP to increase, leading to glaucoma.

Activated TGF‑β receptors phosphorylate SMAD2/3 on 
the C‑terminal SSXS motif, and then the phosphorylated 
SMAD2/3 binds with SMAD4 to form a complex. TAZ can 
bind with the SMAD complex to promote the nuclear accu-
mulation of SMAD (129). Lats can regulate the activity of the 
Hippo pathway and SMAD2/3 localization via YAP/TAZ. 
Studies of the regulation of TGF‑β/SMAD signaling in cells 
indicate that the Hippo kinase cascade may regulate SMAD 
nuclear localization by YAP/TAZ phosphorylation (9) (Fig. 4).

6. Role of the YAP/TAZ gene in the development of glaucoma

Glaucoma is one of the main causes of blindness worldwide (130). 
The core components of trabecular meshwork tissue are trabec-
ular protein and the outer covering of trabecular meshwork cells. 
Trabecular meshwork cells are involved in engulfing, migrating, 
synthesizing and secreting the ECM, and transducing the signals 
between within the ECM (7). In addition, trabecular mesh-
work cells have the biological characteristic of adhering to the 
substrate of the ECM and serve an important role in maintaining 
the normal aqueous humor outflow pathways and controlling 
the IOP (131). In POAG, the resistance of the aqueous outflow 
increases, the stiffness of the trabecular meshwork enhances 
and the gap of trabecular meshwork structure narrows (131). 
Atomic force microscopy has confirmed that the stiffness of the 
trabecular meshwork of glaucoma patients is 20 times than that 
of the normal HTM (132). YAP and TAZ have been identified as 
the mechanical signal factors involved, and they are influenced 
by the stiffness of the ECM (133). As extracellular microenvi-
ronment power transduction factors and transcription activation 
factors, YAP/TAZ can directly be influenced by the elasticity 
and stiffness of the trabecular meshwork in glaucoma (134).

It has been demonstrated that YAP/TAZ exist in all levels 
of the trabecular meshwork (134), including juxtacanalicular 
tissue, which is considered to be the fundamental part of aqueous 
humor outflow resistance. YAP was confirmed to be reduced in 
the trabecular meshwork incubated in a stiff substrate, while 
TAZ level was increased (134). According to this difference, 

Figure 5. Regulation amongst the Wnt/β‑catenin, LPA and TGF‑β/Smad signaling pathways and YAP/TAZ of the Hippo pathway. The Wnt/β‑catenin, LPA and 
TGF‑β/Smad signaling pathways are all involed in the regulation of the pathogenesis of glaucoma. LPA, lysophosphatidic acid; TGF‑β, transforming growth 
factor‑β; YAP, Yes‑associated protein; TAZ, transcriptional co‑activator with PDZ‑binding motif; Ex, expanded; Mer, Merlin; Sav,  Salvador; Hpo, Hippo; Wts, 
Warts; Yki, Yorkie; Sd, Scalloped; S1P, sphingosine‑1‑phosphate; LPA, lysophosphatidic acid; GPCR, G-protein-coupled receptor; EGF, epidermal growth 
factor; IGF, insulin‑like growth factor; S1PR, sphingosine‑1‑phosphate receptor; LPAR, Lysophosphatidic acid receptor; Mst1/2, Hpo orthologs; Lats1/2, Wts 
orthologs; Sav1, Sav orthologs;  Mob, Mats orthologs; G1, the gap before DNA replication; S, DNA synthetic phase; TEAD, transcriptional enhancer activator 
domain; sFRP1, Secreted frizzled‑related protein 1; OHT, ocular hypertensive; FzdR, Frizzled Receptors; LRP5/6R, low-density lipoprotein receptor-related 
protein 5 or 6; Dvl, Dishevelled;  Axin, axis inhibition protein; APC, adenomatous polyposis coli; GSK3, glycogen synthase kinase 3; CK1, casein kinase 1; 
β-cat, β‑catenin; TCF, T-cell factor family;  LEF, lymphocyte enhancer-binding factor.  Axin, axis inhibition protein;  ATX, autotaxin; ECM, extracellular 
matrix;  FN, fibronectin;  LM, laminin; POAG, primary open‑angle glaucoma.
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YAP principally serves an important role in normal trabecular 
tissue, while TAZ markedly affects glaucoma trabecular 
tissue (134). This result is different from that found in the study 
by Dupont et al (133), which observed that YAP and TAZ were 
both increased in mammalian epithelial cells that were cultured 
on a stiff substrate (133). This result may caused by different cell 
types exhibiting different reactions to YAP/TAZ (135). YAP 
acts as a power transduction factor, and its positive reaction in 
trabecular cells shows that they may be involved in the develop-
ment of glaucoma. There is a mutual regulation among the newly 
discovered target paths of glaucoma treatment and YAP/TAZ, 
although there is no experimental report to verify this.

7. Conclusions

The present review attempted to highlight the important role of 
YAP/TAZ and the Wnt/β‑catenin, LPA and TGF‑β/Smad path-
ways, which are all involved in the regulation of the pathogenesis 
of glaucoma (Fig. 5). These signaling pathways have become novel 
target pathways in the treatment of glaucoma and they also regu-
late the Hippo pathway. We hypothesize that the Hippo pathway 
may serve an important role in the pathogenesis of glaucoma, and 
YAP/TAZ may become novel target genes in the treatment of 
glaucoma. However, certain problems require solving, including 
determining the specific pathogenesis of glaucoma, the manner in 
which upstream factors regulate the Hippo signaling pathway and 
investigating the definitive regulating mechanism of YAP/TAZ in 
glaucoma. Further study is also required into whether there any 
other relevant regulators mediating the Wnt/β‑catenin, LPA and 
TGF‑β/Smad pathways, and whether MYOC mutations affect 
Wnt signaling in the trabecular meshwork.
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