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Abstract. Adipose tissue tumors (lipomas) frequently develop 
in patients with heterozygous germ line phosphatase and 
tensin homolog (PTEN) mutations. simvastatin has been 
demonstrated to exhibit antitumor effects, and so the aim of 
the present study was to assess the effects of simvastatin on 
the growth of human PTEN haploinsufficient lipoma cells. 
Whether the effects of simvastatin in lipomas are mediated 
via PTEN upregulation was also assessed. The results of the 
present study revealed that simvastatin treatment reduced 
cell viability and induced apoptosis in human lipoma cells. 
Furthermore, it was demonstrated that the expression of 
cellular PTEN mRNA and protein was increased following 
simvastatin stimulation. In addition, the phosphorylation 
of protein kinase B and downstream targets of mammalian 
target of rapamycin and 4E‑binding protein (4E‑BP)‑1 was 
attenuated. It was also demonstrated that simvastatin induced 
PTEN transcriptional upregulation by increasing peroxisome 
proliferator‑activated receptor (PPAR)γ expression. The small 
interfering RNA‑mediated knockdown of PPARγ abrogated 
the stimulatory effect of simvastatin on the PTEN protein, but 
did not influence apoptosis. The results of the present study 

suggest that simvastatin may be beneficial for patients with 
inoperable PTEN haploinsufficient lipomas. 

Introduction

Benign tumors of adipose tissue are often exhibited in 
humans with rare phosphatase and tensin homolog (PTEN) 
Hamartoma Tumor Syndrome (PHTS), which is caused by 
heterozygous germ line mutations within the tumor suppressor 
PTEN gene  (1). Although noncancerous, these lipomas 
frequently develop to form extended fatty tissue tumors 
(lipomatosis), which may infiltrate other tissues and cause 
numerous side effects, including organ obstruction, resulting 
in loss of function and chronic pain  (2). A previous study 
assessed a child with a severe PHTS phenotype who exhib-
ited abdominal lipomatosis (3). It was demonstrated that an 
individual treatment attempt using the mammalian target of 
rapamycin complex (mTOR)1 inhibitor sirolimus led to an 
improvement in the patient's general condition and a decrease 
in thymus size; however, lipomatosis regression was not 
observed (3). At present, no targeted therapies for the treat-
ment of PHTS‑associated lipomatosis exist. Surgical excision 
of the tumor and symptomatic treatment remain the only form 
of therapy available (4). There is therefore an urgent need to 
uncover novel therapeutic approaches for patients with PHTS 
and non‑resectable adipose tissue tumors. 

Statins, also known as 3‑hydroxy‑3‑methylglutaryl‑CoA 
reductase inhibitors, are widely utilized to decrease serum 
cholesterol levels (5). Previous studies have demonstrated that 
statins elicit numerous non‑lipid modifying effects, which 
have been revealed to exhibit anti‑tumor effects in  vitro, 
in vivo and in epidemiological studies  (6‑9). In particular, 
simvastatin was demonstrated to increase PTEN protein 
levels and activity, thus downregulating the activation of the 
phosphatidylinositol 3‑kinase (PI3K)/protein kinase B (AKT) 
signaling pathway (10‑13). Furthermore, a case report of a 
54‑year‑old man described a dramatic reduction of an isolated 
subcutaneous lipoma associated with simvastatin therapy (14). 

The aim of the present study was to assess the effects 
of simvastatin on three lipoma cell lines, termed lipoma 
PTEN‑deficient 1‑3 (LipPD1‑3), established from the resected 
lipoma tissue of pediatric patients with heterozygous germ line 

Simvastatin induces apoptosis in 
PTEN‑haploinsufficient lipoma cells

FRANZISKA KÄSSNER1,  TINA SAUER1,  MELANIE PENKE1,  SANDY RICHTER1,  KATHRIN LANDGRAF1,2,  
 ANTJE KÖRNER1,2,  WIELAND KIESS1,  NORMAN HÄNDEL1  and  ANTJE GARTEN1,3

1University Hospital for Children and Adolescents, Center for Pediatric Research Leipzig (CPL); 
2Leipzig University Medical Center, IFB Adiposity Diseases, D‑04103 Leipzig, Germany; 

3University of Birmingham, Institute of Metabolism and Systems Research (IMSR), Birmingham B15 2TT, UK

Received June 9, 2017;  Accepted January 31, 2018

DOI: 10.3892/ijmm.2018.3568

Correspondence to: Dr Antje Garten, University of Birmingham, 
Institute of Metabolism and Systems Research, Wolfson Drive, 
Birmingham B15 2TT, UK
E‑mail: a.garten@bham.ac.uk

Abbreviations: 4E‑BP‑1, 4E‑binding protein; mTOR, mammalian 
target of rapamycin; PTEN, phosphatase and tensin homologue; PHTS, 
PTEN hamartoma tumor syndrome; PI3K, phosphatidylinositol 
3‑kinase; PPARγ, peroxisome proliferator‑activated receptor gamma; 
siRNA, small interfering RNA

Key words: human adipocytes, phosphatase and tensin homologue, 
protein kinase  B, simvastatin, peroxisome proliferator‑activated 
receptor  γ, phosphatase and tensin homologue hamartoma tumor 
syndrome, lipomatous overgrowth



KÄSSNER et al:  SIMVASTATIN INDUCES APOPTOSIS IN LIPOMA CELLS3692

PTEN deletion or mutations. It was hypothesized that simv-
astatin treatment may lead to attenuated cell growth or the 
induction of apoptosis in these PTEN haploinsufficient lipoma 
cells by increasing levels of the PTEN protein.

Materials and methods

Informed consent. Written informed consent was provided 
by the parents of all patients enrolled in the present study. A 
total of 3 patients (2 male, 1 female) and 2 healthy control 
patients (1 male, 1 female), aged 0‑18 years were enrolled in 
the present study. All patients were admitted to the Hospital 
for Child and Adolescent Medicine (Leipzig University, 
Leipzig, Germany) and samples were collected between 
July 2007 and December 2016. Patients with morbidities other 
than PHTS were excluded. One patients received sirolimus 
following lipoma resection (3). All LipPD cells used in this 
study were obtained from lipomatous adipose tissue that 
was resected for diagnostic and therapeutic reasons. Control 
primary pre‑adipocytes were removed from adipose tissue 
obtained from pediatric or young adult patients during routine 
surgery. Ethical approval for these studies was obtained 
from the Ethics Committee of the University of Leipzig (ref. 
no. 425‑12‑171220; Leipzig, Germany).

Cell lines, cell culture and treatments. Genetic analyses of 
PTEN revealed a heterozygous deletion affecting exons 2‑9 
of 9 of PTEN in LipPD1 cells (3,15). A heterozygous PTEN 
mutation was detected in LipPD2 (c.404T>A, p.I135K) and 
LipPD3 (exon 1, c.76A>C, p.T26P). A schematic presenta-
tion of the genetic changes in PTEN is presented in Fig. 1A. 
The following cells were used as PTEN wild-type controls: 
Simpson‑Golabi‑Behmel (SGBS, kindly supplied by 
Dr M. Wabitsch, University Hospital, Ulm, Germany) (16,17) 
cells and normal primary pre‑adipocytes obtained from pedi-
atric or healthy young adult adipose tissue. All cell strains 
were established according to protocols as described previ-
ously (3,17). Cells were maintained in Dulbecco's Modified 
Eagle's medium (DMEM)/F12 medium supplemented with 
10% fetal calf serum, glutamine (2 mM), biotin (33 mM) and 
pantothenic acid (17 mM; all from Biochrom, Ltd., Cambridge, 
UK) at 37˚C in a humidified atmosphere containing 5% CO2. 
InSolution™ simvastatin sodium salt was purchased from 
EMD Millipore (Billerica, MA, USA). Medium was replaced 
with serum‑free DMEM 24 h prior to cell stimulation with 0, 
0.1, 1 and 10 µM simvastatin for 6, 12, 24 or 48 h.

Cell viability and apoptosis. The effect of simvastatin on 
proliferation was measured using a Cell Proliferation Reagent 
WST‑1 (Roche Diagnostics GmbH, Mannheim, Germany) 
according to the manufacturer's protocol. Cells were seeded 
in 96‑well plates at a density of 10,000 cells/cm² and incu-
bated for 48 h with 0, 0.1, 1 and 10 µM simvastatin. Apoptosis 
was determined using Annexin V‑fluorescein isothiocyanate 
(FITC; BD  Pharmingen; BD Bioscience, San Jose, CA, 
USA)/propidium iodide (PI) staining according to manufac-
turer's protocol. Briefly, cells were seeded at a density of 5,000 
cells/cm² and incubated for 48 h with 0, 1 or 10 µM simvastatin. 
Cells were trypsinized and incubated with Annexin V‑FITC/PI 
for 10 min at 4˚C in the dark. Annexin V‑FITC‑positive cells 

represent early apoptosis and Annexin V‑FITC/PI double posi-
tive cells indicate late apoptotic cells.

Reverse transcription quantitative polymerase chain reaction 
(RT‑qPCR). For qPCR analysis mRNA was extracted from 
LipPD1 cells using the RNeasy mini kit (Qiagen GmbH, 
Hilden, Germany) according to the manufacturer's protocol. 
A total of 1 µg mRNA was reverse transcribed at 39˚C for 1 h 
into cDNA using M‑MLV Reverse Transcriptase (Invitrogen; 
Thermo Fisher Scientific, Inc., Waltham, MA, USA). PCR 
reactions were performed using Taqman Mastermix FAST 
qPCR Master Mix Plus Low ROX (Eurogentec, Liege, 
Belgium) or Absolute qPCR SYBR-Green Low ROX Mix 
(Thermo Fisher Scientific, Inc.) and the Applied Biosystems 
7500 Real-Time PCR System (Applied Biosystems; Thermo 
Fisher Scientific, Inc.). Primers and probes were designed 
using the PrimerExpress software version  3.0 (Applied 
Biosystems; Thermo Fisher Scientific, Inc.) and sequences 
are presented in Table I. The following thermocycling condi-
tions were used: Activation at 95˚C for 15 min, 40 cycles of 
denaturation at 95˚C for 15 sec, annealing at 60˚C for 30 sec, 
elongation at 72˚C for 30  sec. A standard curve of serial 
dilutions of plasmid DNA of the respective target gene was 
included on each plate. The copy number of each sample was 
calculated from the standard curve and normalised to the 
mean of the two housekeeping genes Tata box binding protein 
(TBP) or hypoxanthine phosphoribosyltransferase (HPRT) 
expression (18). 

Western blot analysis. For protein analysis, cells were lysed 
with modified radioimmunoprecipitation assay buffer [50 mM 
Tris HCl; pH 7.4; 1%  NP‑40; 0.25% sodium deoxycholate; 
1x  Roche complete proteases inhibitor cocktail (Roche 
Diagnostics GmbH); 1 mM EDTA; 1 mM sodium orthovana-
date; and 1 mM sodium fluoride], protein concentrations were 
determined using a DC protein assay (Bio‑Rad Laboratories, 
Inc., Hercules, CA, USA) and proteins (20 µg/lane) were sepa-
rated by 10% SDS‑PAGE. Following semi‑dry transfer onto 
nitrocellulose membranes, membranes were blocked using 
5% non‑fat dry milk in TBS buffer containing 0.1% Tween-20 
(TBST) for 1 h at room temperature. Blots were then incu-
bated overnight at 4˚C with the appropriate primary antibody. 
The antibodies utilized in western blotting are summarized 
in Table II. Blots were washed three times for 5 min with TBST 
and incubated with horseradish peroxidase (HRP)‑goat anti 
rabbit (P‑0448) or HRP‑goat anti mouse (P‑0447 antibodies 
(Dako; Agilent Technologies, Inc., Santa Clara, CA, USA) at a 
dilution of 1:2,000 for 2 h at room temperature. Protein bands 
were detected using Luminata Classico Western horseradish 
peroxidase Substrate (EMD Millipore) or Amersham ECL 
Prime Western Blotting Detection Reagent (GE Healthcare, 
Chicago, IL, USA). Glyceraldehyde‑3‑phosphate dehydro-
genase (EMD Millipore) was used as a loading control. 
ImageJ 1.41 was used for densitometric analysis (National 
Institutes of Health, Bethesda, MD, USA).

Small interfering (si)RNA‑mediated knockdown of PPARγ. 
LipPD1 cells were microporated using the Neon Transfection 
System 100  µl kit (Invitrogen; Thermo Fisher Scientific, 
Inc.) with the PPARγ ON‑TARGETplus SMARTpool siRNA 
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reagent and the respective negative control (ON‑TARGETplus 
control pool; GE Healthcare Dharmacon, Inc., Lafayette, CO, 
USA) as previously described (18). A total of 106 cells were 
transfected with siRNA at a final concentration of 500 nmol/l, 
seeded at a density of 105 cells/well in 6 well plates and 
cultured for 24 h. The following day, the culture medium was 
replaced with serum‑free DMEM for 24 h. Cells were then 
stimulated using simvastatin (10 µM) as above.

Statistical analysis. Data are presented as the mean ± standard 
error of the mean of at least three independent experiments. 
Significant differences were determined using GraphPad 
Prism 6 software (GraphPad Software, Inc., La Jolla, CA, 
USA) and the unpaired Student's t‑test or one‑way analysis 
of variance followed by a post hoc Bonferroni multiple 
comparison test. P<0.05 was considered to indicate a statisti-
cally significant difference.

Results

Decreased PTEN protein levels and enhanced AKT in PTEN 
deficient lipoma cells. Basal PTEN mRNA and protein levels 
were analyzed to assess the impact of the heterozygous PTEN 
deletions or mutations (Fig. 1A) on lipoma cells. Lipoma cells 
with a large heterozygous PTEN deletion  (3) possessed a 
significantly lower PTEN mRNA expression compared with 
PTEN wild-type control pre‑adipocytes (P<0.05; Fig. 1B). 
PTEN mRNA expression was similar in lipoma cells with 
PTEN point mutations and non‑mutant cells  (Fig.  1B). 
However, in all three lipoma cell cultures, PTEN protein 
levels were lower compared with PTEN wild-type control 
cells (P<0.05; Fig. 1C). It was then assessed whether reduced 
PTEN protein levels led to enhanced AKT phosphorylation. 
Mutation‑positive cells exhibited significantly higher levels of 

phosphorylated AKT (Thr308) compared with control cells 
(LipPD1 and LipPD3; P<0.05) (Fig. 1D). 

Simvastatin treatment induces apoptosis in lipoma cells. 
The effect of simvastatin on the viability of lipoma cells was 
determined following incubation for 24, 48 and 72 h (Fig. 2A). 
Simvastatin at 10 µM significantly decreased the viability 
of LipPD1, LipPD2 and LipPD3 cells to 67.5±8.3, 68.0±14.3 
and 64.0±9.2% at 48 h and to 42.3±8.8%, 43.3±14.0% and 
37.2±6.9% at 72 h incubation, (P<0.05; Fig. 2A and B). At the 
same dose and incubation time, simvastatin induced apoptosis 
by 28% in LipPD1 compared with LipPD1 cells incubated 
without simvastatin (Fig.  2C). Following incubation with 
10 µM simvastatin, cells were equally distributed between 
early and late apoptotic phases. No effect on cell viability was 
observed following an incubation of 24 h (data not shown).

Simvastatin treatment decreases AKT/mTOR activation. 
Previous studies have demonstrated that simvastatin 
upregulates PTEN transcription (8‑10), and so PTEN mRNA 
expression in lipoma cells was assessed following incubation 
with simvastatin. Stimulation with 10 µM simvastatin resulted 
in a significant increase in the expression of PTEN mRNA to 
1.4±0.1‑fold in LipPD1 compared with control cells following 
a 6  h incubation (P<0.05; data not shown). The effect of 
simvastatin on the PTEN protein and AKT/mTOR pathway 
activation following 6, 12, 24 and 48 h of incubation was then 
assessed. Simvastatin (10 µM) resulted in an increase in phos-
phorylated and total PTEN protein levels in LipPD1 cells when 
incubated for 24 h (Fig. 3A‑C). In addition, a downregulation 
in AKT phosphorylation at T308 and S473 (Fig. 3A, D and E) 
was observed following 24 and 48 h incubation. The activation 
of mTOR, a downstream target of AKT, was then examined. 
The results demonstrated that 48 h incubation with 10 µM 
simvastatin significantly decreased mTOR1 phosphorylation 
at Ser2448 by 48.8±1.2% (P<0.05; Fig. 3F and G) and phos-
phorylation of the mTOR target 4E‑binding protein‑1 (4EBP‑1) 
by 64.9±1.2% (P<0.05; Fig.  3F  and H). Increased PTEN 
protein levels were also observed in LipPD2 and LipPD3 cells 
following 6 h of incubation with 10 µM simvastatin (both 
P<0.05; data not shown). These results indicate that simvas-
tatin incubation affects PTEN protein levels and AKT/mTOR 
activation in a time‑dependent manner.

PPARγ mediates simvastatin action on PTEN protein 
expression, but not on apoptosis. The present study aimed to 
identify the mediators of simvastatin. Previous studies have 
demonstrated that simvastatin acts through the activation of 
nuclear factor (NF)κB (9,13,19). However, in the present study, 
no significant effect on NF-κB phosphorylation was observed 
following incubation with simvastatin (data not shown). 
Additionally, no significant upregulation of the NF-κB target 
protein B‑cell lymphoma‑2 (13,20,21) was detected (data not 
shown). Previous studies have indicated the ability of the tran-
scriptional regulator PPARγ to induce PTEN mRNA (22‑25). 
The results of the present study demonstrated that a 6  h 
simvastatin incubation significantly upregulated LipPD1 cell 
PPARγ protein expression by 1.88±0.3‑fold (P<0.05; Fig. 4A). 
It was then determined whether knockdown of PPARγ abro-
gated the stimulatory effect of simvastatin on PTEN levels. 

Table I. Primer and probe sequences.

Gene	D irection	 Sequence

PTEN	 Forward	 GTTTACCGGCTCAAAT
	 Reverse	CCCCC ACTTTCACAGT
PPARγ	 Forward	 GATCCAGTGGTTGCAGATTACAA 
	 Reverse	 GAGGGAGTTGGAAGGCTCTTC 
	 Probe	 TGACCTGAAACTTCAAGAGTACCA
		  AAGTGCAA 
TBP	 Forward	 TTGTAAACTTGACCTAAAGACCAT
		  TGC
	 Reverse	 TTCGTGGCTCTCTTATCCTCATG
	 Probe	 AACGCCGAATATAATCCCAAGCGGT
		  TTG
HPRT	 Forward	 GGCAGTATAATCCAAAGATGGTCAA
	 Reverse	 GTCTGGCTTATATCCAACACTTCGT
	 Probe	C AAGCTTGCTGGTGAAAAGGACCCC

PTEN, phosphatase and tensin homolog; PPARγ, peroxisome 
proliferator‑activated receptor; TBP, tata box binding protein, 
HPRT, hypoxanthine phosphoribosyltransferase.
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siRNA‑mediated knockdown of PPARγ to 34.8±1.2% was 
confirmed at the protein level (Fig. 4B) and this knockdown 
significantly attenuated the upregulation of PTEN mRNA 

and protein induced by simvastatin (P<0.05; Fig. 4C). These 
results indicate that simvastatin induces PTEN expression in 
a PPARγ‑dependent manner in LipPD1 cells. Furthermore, 

Figure 1. AKT phosphorylation is increased with lower PTEN protein levels in lipoma cells compared with PTEN wild-type pre‑adipocytes. (A) Schematic 
representation of the PTEN protein domains and mutation sites. Heterozygous deletion (LipPD1) or mutations (LipPD2 and LipPD3) of the PTEN gene are 
depicted. PTEN (B) mRNA and (C) protein expression in mutant lipoma cells (LipPD1‑3) in comparison with PTEN wild-type control (SGBS, normal primary) 
pre‑adipocytes. mRNA data were normalized to the Tata box binding protein and Glyceraldehyde‑3‑phosphate dehydrogenase, respectively. (D) Phosphorylation 
of AKT (threonine 308) in mutant lipoma cells (LipPD1‑3) compared with wild-type control cells. Phosphorylation of AKT was normalized to total AKT 
levels. All data are presented as the mean ± standard error of the mean. Statistical analysis was performed using a Student's t‑test. *P<0.05 vs. the mean of all 
three PTEN wild-type cells. AKT, protein kinase B; PTEN, phosphatase and tensin homolog; LipPD1‑3, lipoma PTEN‑deficient 1‑3; p, phosphorylated; PDZ, 
Post synaptic density protein (PSD95), Drosophila disc large tumor suppressor (Dlg1) and zonula occludens‑1 protein (ZO‑1), PEST, proline (P), glutamic 
acid (E), serine (S) and threonine (T).

Table II. Primary antibodies utilized in western blotting.

Antibody	 Supplier	C at. no.	D ilution

4E‑BP1	 NEB	 9644	 1:1,000
Phospho‑4E‑BP1 (Threonine 37/46)	 NEB	 2855	 1:1,000
AKT	 NEB	 9272	 1:1,000
Phospho‑AKT (Threonine 308)	 NEB	 4056	 1:1,000
Phospho‑AKT (Serine 473)	 NEB	 4060	 1:1,000
GAPDH	 Merck KGaA	 MAB374	 1:100,000
p44/42 MAPK (ERK1/2)	 NEB	 9102	 1:1,000
Phospho‑p44/42 mitogen activated protein	 NEB	 9101	 1:1,000
kinase (ERK1/2) (Threonine 202/Tyrosine 204)
mTOR	 NEB	 2983	 1:1,000
Phospho‑mTOR (Serine 2448)	 NEB	 2971	 1:1,000
Peroxisome proliferator‑activated receptor γ	 NEB	 2443	 1:1,000
Phosphatase and tensin homolog	 NEB	 9559	 1:1,000

NEB is located in Ipswich, MA, USA. Merck KGaA is located in Darmstadt, Germany. 4E‑BP1, 4E‑binding protein‑1; phospho, phosphory-
lated; AKT, protein kinase B; ERK, extracellular signal‑related kinase; mTOR, mammalian target of rapamycin.
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Figure 2. Simvastatin treatment decreased lipoma cell viability and induced apoptosis. LipPD1‑3 cells were incubated with increasing doses of simvastatin. 
Cell viability was measured using a WST‑1 assay following (A) 48 and (B) 72 h incubation. Data were normalized to the untreated control. (C) LipPD1 cells 
were stained with Annexin V/propidium iodide following 48 h incubation with simvastatin and apoptosis was assessed. Data are presented as the mean ± stan-
dard error of the mean of three independent experiments. Statistical analysis was performed using one‑way analysis of variance and the post‑hoc Bonferroni 
test. *P<0.05 vs. untreated cells. LipPD1‑3, lipoma phosphatase and tensin homolog‑deficient 1‑3.

Figure 3. Simvastatin treatment decreased AKT/mTOR activation following prolonged treatment. (A) LipPD1 cells were stimulated with 10 µM simvastatin in 
culture medium for 6, 12, 24 or 48 h. PTEN mRNA expression was quantified using reverse transcriptase polymerase chain reactions. Data were normalized 
to TBP and then compared with the expression level exhibited in the untreated controls. Relative expression of (B) phospho PTEN, (C) PTEN, (D) phospho 
AKT and (E) total AKT. (F) LipPD1 cells were stimulated with 10 µM simvastatin in culture medium for 48 h. Relative expression of (G) mTOR (Ser2448) 
and (H) 4E‑BP1 (Thr37/46) were calculated. All data are presented as the mean ± standard error of the mean. Statistical analysis was performed using a 
Student's t‑test or one‑way analysis of variance with a post hoc Bonferroni test. *P<0.05 vs. untreated cells. AKT, protein kinase B; mTOR, mammalian target 
of rapamycin; PTEN, phosphatase and tensin homolog; phospho, phosphorylated; LipPD1‑3, lipoma PTEN‑deficient 1‑3; TBP, Tata box binding protein; Ser, 
Serine; Thr, threonine; GAPDH, glyceraldehyde‑3‑phosphate dehydrogenase; pAKT, phosphorylated AKT; 4E‑BP1, 4E‑binding protein‑1; pmTOR, phos-
phorylated mTOR; p4E‑BP1, phosphorylated 4E‑BP1.
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the present study assessed whether PPARγ knockdown would 
effect simvastatin‑induced apoptosis. No significant differ-
ences in apoptosis induction or in the distribution of cells 
between early and late apoptotic phases were identified in 
PPARγ‑knockdown cells compared with control‑transfected 
cells following stimulation with simvastatin (Fig. 4D). 

Discussion

At present, treatment options for patients with non‑resectable 
PHTS‑associated lipomatosis are limited. Sirolimus, an inhib-
itor of mTOR1, was successfully used to treat patients with other 
PHTS‑associated complications (23‑25). However, it was not 
effective at reducing lipoma growth in a patient with PHTS due to 
the heterozygous germ line deletion of PTEN (3). The aim of the 
present study was to test the effects of simvastatin on the growth 
of human lipoma cells derived from tumors with heterozygous 
mutations or deletions of PTEN. Simvastatin was selected for 
use as it has been demonstrated to exert anti‑proliferative and 
growth‑inhibitory actions on a number of cancer cell lines and 
tumor animal models (6,7,10,18,22,26‑30). In accordance with 
these results, the present study demonstrated that simvastatin 
reduced the viability of PTEN mutant lipoma cells by inducing 
apoptosis in a time‑ and dose‑dependent manner. 

A potential mechanism of simvastatin action is the 
increase of PTEN protein levels and consequent suppression 

of AKT/mTOR signaling. This has been addressed by previous 
studies in various tissues, cancer cell lines and cancer xenograft 
animal models (8‑10). In accordance with previous studies 
using tissues harvested from patients with PHTS (28,34), the 
results of the present study demonstrated that PTEN protein 
levels are reduced and AKT activation is increased in PTEN 
mutant lipoma cell cultures compared with PTEN wild-type 
cells. Furthermore, decreased PTEN mRNA levels were only 
identified in lipoma cells with a large heterozygous PTEN dele-
tion (LipPD1 cells) and not in lipoma cells with heterozygous 
PTEN mutations (LipPD2 and LipPD3 cells). This contrast 
between normal mRNA expression and low protein levels may 
indicate the occurrence of a post‑transcriptional event, such 
as increased protein degradation, due to mutations in PTEN. 

Simvastatin treatment resulted in a transient upregula-
tion of PTEN mRNA and protein levels in lipoma cells. In 
the present study, it was investigated by which mechanism 
simvastatin mediated this effect. The transcriptional regu-
lator PPARγ has previously been reported to upregulate the 
transcription of PTEN and thereby influence AKT phos-
phorylation in non‑malignant and cancer cells  (10,19‑22). 
The results of the present study demonstrate that PPARγ 
exhibits a similar expression pattern to PTEN following 
simvastatin stimulation of lipoma cells. However, the tran-
sient knockdown of PPARγ abrogated the increase in lipoma 
cell PTEN protein levels following simvastatin treatment. 

Figure 4. PPARγ knockdown attenuates simvastatin‑induced upregulation of the PTEN protein and has no effect on apoptosis. (A) LipPD1 cells were incubated 
with 10 µM simvastatin in culture medium for 6 h. PPARγ protein levels were quantified using western blot analysis and normalized to GAPDH. LipPD1 cells 
were then transfected with siRNA against PPARγ (siPPARγ+) or non‑targeted control siRNA (scrambled). (B) Knockdown of PPARγ was confirmed using 
western blot analysis. (C) PTEN protein levels of cells transfected with PPARγ siRNA or non‑targeted control siRNA following incubation with simvastatin 
or vehicle were assessed. (D) Induction of apoptosis following transfection with PPARγ siRNA or non‑targeted control siRNA. Apoptosis was detected using 
Annexin V/propidium iodide staining. Data are presented as the mean ± standard error of the mean. Statistical analysis was performed using Student's t‑test. 
*P<0.05 vs. control cells; #P<0.05 vs. simvastatin‑treated cells. PPARγ, peroxisome proliferator‑activated receptor; PTEN, phosphatase and tensin homolog; 
LipPD1, lipoma PTEN‑deficient 1; GAPDH, glyceraldehyde‑3‑phosphate dehydrogenase; siRNA, small interfering RNA.
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Additionally, PPARγ knockdown had no effect on simvas-
tatin‑mediated induction of apoptosis. This is in contrast to 
previous studies, which demonstrated that the induction of 
apoptosis by PPARγ agonists occurs via the upregulation of 
PTEN (10,19,22,32‑34). 

Previous studies have reported various pathways by which 
simvastatin affects cell viability that are dependent on the 
inhibition of the cholesterol biosynthesis pathway, including 
the attenuation of NF‑κB activation by a decrease in intracel-
lular isoprenoid concentrations followed by impaired inner 
membrane attachment and Ras, Rac or Rho protein func-
tion (32,33). However, the lipoma cells used in the present 
study did not exhibit a decrease in NF‑κB phosphorylation 
following incubation with simvastatin. The action of simvas-
tatin in prostate cancer cells may be associated with decreasing 
cellular cholesterol levels, leading to altered membrane lipid 
raft structures, causing a reduction in AKT phosphorylation 
and thus resulting in apoptosis (38). This effect of simvastatin 
on caveolar raft structures has also been demonstrated in 
adipocytes (39). In accordance with this, the present study 
detected a decrease in AKT, mTOR and the mTOR target 
4EBP‑1 phosphorylation following prolonged treatment with 
simvastatin. 

In conclusion, the results of the present study support the 
hypothesis that simvastatin treatment reduces the growth 
of lipoma cells and may be a promising candidate for the 
treatment of lipomatosis associated with PTEN haploinsuf-
ficiency. However, the effects of simvastatin are not mediated 
by PPARγ‑facilitated upregulation of PTEN in lipoma cells. 
Further studies in suitable animal models are required to 
evaluate the use of simvastatin treatment in patients with lipo-
matosis associated with PTEN haploinsufficiency. 
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