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Abstract. Papillary thyroid carcinoma (PTC) is the most 
common thyroid cancer. Nuclear magnetic resonance 
(NMR)‑based metabolomic technique is the gold standard in 
metabolite structural elucidation, and can provide different 
coverage of information compared with other metabolomic tech-
niques. Here, we firstly conducted NMR based metabolomics 
study regarding detailed metabolic changes especially metabolic 
pathway changes related to PTC pathogenesis. 1H NMR-based 
metabolomic technique was adopted in conjunction with multi-
variate analysis to analyze matched tumor and normal thyroid 

tissues obtained from 16 patients. The results were further anno-
tated with Kyoto Encyclopedia of Genes and Genomes (KEGG), 
and Human Metabolome Database, and then were analyzed 
using modules of pathway analysis and enrichment analysis of 
MetaboAnalyst 3.0. Based on the analytical techniques, we estab-
lished the models of principal component analysis (PCA), partial 
least squares-discriminant analysis (PLS-DA), and orthogonal 
partial least-squares discriminant analysis (OPLS‑DA) which 
could discriminate PTC from normal thyroid tissue, and found 
15 robust differentiated metabolites from two OPLS-DA models. 
We identified 8 KEGG pathways and 3 pathways of small 
molecular pathway database which were significantly related 
to PTC by using pathway analysis and enrichment analysis, 
respectively, through which we identified metabolisms related to 
PTC including branched chain amino acid metabolism (leucine 
and valine), other amino acid metabolism (glycine and taurine), 
glycolysis (lactate), tricarboxylic acid cycle (citrate), choline 
metabolism (choline, ethanolamine and glycerolphosphocholine) 
and lipid metabolism (very-low‑density lipoprotein and low-
density lipoprotein). In conclusion, the PTC was characterized 
with increased glycolysis and inhibited tricarboxylic acid cycle, 
increased oncogenic amino acids as well as abnormal choline 
and lipid metabolism. The findings in this study provide new 
insights into detailed metabolic changes of PTC, and hold great 
potential in the treatment of PTC.

Introduction

Thyroid cancer is the most common cancer in the endocrine 
system. The incidence of thyroid cancer is increasing every 
year in the United States, and the increase is not only because 
of the better diagnosis technique for thyroid cancers. There are 
estimated to be ~123,000 people in the world who are diagnosed 
thyroid cancer cases annually, accounting for approximately 
over 91.5% of the cancers of head and neck (1). Notably, papillary 
thyroid carcinoma (PTC) is the most common type of all thyroid 
cancers, which accounts for ~80% of the thyroid cancers.
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Metabolomics is an emerging omics technology, and it can 
systematically identify and quantify metabolites in a biological 
sample. The technology development of nuclear magnetic 
resonance (NMR) spectroscopy and mass spectrometry (MS) 
allows the simultaneous analysis of various chemicals in the 
biological sample, and therefore NMR and MS are the favorable 
platforms for metabolomic analysis (2). Metabolomics has been 
widely used in studies regarding diseases (3), and it identifies 
metabolic signatures which are related to the pathogenesis of 
the diseases (3-5). There are metabolomic studies on PTC based 
on gas chromatography-mass spectrometry (GC-MS)  (6,7). 
Compared with GC-MS, NMR is generally accepted as the gold 
standard in metabolite structural elucidation, which is highly 
selective, non-destructive for chemical detection. Additionally, 
the metabolite coverage is different between NMR and 
GC-MS (8). Therefore, different metabolomic information can 
be provided by NMR and GC-MS. There are limited published 
metabolomic studies regarding PTC using NMR (9-11), but 
these studies focused on the diagnosis of PTC, and therefore 
the detailed metabolic changes especially metabolic pathway 
changes related to PTC pathogenesis are still largely unknown. 
Given these facts, it is necessary to adopt NMR based metabo-
lomics technology to study the detailed metabolic changes and 
disturbed metabolic pathways in PTC.

We used 1H NMR-based metabolomic technique to study 
the metabolic changes in PTC. We established reliable statis-
tical models which could well discriminate and predict the 
tumor and normal thyroid tissue. Based on these models and 
further bioinformatics analysis, we identified detailed meta-
bolic changes and disturbed metabolic pathways in PTC.

Patients and methods

Basic patient information and sample collection. A total of 
16 patients (4 males, 12 females; age range, 19-59 years; tumor 
size, 1-4.2 cm) had undergone surgical thyroidectomy at the First 
Affiliated Hospital of Nanjing Medical University. Previous 
metabolomic studies using cancer tissues have proved that similar 
sample number and characteristics of the population can provide 
useful information on metabolic changes of cancer (4,9-11). 
Matched normal thyroid tissues and tumor tissues were obtained 
from the same PTC patients. The diagnosis was confirmed by 
histopathologic evaluation based on the established criteria of 
WHO (12), which was conducted independently by two patholo-
gists. The analyzed tumor tissues which contained over 90% 
cancer cells were obtained by using microdissection, and normal 
tissues were not connected by follicular adenomas (FAs) or PTC. 
The patients were not received radiation therapy or neo-adjuvant 
chemotherapy before operation. All tissues were immediately 
frozen in liquid nitrogen, and then stored at -80̊C until NMR 
analysis. The study was approved by the Ethics Committee of the 
First Affiliated Hospital of Nanjing Medical University, and each 
participant signed an informed consent.

1H  NMR spectroscopy based metabolomic analysis. 
Metabolomic analysis was conducted according to metabo-
lomic procedure for NMR spectroscopy of tissues  (13). 
The metabolomic analysis was performed with Bruker 
Avance III  600 NMR  spectrometer. Tissue samples were 
placed in a 4 mm rotor, and 5 µl aliquot of deuterium oxide 

was added into the rotor. The resonance frequency of 1H was 
400 MHz, and the experimental temperature was 298 K. A 
Carr‑Purcell‑Meiboom-Gill (CPMG) filter was included in the 
pulse sequence to reduce broad resonances related to back-
ground or macromolecules. After the fourier transformation, 
the spectra was manually phased and baseline corrected, and 
then referenced to lactic acid CH3 resonance at δ1.33.

Multivariate pattern recognition. In order to discrimi-
nate the samples according to tissue types and identify 
potential biomarkers in relation to PTC, principal compo-
nent analysis  (PCA), partial least squares-discriminant 
analysis (PLS‑DA), and the orthogonal partial least-squares 
discriminant analysis  (OPLS-DA) were applied using the 
normalized NMR data. We identified changed metabolites in 
PTC by using OPLS-DA statistical model. SIMCA-P + soft-
ware (v11.0; Umetrics AB, Umea, Sweden) was used for data 
analysis. The correlation coefficient of |r| >0.482 and the vari-
able importance in projection (VIP) value >1.00 were used 
as cut-off value of the statistical significance based on the 
discrimination significance at the level of P=0.05.

Biological significance interpretation and informatics analysis. 
To identify detailed metabolic changes and disturbed metabolic 
pathways, the differentiated metabolites were first annotated 
with ‘Kyoto Encyclopedia of Genes and Genomes’ (KEGG, 
http://www.genome.jp/kegg/  or  http://www.kegg.jp/) which 
is a knowledge library for systematic analysis of metabolite 
functions and networks and ‘Human Metabolome Database’ 
(HMDB, http://www.hmdb.ca/) which is a complete and compre-

Figure 1. Strategy for the metabolomic study regarding papillary thyroid 
carcinoma (PTC).
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hensive database on metabolomics with metabolite biological 
interpretation  (14,15). Further, we conducted informatics 
analysis by MetaboAnalyst 3.0 (http://www.metaboanalyst.
ca/MetaboAnalyst/) which is built by R software (v3.2.2) (16). 
MetaboAnalyst combines the results from powerful pathway 
enrichment analysis with the pathway topology analysis to 
discover the relevant pathways. Two modules of MetaboAnalyst 
including pathway analysis and enrichment analysis were used. 
The module of pathway analysis was based on the KEGG data-
base; the enrichment analysis was conducted based on Small 
Molecule Pathway Database (SMPDB, http://smpdb.ca/) (17).

Results

Metabolomic profiling. Fig. 1 shows the workflow of this 
metabolomic study. The metabolomic profiles obtained from 
PTC and normal thyroid tissue are shown in Fig. 2. The metabolic 
profiling covered branched chain amino acids (isoleucine, 
leucine and valine), other proteinogenic amino acids (alanine, 
phenylalanine, tyrosine, glycine, aspartate, glutamate and 
lysine), and product of amino acid (creatine) as well as amino 
acid derivatives (sarcosine and taurine). Metabolites involved in 
the nucleotide metabolism (hypoxanthine, uracil, uridine and 
allantoin), glycolysis (lactate), tricarboxylic acid cycle (citrate 
and succinate), choline metabolism (choline, ethanolamine, 
glycerolphosphocholine and N,N-dimethylglycine) and lipid 
metabolism [very‑low‑density lipoprotein (VLDL), low-density 
lipoprotein (LDL) and lipids] were also profiled.PCA. PCA is the 
most commonly used algorithm in metabolomics studies (18). 
We adopted PCA in the study to process the NMR data based 
on a mean center‑scaling model, which is an unsupervised 
projection method used to visualize the dataset and display 

the intrinsic similarity and difference in the dataset. As shown 
in Fig. 3 (19), the PTC tissues were clearly discriminated from 
normal tissues using PCA model, indicating dramatic metabolic 
changes in PTC. The PCA model descriptors (R2X, Q2) were 
0.79/0.75, indicating the model was reliable.

PLS-DA. PLS-DA was further conducted to evaluate the 
data variance between PTC and normal tissue. As shown 
in F ig.  4A  (20), PLS-DA score plot showed a statistically 
significant discrimination between the two groups based on the 
mean center-scaling model (R2X=0.79, R2Y=0.71, Q2=0.66). 
Similar significant discrimination between the two groups 
was also observed based on the unit variance scaling model 
(R2X=0.26, R2Y=0.82, Q2=0.71)  (Fig.  4B)  (20). To test the 

Figure 3. Principal component analysis (PCA) score plot based on 1H nuclear 
magnetic resonance (NMR) spectra of thyroid obtained from papillary thy-
roid carcinoma (PTC) (red) and normal tissue (black) (R2X=0.79, Q2=0.75).

Figure 2. Representative 1H nuclear magnetic resonance (NMR) spectra (δ0.6-4.6 and δ5.0-9.0) of thyroid obtained from papillary thyroid carcinoma (PTC) 
(above) and normal thyroid tissue (below). The region of δ5.0-9.0 (in the dashed box) was magnified 10 times compared with corresponding region of δ0.6-4.6 
for the purpose of clarity. Ace, acetate; Ala, alanine; All, allantoin; Asp, aspartate; Cho, choline; Cit, citrate; Cr, creatine; EA, ethanolamine; For, formate; Glu, 
glutamate; Gly, glycine; GPC, glycerolphosphocholine; HX, hypoxanthine; Ile, isoleucine; Ino, inosine; L1: LDL, CH3-(CH2)n-; L2: VLDL, CH3-(CH2)n-; L3: 
VLDL, CH3-(CH2)n-; L4: VLDL, -CH2-CH2-C=O; L5: lipid, -CH2-C=O; L6: lipid, -CH=CH-; Lac, lactate; Leu, leucine; Lys, lysine; m-I, myo-inositol; DMG, 
N,N-dimethylglycine; NAG, N-acetyl glycoprotein signals; Phe, phenylalanine; Sar, sarcosine; Suc, succinate; Tau, taurine; Tyr, tyrosine; U, unknown; Uc, uracil; 
Ud, uridine; UDG, uridine diphosphate glucose; Val, valine.
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Figure 4. Partial least squares-discriminant analysis (PLS-DA) score plot based on 1H nuclear magnetic resonance (NMR) spectra of thyroid obtained from 
papillary thyroid carcinoma (PTC) (red) and normal tissue (black). (A) Mean center-scaling model (R2X=0.79, R2Y=0.71, Q2=0.66); (B) Unit variance scaling 
model (R2X=0.26, R2Y=0.82, Q2=0.71).

Figure 5. Orthogonal partial least-squares discriminant analysis (OPLS‑DA) score plots derived from 1H nuclear magnetic resonance (NMR) spectra (left 
panel) and corresponding 1H NMR spectra with indicated differential metabolites obtained from different groups (right panel). (A) The mean center-scaling 
model (R2X=0.79, Q2=0.66); peaks in the positive direction of the 1H NMR spectra indicated metabolites those were more abundant in the papillary thyroid 
carcinoma (PTC) groups. (B) The unit variance scaling mode (R2X=0.26, Q2=0.77); the color map shows the significance of metabolite variations between the 
two classes. Metabolites were more abundant in the PTC presented as peaks in the positive direction. The region of δ5.0-9.0 was magnified 10 times compared 
with corresponding region of δ0.6-4.6 for the purpose of clarity. Abbreviations of the assignments are shown in Fig. 2.
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validity of the PLS-DA models, the robustness of the models 
was assessed using a 200-permutations validation model, which 
showed that the originally observed separation was not due to 
a random effect, as the predictive discrimination values of the 
random models were all lower than that of the original model.

OPLS-DA. Additional OPLS-DA was conducted to establish the mean 
center-scaling model and the unit variance scaling model. The mean 
center-scaling model descriptors (R2X, Q2) were 0.79/0.66 (Fig. 5A), 
and the unit variance scaling mode descriptors (R2X, Q2) were 
0.26/0.77 (Fig. 5B), indicating these models were reliable.

Differential metabolites in PTC. Based on the unit vari-
ance scaling OPLS-DA model, there were 26  differential 

metabolites identified. The differential metabolites in PTC are 
presented in Table I and Fig. 5B. To find the robustly changed 
metabolites, we verified the changed metabolites in the mean 
center-scaling model, which identified 16 differential metabo-
lites  (Table II   and Fig. 5A), among which 15 consistently 
changed metabolites were found (Table III).

Metabolic pathway analysis and biological significance inter-
pretation. The 15 metabolites related to PTC with robust results 
were then annotated with KEGG and HMDB  (Table III ). 
The results were submitted to MetaboAnalyst to show the 
statistical analysis results of informatics analysis. The result 
of pathway analysis is shown in Table IV and Fig. 6A, which 
found 8 pathways including glycerophospholipid metabolism, 
aminoacyl-tRNA biosynthesis, valine, leucine and isoleucine 
biosynthesis, propanoate metabolism, nitrogen metabolism, 
valine, leucine and isoleucine degradation, primary bile acid 
biosynthesis, and glycine, serine and threonine metabolism 
were significantly related to PTC. Furthermore, in order to 
expand the understanding of metabolic pathway related to 
PTC, the module of enrichment analysis of MetaboAnalyst 
was used, which found 3 additional pathways including protein 
biosynthesis, phospholipid biosynthesis and methionine 
metabolism significantly related to PTC (Table V and Fig. 6B). 
Finally, based on biological significance and the above infor-
matics analysis, the metabolic network related to PTC was 
built (Fig. 7), which indicated the key metabolisms related 
to PTC including branched chain amino acid metabolism 

Table I. OPLS-DA coefficients derived from the NMR data of 
metabolites in thyroid obtained from PTC and normal tissue in 
the unit variance scaling mode.

Metabolites	 ra

Alanine: 1.48(db)	 0.738
Choline: 3.20(s)	 0.758
Citrate: 2.57(d), 2.69(d)	 -0.792
Creatine: 3.04(s), 3.93(s)	 0.594
Ethanolamine: 3.14(t), 3.85(t)	 0.858
Glutamate: 2.15(m), 2.35(m), 3.78(t)	 0.831
Glycine: 3.56(s)	 0.566
Glycerophosphocholine: 3.23(s), 3.35(s)	 0.754
Isoleucine: 0.94(d), 1.01(d)	 0.597
Inosine: 6.10(d), 8.23(s), 8.34(s)	 0.897
L1, LDL, CH3-(CH2)n-: 0.86(br)	 0.732
L2, VLDL, CH3-(CH2)n-: 0.90(br)	 -0.762
L3, VLDL, CH3-(CH2)n-: 1.29(br)	 -0.628
L4, VLDL, -CH2-CH2-C=O: 1.59(br)	 -0.822
L5, Lipid, -CH2-C=O: 2.26(br)	 -0.738
Lactate: 1.33(d), 4.11(q)	 0.893
Leucine: 0.96(t)	 0.767
Lysine: 1.72(m), 1.91(m), 3.01(m), 1.76(t)	 0.750
N-acetyl glycoprotein signals: 2.03(s)	 0.520
Phenylalanine: 7.33(d), 7.37(t), 7.43(dd)	 0.759
Taurine: 3.28(t), 3.43(t)	 0.861
Tyrosine: 6.90(d), 7.20(d)	 0.532
Unknown-1: 1.07(m)	 0.854
Unknown-2: 2.06(m)	 -0.679
Uridine diphosphate glucose: 5.61(dd),	 0.569
5.98(m), 7.96(d)
Valine: 0.99(d), 1.04(d)	 0.889

aCorrelation coefficients, positive and negative signs indicate positive and 
negative correlation in the concentrations, respectively. The correlation 
coefficient of |r| >0.482 was used as the cut-off value for the statistical sig-
nificance based on the discrimination significance at the level of P=0.05 
and df (degree of freedom)  =  15. bMultiplicity:  s,  singlet; d,  doublet; 
t, triplet; q, quartet; dd, doublet of doublets; m, multiplet; br, broad reso-
nance; OPLS-DA, orthogonal partial least‑squares discriminant analysis; 
NMR, nuclear magnetic resonance; PTC, papillary thyroid carcinoma.

Table II. VIP value derived from the NMR data of metabolites 
in thyroid obtained from PTC and normal tissue in the mean 
center-scaling model.

Metabolites	 VIPa

Lactate: 1.33(db), 4.11(q)	 10.81
L3, VLDL, CH3-(CH2)n-: 1.29(d)	 9.81
Glycerophosphocholine: 3.23(s), 3.35(s)	 9.24
Unknown-1: 1.07(m)	 3.63
L1, LDL, CH3-(CH2)n-: 0.86(br)	 3.05
Valine: 0.99(d), 1.04(d)	 2.81
L2, VLDL, CH3-(CH2)n-: 0.90(br)	 2.62
Taurine: 3.28(t), 3.43(t)	 2.44
N-acetyl glycoprotein signals: 2.03(s)	 2.29
Myo-inositol: 3.56(dd), 3.63(dd), 4.06(t)	 2.19
Citrate: 2.57(d), 2.69(d)	 1.81
Leucine: 0.96(t)	 1.63
Ethanolamine: 3.14(t), 3.85(t)	 1.63
Choline: 3.20(s)	 1.26
Unknown-2: 2.06(m)	 1.13
Glycine: 3.56(s)	 1.04

aThe VIP value >1.00 was used as the cut-off value for the statistical 
significance based on the discrimination significance at the level 
of P=0.05. bMultiplicity: s,  singlet; d, doublet; t,  triplet; q, quartet; 
dd, doublet of doublets; m, multiplet; br, broad resonance; VIP, vari-
able importance in projection; NMR, nuclear magnetic resonance; 
PTC, papillary thyroid carcinoma.
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Table III. The consistently changed metabolites in thyroid obtained from PTC and normal tissue in the OPLS-DA models.

Metabolites	 KEGG	 HMDB	 ra	 VIPb	 Pathway

Choline	C 00114	 HMDB0097	 0.758	 1.26	C holine metabolism
Ethanolamine	C 00189	 HMDB0149	 0.858	 1.63	C holine metabolism
Glycerophosphocholine	C 00670	 HMDB0086	 0.754	 9.24	C holine metabolism
Lactate	C 00186	 HMDB0190	 0.893	 10.81	 Glycolysis
Citrate	C 00158	 HMDB0094	 -0.792	 1.81	T ricarboxylic acid cycle
Leucine	C 00123	 HMDB0687	 0.767	 1.63	 Branched chain amino acid metabolism
Valine	C 00183	 HMDB0883	 0.889	 2.81	 Branched chain amino acid metabolism
Glycine	C 00037	 HMDB0123	 0.566	 1.04	O ther amino acid metabolism
Taurine	C 00245	 HMDB0251	 0.861	 2.44	O ther amino acid metabolism
L1, LDL	NA	NA	   0.732	 3.05	L ipid metabolism
L2, VLDL	NA	NA	   -0.762	 2.62	L ipid metabolism
L3, VLDL	NA	NA	   -0.628	 9.81	L ipid metabolism
N-acetyl glycoprotein	NA	NA	   0.520	 2.29	NA
signals
Unknown-1: 1.07(m)	NA	NA	   0.854	 3.63	NA
Unknown-2: 2.06(m)	NA	NA	   -0.679	 1.13	NA

aCorrelation coefficients derived from the unit variance scaling model, positive and negative signs indicate positive and negative correlation 
in the concentrations, respectively. The correlation coefficient of |r| >0.482 was used as the cut-off value for the statistical significance based 
on the discrimination significance at the level of P=0.05 and df=15. bThe VIP value derived from the mean center-scaling model >1.00 was 
used as the cut-off value for the statistical significance based on the discrimination significance at the level of P=0.05. PTC, papillary thyroid 
carcinoma; OPLS-DA, orthogonal partial least-squares discriminant analysis; NA, not available; df, degrees of freedom.

Table IV. Pathway analysis of metabolic changes in PTC.a

KEGG pathway	T otal	E xpected	 Hits	I mpact	 P-value

Glycerophospholipid metabolism	 39	 0.146	 3	 0.087	 3.09E-04
Aminoacyl-tRNA biosynthesis	 75	 0.280	 3	 0.000	 2.13E-03
Valine, leucine and isoleucine biosynthesis	 27	 0.101	 2	 0.027	 4.16E-03
Propanoate metabolism	 35	 0.131	 2	 0.000	 6.94E-03
Nitrogen metabolism	 39	 0.146	 2	 0.000	 8.57E-03
Valine, leucine and isoleucine degradation	 40	 0.150	 2	 0.022	 9.01E-03
Primary bile acid biosynthesis	 47	 0.176	 2	 0.016	 1.23E-02
Glycine, serine and threonine metabolism	 48	 0.179	 2	 0.188	 1.28E-02
Cyanoamino acid metabolism	 16	 0.060	 1	 0.000	 5.84E-02
Citrate cycle (TCA cycle)	 20	 0.075	 1	 0.063	 7.25E-02
Taurine and hypotaurine metabolism	 20	 0.075	 1	 0.331	 7.25E-02
Ether lipid metabolism	 23	 0.086	 1	 0.000	 8.29E-02
Thiamine metabolism	 24	 0.090	 1	 0.000	 8.64E-02
Pantothenate and CoA biosynthesis	 27	 0.101	 1	 0.000 	 9.67E-02
Glycolysis or gluconeogenesis	 31	 0.116	 1	 0.000 	 1.10E-01
Pyruvate metabolism	 32	 0.120	 1	 0.138	 1.14E-01
Methane metabolism	 34	 0.127	 1	 0.000	 1.20E-01
Glutathione metabolism	 38	 0.142	 1	 0.000	 1.34E-01
Lysine degradation	 47	 0.176	 1	 0.000	 1.63E-01
Glyoxylate and dicarboxylate metabolism	 50	 0.187	 1	 0.003	 1.72E-01
Purine metabolism	 92	 0.344	 1	 0.000	 2.96E-01
Porphyrin and chlorophyll metabolism	 104	 0.389	 1	 0.000	 3.28E-01

aThe analysis was conducted by the module of pathway analysis of MetaboAnalyst 3.0. PTC, papillary thyroid carcinoma; KEGG, Kyoto 
Encyclopedia of Genes and Genomes.
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(leucine and valine), other amino acid metabolism (glycine and 
taurine), glycolysis (lactate), tricarboxylic acid cycle (citrate), 
choline metabolism (choline, ethanolamine and glycerolphos-
phocholine) and lipid metabolism (VLDL and LDL).

Discussion

Based on the rapid development of analytical techniques, metab-
olomics has been applied in many fields such as biochemical and 
clinical study (21-24). In the study of human diseases, metabo-
lomics takes advantage of novel biomarker exploration and 
pathophysiological interpretation at the molecular level (21-24). 
However, until now, there are only NMR-based metabolomic 
studies focusing on the diagnosis of PTC (9-11), and therefore 

the detailed metabolic changes potentially related to PTC 
pathogenesis are still largely unknown. In this study, based on 
the results of PCA, PLS-DA, OPLS-DA models (Figs. 3-5), we 
first identified key metabolites related to PTC (Table III). Then, 
after KEGG and HMDB annotation and following pathway and 
enrichment analysis, we found significant metabolic pathways 

Figure 6. The results of pathway analysis and enrichment analysis of the metabolomic data. (A) Pathway analysis based on Kyoto Encyclopedia of Genes and 
Genomes (KEGG). (B) Enrichment analysis based on Small Molecule Pathway Database (SMPDB).

Figure 7. The metabolic network in papillary thyroid carcinoma (PTC). Red shows 
an increase in PTC; green, shows a decrease in PTC; black, shows no available 
data; blue, shows relevant metabolic pathway in PTC. TCA, tricarboxylic acid.

Table V. Pathway enrichment of metabolic changes in PTC.a

Pathway from SMPDB	T otal	E xpected	 Hits	 P-value

Protein biosynthesis	 19	 0.207	 2	 1.64E-02
Phospholipid biosynthesis	 19	 0.207	 2	 1.64E-02
Methionine metabolism	 24	 0.262	 2	 2.58E-02
Valine, leucine and	 36	 0.393	 2	 5.50E-02
isoleucine degradation
Taurine and hypotaurine	 7	 0.076	 1	 7.42E-02
metabolism
Bile acid biosynthesis	 49	 0.535	 2	 9.52E-02
Glutathione metabolism	 10	 0.109	 1	 1.04E-01
Betaine metabolism	 10	 0.109	 1	 1.04E-01
Ammonia recycling	 18	 0.196	 1	 1.81E-01
Propanoate metabolism	 18	 0.196	 1	 1.81E-01
Pyruvate metabolism	 20	 0.218	 1	 1.99E-01
Porphyrin metabolism	 22	 0.240	 1	 2.17E-01
Citric acid cycle	 23	 0.251	 1	 2.26E-01
Glycine, serine and	 26	 0.284	 1	 2.51E-01
threonine metabolism
Gluconeogenesis	 27	 0.295	 1	 2.60E-01

aThe analysis was conducted by the module of enrichment 
analysis of MetaboAnalyst 3.0. PTC, papillary thyroid carcinoma; 
SMPDB, Small Molecule Pathway Database.
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related to PTC (Fig. 6), through which we found the metabolic 
network related to PTC, indicating the metabolic changes 
potentially related to PTC pathogenesis (Fig. 7).

Robust changes of metabolite levels in PTC included 
increased lactate, which participates in significantly changed 
KEGG pathway of propanoate metabolism directly related to 
glycolysis. The significant increase of lactate in other cancers such 
as colon cancer and prostate cancer has been reported in previous 
studies (25,26). This metabolic response in PTC indicated an 
increase of the glycolytic flux due to hypoxia and ischemia in the 
tumor tissues or the consequence of the so-called ‘Warburg effect’, 
producing more waste products such as lactate (27). Previous 
GC-MS based metabolomics study did not monitor lactate but 
found the increased expression of the gene LDHA encoding 
lactate dehydrogenase which catalyzes the synthesis of lactate 
in PTC (7), which was consistent with the present study. Citrate 
which was a significantly decreased metabolite in PTC tissue 
participates in the tricarboxylic acid cycle which is directly related 
to glycolysis. Previous study also revealed that the decreased 
tricarboxylic acid cycle was accompanied by increased glycolytic 
flux in gastric cardia cancer due to decreased pyruvic acid efflux 
into the tricarboxylic acid cycle (28). Normal tricarboxylic acid 
cycle may have an inhibitory effect on cancer progression (28). 
Collectively, these findings revealed increased glycolysis and 
inhibited tricarboxylic acid cycle in PTC, which may be biologi-
cally related to PTC pathogenesis.

Notably, the robust changes of amino acids in PTC include 
leucine and valine. Leucine and valine were also included in 
significantly changed KEGG pathway such as aminoacyl‑tRNA 
biosynthesis, and valine, leucine and isoleucine biosynthesis and 
degradation as well as SMPDB pathway including protein biosyn-
thesis. Branched-chain amino acids include isoleucine, leucine 
and valine. Recent metabolomics studies have consistently 
revealed that branched-chain amino acids is positively related 
to obesity (29) and diabetes (23,29), which are both endocrine 
abnormalities and associated with the risk of PTC (30). In the 
unit variance scaling mode, isoleucine was also identified as the 
biomarker with increased level in PTC. Additionally, isoleucine 
and leucine have been identified as tumor promoters of bladder 
cancer (31). Glycine is involved in the body's production of DNA, 
phospholipids and collagen, as well as in release of energy. It 
participates in significantly changed KEGG pathways such as 
glycine, serine and threonine metabolism. It is reported that glycine 
plays an important role in rapid cancer cell proliferation (32). 
Amino acid derivative, the increase of taurine was found in PTC. 
Taurine was identified as a possible fingerprint biomarker in non-
muscle invasive bladder cancer (33). It participates in significantly 
changed KEGG pathways of aminoacyl-tRNA biosynthesis, indi-
cating the abnormal protein biosynthesis in PTC. As suggested by 
Tessem et al in colon cancer, the increase of taurine may reflect 
an imbalance in osmolyte function in cancer cells (25). Therefore, 
the increased levels of branched chain amino acids, glycine and 
taurine in PTC should attract attention as they may be the onco-
genic biomarkers of PTC 29).

Significant KEGG pathway including glycerophospholipid 
metabolism and SMPDB pathways including phospholipid 
biosynthesis as well as methionine metabolism both are rela
ted to choline metabolism covering choline, ethanolamine and 
glycerophosphocholine. Glycerophosphorylcholine is a choline 
derivative and one of the major forms of choline storage. Indeed, 

the abnormal choline metabolism has been reported in breast 
cancer (34). As indicated in SMPDB, choline metabolism is 
related to the body methylation status which is associated with 
thyroid carcinoma pathogenesis (35). In this study, the metabolites 
in lipid metabolism including VLDL and LDL also changed in 
PTC. This finding is consistent with blood lipid profile alterations 
in another malignant disease, acute lymphoblastic leukemia (36).

It is urgent to seek new biomarkers for thyroid carcinoma. 
Metabolomic profiles from tissue have the potential to be used 
in conjunction with current diagnostics to help guide the clinical 
management of patients with PTC (9-11). Our study not only estab-
lished robust multivariate analysis models that could discriminate 
PTC, but also identified robust metabolic signatures of PTC based 
on different statistical models. The robustly changed metabolites 
identified in this study may be used as potential biomarkers for 
PTC, among which consistent results were found on lactate and 
taurine in another metabolomics study regarding PTC (10).

In conclusion, in this study, we found that the metabolomic 
profiling could discriminate PTC in conjunction with multivar-
iate analysis, and identified robust metabolic signatures of PTC. 
After informatics analysis, we found the PTC is characterized 
with increased glycolysis and inhibited tricarboxylic acid cycle, 
increased oncogenic amino acids as well as abnormal choline 
and lipid metabolism, which needs further research to deeply 
study the underlying mechanism and the usage of the study 
findings in the intervention of PTC. The findings in this study 
provide new insights into metabolic changes of PTC, and hold 
great potential in the treatment of PTC.
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