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An impaired hepatic clock system effects lipid
metabolism in rats with nephropathy
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Abstract. Hyperlipidemia is a key clinical feature in patients
with nephrotic syndrome (NS) that is associated with the inci-
dence of cardiovascular events. Recent studies have suggested
that the disorders of triglycerides, gluconeogenesis and liver
glucose metabolism are associated with the abnormal transcrip-
tion of clock genes. However, changes to the circadian rhythm
of blood lipids in NS require further exploration, and the effects
of NS on the hepatic clock system remain to be elucidated. In
the present study, the impaired diurnal rhythm of the hepatic
core clock genes (BMALI, CLOCK, CRYI, CRY2, PERI and
PER?2) significantly induced circadian rhythm abnormalities in
liver-specific clock-controlled genes (LXR, CYP7A1, SREBP-1,
ABCAI, DECI and DEC2; all P<0.05), which were significantly
associated with the abnormal diurnal rhythms of triglyceride,
total cholesterol, aspartate aminotransferase and alanine
aminotransferase (all P<0.05) in rats with Adriamycin-induced
nephropathy. Furthermore, a protein-protein interaction
network was identified. Gene Ontology and Kyoto Encyclopedia
of Genes and Genomes pathway analyses based on the human
database was conducted to obtain signaling pathway and
correlation prediction analyses of overall human clock and
clock-controlled gene correlations. Strong correlations of the
aforementioned clock genes were detected (avg. local clustering
coefficient, 0.849) which suggested significant enrichment in
circadian rhythm signaling. The present results indicated
that damage to hepatic clock systems may impact blood lipid
circadian rhythm disorders in NS, and offer a starting point
for understanding the crosstalk between peripheral organs and
peripheral clock systems.
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Introduction

Patients with chronic kidney disease (CKD) exhibit major
proatherogenic lipid abnormalities that are associated with their
prognosis (1). The severe disorder of lipoprotein metabolism in
patients with CKD typically manifests as higher triglyceride
(TG) levels and lower levels of high-density lipoprotein choles-
terol (HDL-C) (1). Dyslipidemia also increases the incidence
of coronary atherosclerosis and cardiovascular events. Notably,
improving hyperlipidemia may reduce dialysis morbidity and
mortality in patients with end-stage renal disease.

Notably, the mechanisms of dyslipidemia in nephrotic
syndrome (NS) are associated with hepatic biology, including
liver lipid regulatory enzymes, activity of low-density lipo-
protein (LDL) receptors and compensatory synthesis in the
liver (2). Liver-associated physiological processes exhibit
rhythmicity, and the circadian rhythm activities are regulated
by central and hepatic-specific clock systems (3).

Diurnal oscillations are regulated by conserved clock
genes in the organism, which act as a hierarchical, collabora-
tive, large-scale ‘circadian time’ (4). The majority of biological
processes,including the maintenance of blood pressure, sleeping
and respiratory rhythm, exhibit circadian rhythmicity, and are
also regulated by clock genes (5). These genes are expressed
in all cell types, including the ‘master clock’ located in the
suprachiasmatic nucleus and the peripheral clock in locations,
such as the kidney and liver (4). A previous study indicated
that genomic transcription was highly rhythmic, with <81.7%
of protein-coding genes exhibiting daily rhythms in expres-
sion (6). These oscillators dominate the rhythmic expression
of downstream clock-regulated genes, accounting for 10-15%
of the genes that regulate the circadian characteristics of the
physiological functions of peripheral organs (7).

The cell-autonomous molecular clock in mammals is
generated by two interlocking transcription/translation
feedback loops (TTFLs) that cooperate to produce robust
rhythms of gene expression. The core TTFL is driven by two
activators, circadian locomoter output cycles kaput (CLOCK)
and brain and muscle ARNT-like protein 1 (BMALI), and
two repressors cryptochrome (CRY) and period homologue
(PER) (8), which aid the organism to drive circadian rhythms
of behavioral activity and hormones (9). Previous studies have
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confirmed that the hepatic clock maintains normal glucose
(GLU) levels, fatty acids, fat mobilization and the rhythm of
other biochemical reactions in a steady state through the liver
X receptor (LXR), peroxisome proliferator-activated receptor
(PPAR) vy coactivator and PPAR signaling pathways to regu-
late TG, cholesterol and fat metabolism under physiological
conditions (3,10).

The clock system serves an essential role in homeostasis.
Notably, dyslipidemia is considered a homeostasis disorder
event in NS. However, the effects of the circadian rhythmicity
on blood lipids and the hepatic clock system in this context are
unclear. Therefore, the present study was performed to observe
the circadian rhythm of lipids and clock genes associated with
lipid metabolism in Adriamycin (ADR)-induced nephropathy
in rats to explore the potential effects of the clock system on
lipid metabolism abnormalities.

Materials and methods

Experimental animals and treatment protocol. A total of 36
adult male Sprague Dawley rats (8-weeks old; 245-265 g) were
purchased from Beijing HFK Bioscience Co., Ltd. (Beijing,
China). The animal experimental procedures were approved
by the Animal Ethics Committee of Peking Union Medical
College Hospital (PUMCH; Beijing, China). Furthermore, all
experiments were performed according to international and
institutional guidelines for animal care (11), and approved
by the PUMC Committee on Animal Care and Use. All rats
had access to standard food and tap water ad libitum. Rats
were housed at 23+2°C (12,13), under a strict 12-h light/dark
regimen whereby zeitgeber time ZT0-ZT12 with the lights
on represented the resting phase of the day and ZT12-ZT0
with the lights off represented the active phase of the day.
Following 2 weeks of adaptation, rats were randomly divided
into two groups: ADR group (ADR-induced nephropathy rats)
and control group (saline-treated rats). The NS model was
established 14 days from the single intravenous tail injection
of 6.5 mg/kg ADR (dissolved in saline; Pfizer, Inc., New York,
NY, USA) according to the protocol by Bertani et al (14).
Rats in the control group were injected with an equal volume
of saline only. The experimental animals were fasted in a
metabolic cage to assess 24-h urine excretion. A 24-h urine
excretion value of >100 mg (15) and foot process effacement
of renal tissues detected by electron microscopy (16) indicated
the successful establishment of the NS model. After 2 weeks,
the rats from the two groups were sampled every 4 h over 24 h
(3 rats/group at each time point, with a total of 18 normal rats
and 18 NS rats). During the sacrificed day, standard food and
water was provided ad libitum and treatments were quickly
finished to minimize the impact on the timer giver and animal,
consistent with other literature methodologies (12,13). The
handling of rats during the dark time period was performed
under a dim red light, which does not influence endogenous
melatonin production (17).

Blood samples and liver tissue. Rats from each group were
sacrificed at ZT 2:00, 6:00, 10:00, 14:00, 18:00 and 22:00 h.
The liver tissues were immediately frozen in liquid nitrogen
and stored in RNAlater (cat. no. AM7020; Ambion; Thermo
Fisher Scientific, Inc., Waltham, MA, USA) at -80°C. Blood
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samples were centrifuged at 6,391 x g for 10 min at 4°C.
Samples were sent to the Department of Laboratory Medicine,
PUMCH (Beijing, China). The following measurements
were performed with a Hitachi Modular P800 analyzer
(Hitachi, Ltd., Tokyo, Japan): Serum total cholesterol
(TC) (CHOD-PAP method; Roche Diagnostics GmbH,
Mannheim, Germany) (18), serum TGs (GPO-PAP method;
Roche Diagnostics GmbH), and HDL-C (Roche HDL-C
Plus 2nd generation kit; Roche Diagnostics GmbH). LDL-C
was calculated using the Friedewald formula (19). Albumin
was measured using the bromo-potassium phenol green
method (20) and serum creatinine was measured using a sarco-
sine oxidase method (21). Aspartate aminotransferase (AST)
and alanine aminotransferase (ALT) activity was assessed
with an automatic biochemical analyzer. Furthermore, GLU
levels were measured using the hexokinase method (22).

Transmission electron microscopy analyses. Fresh rat renal
tissues were removed in sections of ~2.0 mm® and fixed with
2.5% glutaraldehyde in 0.1 M Sorenson's phosphate buffer
(pH=7.41) for 2 h at 4°C. Following this, the samples were
washed three times with 0.1 M Sorenson's phosphate buffer.
The tissues were subsequently post-fixed for 1-1.5 h in 1%
0Os0O, in 0.1 M Sorenson's phosphate buffer, washed with
distilled water, then stained en bloc with 3% uranyl acetate
for 30 min at 25°C. Dehydration was performed using a
50-95% graded ethanol series, followed by two changes in
propylene oxide. Sections of 70-80 nm were cut, and collected
on a 200 copper/rhodium grid stained with uranyl acetate and
lead citrate. Following this, samples were observed under a
transmission electron microscope (magnification, x5,000).

Reverse transcription-quantitative polymerase chain reaction
(RT-gPCR) analysis. Total RNA was extracted from frozen
heart tissues using RNAiso Plus reagents (cat. no. 9109;
Takara Bio, Inc., Otsu, Japan) according to the manufacturer's
protocol. RNA was reverse transcribed using the PrimeScript®
RT Master Perfect Real-time kit (cat. no. DRR0O36A; Takara
Bio, Inc.). The resulting cDNA was amplified using a
SYBR-Green PCR kit (cat. no. DRRO82A; Takara Bio, Inc.)
and detected with a 7500 Fast Real-time PCR system (Applied
Biosystems; Thermo Fisher Scientific, Inc.). All experiments
were performed at least three times according to the manufac-
turer's protocol. The conditions for the two-step amplification
PCR reaction were pre-denaturation (95°C, 30 sec, 1 cycle) and
PCR amplification (95°C, 5 sec and 60°C, 30 sec, 40 cycles).
Gene expression was calculated relative to the housekeeping
gene GAPDH using the 2244 method (23). The primers used
for PCR are presented in Table I.

Protein-protein interaction (PPI) network and functional
enrichment of protein-coding genes. Due to the difficulties of
obtaining human tissues to explore the rhythmic characteristics
of clock gene expression levels every 4 h, correlation analyses
of the expression levels of human proteins were performed
using the STRING database (http://www.string-db.org/) (24)
as a complementary platform to assessed the association
between core clock and clock-controlled genes in patients
with renal disease. Furthermore, the DAVID Bioinformatics
Tool (25) was used to identify functional enrichment of target
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Table I. Primers for reverse transcription-quantitative polymerase chain reaction.
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Gene Forward (5'-3") Reverse (5'-3")

GAPDH GACAACTTTGGCATCGTGGA ATGCAGGGATGATGTTCTGG
CLOCK CATCGGCAGCAAGAAGAACT CAAGATTCAGTCCAGGGTTTG
BMALI CAACCCATACACAGAAGCAAAC ACAGATTCGGAGACAAAGAGGA
PERI GAGGAGCCAGAGAGGAAAGAGT TTGGTTGTGTTAGGAATGTTGC
PER2 CTGGAAAGAACAGGAAACTGAA GGGAACACAGGTAGTGGGTAAG
CRYI ATCTAGCCCGACATGCAGTT TCGGCGTCAAGCAGTAATTC

CRY2 ATTGAGCGGATGAAGCAGAT TCTACACAGGAAGGGACAGATG
LXR CCTGATGTTTCTCCTGACTC TGACTCCAACCCTATCCTTA

DECI CCACCAAAAAGAGCCGAAT ATAGAAGGGCAGGCAAAAGG
DEC2 GAAGCGAGACGACACCAAG TTTCAGATGTTCAGGCAGTAAGTC
SREBP-1 GGAGCCATGGATTGCACATT GGCCCGGGAAGTCACTGT

ABCAI CTTGCTTCCGTTATCCAACTCCAG GCTGTAATGTTCTCAGGACCTTGTG
CYP7Al CCAAGTCAAGTGTCCCCCTCTA GACTCTCAGCCGCCAAGTG

CLOCK, circadian locomoter output cycles kaput; BMALI, brain and muscle ARNT-like protein 1; CRY, cryptochrome; PER, period homologue; LXR, liver
X receptor; CYP7AI, cholesterol 7a-hydroxylase; SREBP-1, sterol regulatory element binding protein-1c; ABCAI, ATP binding cassette transporter Al; DEC,

differentiated embryo chondrocyte.

protein-coding genes. Notably, this tool may be used to iden-
tify Gene Ontology (GO) biological processes associated with
protein-coding genes. Furthermore, KEGG pathway enrich-
ment analysis was performed using KOBAS 3.0 (http://kobas.
cbi.pku.edu.cn/). Cytoscape (Www.cytoscape.org/) (26) was
also used to visualize the above biological process organiza-
tion and GOplot (http://wencke.github.io/) (27) was used to
illustrate the functional analysis data.

Statistical analysis. The results are presented as the
mean + standard deviation, and the data were analyzed using
unpaired t-tests with SPSS 20.0 software (IBM Corp., Armonk,
NY,USA) for comparisons between groups. P<0.05 was consid-
ered to indicate a statistically significant difference. Gene
expression data and blood parameters were analyzed to assess
the circadian rhythmicity of data using a Fourier transform
method and Chronos-Fit software (http://chronos-fit.software.
informer.com/). Following the Chronos-Fit software formula:
F(t)=mesor+X (amplitude; x cos (t-acrophase;) x 27/pi). The
parameters included the mean, midline estimating statistic of
rhythm (mesor), amplitude of the sine wave (amplitude) and the
acrophase or time of maximum of the sine wave (acrophase).
The chart indicated the curve fitted to the circadian analysis of
all clock genes. Significance (P<0.05) was evaluated using the
F-test as described previously (28,29).

Results

Rats with nephropathy exhibit hyperglycemia and disor-
dered rhythms in serum TC, TG, AST and ALT levels. The
ADR-induced nephropathy model is a classical nephropathy
animal model (16,30). In the present study, 2 weeks following
ADR injection, the ADR group presented with minimal
change in disease according to the electron microscopy results
(Fig. 1). The levels of blood TC, TG, HDL-C, LDL cholesterol
(LDL-C) and GLU over 24 h were significantly increased in
the ADR group compared with the control group (all P<0.05,
Table II). AST and ALT activity was also significantly
increased in the ADR group compared with the control group

Table II. Laboratory parameters in the two groups.

SD rats ADR rats
Measure (n=18) (n=18) P-value
ALB (g/l) 29.78+2.13 22.14+2.75* <0.05
SCr (umol/l) 34.05+13.94 39.06+7.59 0.231
BUN (mmol/l) 7.01+1.34 7.00£1.50 0.968
TC (mmol/l) 1.80+0.29 445£1 .47 <0.05
TG (mmol/l) 0.71+0.56 3.97+2.87* <0.05
HDL-C (mmol/l) 0.59+0.09 1.27+0.38" <0.05
LDL-C (mmol/l) 0.25+0.05 0.68+0.23* <0.05
GLU (mg/dl) 176.64+21.55 336.89+102.65 <0.05
AST (U/N) 88.30+16.73 120.51+22.85* <0.05
ALT (U/1) 51.73+10.66 70.59+15.30* <0.05
24 h UP (mg/day) 21.70+7.53 178.30+£68.53" <0.05

“P<0.05 (between-group comparison). Values are expressed as the
mean =+ standard deviation. ALB, albumin; SCr, serum creatinine; BUN, blood
urea nitrogen; TC, total cholesterol; TG, triglyceride; HDL-C, high-density
lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; GLU,
glucose; AST, Aspartate aminotransferase; ALT, Alanine aminotrans-
ferase; 24 h UP, urine protein; SD, Sprague-Dawley control rats; ADR,
Adriamycin-induced nephropathy.

Figure 1. Electron microscopic observation of extensive foot process fusion
in renal tissue of Adriamycin-induced nephropathy rats (red arrow).
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Figure 2. TC, TG, AST and ALT levels are associated with a circadian pattern. Arrows in each figure indicate the ZT was associated with the peak value and
off-peak value of the fitted curve (acrophase). The chart shows the fitted curve generated by circadian analysis of all clock genes; this curve was checked for
significance using the F-test (P<0.05). 2Al is the double amplitude of the control group, and 2A2 is the double amplitude of the ADR group. Gray area, dark
period (ZT=12:00-24:00); white area, light period (ZT=00:00-12:00). The blue and red dots indicate the measured TC, TG, AST and ALT levels in the control
and ADR groups during the light and dark periods, respectively. Partial Fourier analysis, n=36, three rats/group every 4 h in 24 h. ADR, Adriamycin-induced
nephropathy; TC, total cholesterol; TG, triglyceride; AST, aspartate aminotransferase; ALT, alanine aminotransferase; ZT, Zeitgeber time.

(P<0.05, Table II). In the control group, the serum levels of TC,
TG, AST and ALT were significantly cycled every 12, 24,24 or
24 h, respectively (all P<0.05), and the double amplitudes (2A)
of the TC and TG levels were similar (2A=0.78). However, in
the ADR group, the rthythm of the TG levels changed from the
baseline of 24 to 12 h, and no oscillations were observed with
regards to TC, AST and ALT levels (all P>0.05; Fig. 2). The
HDL-C, LDL-C and GLU levels in the two groups did not
indicate a circadian rhythm (F-test, P>0.05; data not shown).

Hepatic core clock and clock-controlled genes that regulate
TG, cholesterol and fat metabolism are associated with disor-
dered rhythms in NS rats. The circadian rhythm of six hepatic
core clock genes and six clock-controlled genes associated with
metabolism were evaluated. The data revealed the CRY/ and
PER?2 genes exhibited 24-h rhythmicity, and their peak times
advanced by 0.5 and 2.5 h compared with those in the control
group; however, the rhythm of PERI mRNA expression was
wholly absent in the ADR group (P<0.05). Other core clock
genes, including CLOCK and CRY2, exhibited a change in
periodicity from 24 to 12 h, and their peak times significantly
shifted to the rest period (daytime; P<0.05). Furthermore, the
rhythm of BMALI mRNA expression changed from 24 hto a
period of 4.8+6 h (P<0.05; Fig. 3A).

The liver-specific clock-controlled genes, including LXR,
cholesterol 7a-hydroxylase (CYP7AI), sterol regulatory
element binding protein-1c (SREBP-1), ATP binding cassette
transporter A1 (ABCAI) and the basic helix-loop-helix

transcription factors, differentiated embryo chondrocytel
(DECI) and DEC?2. The rhythms of the mRNA expression
levels of DECI, DEC2, SREBP-1 and ABCAI were completely
absent in the livers in the ADR group (P<0.05). Although LXR
and CYP7AI maintained circadian rthythm characteristics, the
time periods in the ADR group compared with the control rats
changed for LXR (from 24 h to 12424 h) and CYP7AI (from
4.8 to 24 h; all P<0.05; Fig. 3B).

Functional annotation and PPI network construction. Highly
associated genes in a given genetic module serve important
roles in biological processes (31). Therefore, the six afore-
mentioned hepatic core clock genes and six clock-controlled
genes that were highly associated with the hepatic circadian
rhythms of blood lipid metabolism were selected, and PPI
networks were constructed using STRING (32). These genes
in the PPI network were identified to have stronger interactions
among themselves (average local clustering coefficient, 0.849;
Fig. 4 and Table III). Notably, the PPI network of STRING
v10 makes use of all microarray gene expression experi-
ments deposited in the NCBI Gene Expression Omnibus to
provide co-expression analysis, which is a reliable indicator of
functional associations (33).

To gain insight into the functional characteristics of the
identified blood lipid metabolism-associated protein-coding
core clock and clock-controlled genes, GO and KEGG
pathway enrichment analyses were performed using
DAVID (34). Molecular information was added to GO terms
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Figure 3. Circadian pattern expressions. (A) Circadian pattern expression of hepatic core clock genes: CLOCK and BMAL; and two repressors CRY and PER.
(B) Circadian pattern expression of clock-controlled genes: LXR, CYP7A1, SREBP-1 and ABCAI; and the basic helix-loop-helix transcription factors, DECI
and DEC2. The purple and red dots indicate the measured gene expression values in the control and ADR groups, respectively. ADR, Adriamycin-induced
nephropathy; CLOCK, circadian locomoter output cycles kaput; BMALI, brain and muscle ARNT-like protein 1; CRY, cryptochrome; PER, period homologue;
LXR, liver X receptor; CYP7AI, cholesterol 7a-hydroxylase; SREBP-1, sterol regulatory element binding protein-1c; ABCAI, ATP binding cassette trans-

porter Al; DEC, differentiated embryo chondrocyte.

of potential associated genes of circadian rhythms of blood
lipid metabolism (Fig. 5). In terms of biological processes, the
GO analysis indicated that the clock system protein-coding
genes were significantly (all P<0.05) enriched in the circa-
dian regulation of gene expression (GO:0006351), the
negative regulation of the glucocorticoid receptor signaling
pathway (G0O:2000323) and DNA-templated transcription
(G0O:0045892). In terms of molecular function (MF), the genes
were enriched in E-box binding (GO:0070888), transcription
factor activity and transcription factor binding (GO:0000989),
and transcription regulatory region sequence-specific DNA
binding (GO:0000976). Additionally, GO cellular compo-
nent (CC) analysis revealed that the genes were significantly
enriched in the nucleus, chromatoid body and intracellular
membrane-bound organelles.

Additionally, a graphic representation of the complicated
association between clock genes and the respective GO terms,
including a ‘concept-and-gene network’, was constructed
using the GeneAnswers R package (35). To add quantitative
molecular data to the GO terms of interest, the GOCircle
plot, GOChord and GOCluster plot functions of the GOplot
R package were added (27) (Figs. 6 and 7). These functions
permit the incorporation of data derived from expression level
measurements with those obtained from functional annotation
enrichment analysis (Table IV).

According to the interactions between the clock genes
and the intersecting pathway genes, a clock gene network
was constructed that illustrated the network pathway and the
key regulatory functions of the identified clock genes. Using
KEGG pathway enrichment analysis of Cytoscape and the
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Table III. Continued.
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Figure 4. Protein-protein interaction network constructed with the 12 clock
and clock-controlled genes. Genes were enriched in the differential pathways
identified in the Homo sapiens genome (avg. local clustering coefficient,
0.849). The colored nodes/lines represent different proteins/protein-protein
interactions.

KOBAS network, the rhythmically expressed protein-coding
genes were determined to be significantly enriched in circa-
dian rhythm (hsa04710), PPAR signaling pathways (hsa03320),
circadian entrainment (hsa04713), fat digestion and absorption
(hsa04975) and ABC transporters (hsa02010); Fig. 8 and
Table V).

Discussion

The majority of studies suggest that the lipid metabolism
involved in kidney disease primarily affects local tissue lipid
deposition and local tissue energy barriers (36). However,
serum cholesterol levels of patients with CKD are determined
by endogenous synthesis and intestinal absorption of exog-
enous cholesterol (37). Although numerous tissues (endocrine
organs, the immune system, the endothelium) contribute to the
plasma protein pool, the bulk of plasma proteins is secreted
by the liver and are those lost to the highest extent in the
NS (38). Additionally, three-quarters of the total cholesterol
is synthesized in the liver (39), thus, it was hypothesized that
renal injury affects peripheral blood lipid levels through the
liver. Therefore, the present study focused on the hepatic clock
system that affects circulating lipids.

Clinicians usually overlook the circadian rhythm of blood
lipids. Few primary research studies have explored the circa-
dian rhythm of blood lipids (40-42). However, previous studies
have suggested that the deletion or knockdown of mouse
core clock genes results in several circadian rhythm abnor-
malities concerning TGs, gluconeogenesis and liver GLU
metabolism (40,43). It is well acknowledged that hyperlipid-
emia occurs in patients with NS and improves immediately
with the remission of NS. It is an excellent model of kidney
disease to explore the circadian rhythm of blood lipids, and the
underlying crosstalk between kidney and liver.

In the present study, nephropathy induced by ADR in rats
presented with the typical characteristics of normal renal
function, hypoalbuminemia and hyperlipidemia. Electron
microscopy indicated partial podocyte fusion, which is
a major cause of idiopathic NS. Multiple and large doses
(total >10 mg/kg) of Adriamycin are associated with the devel-
opment of rat hepatic lesions (44), whereby Adriamycin causes
significant abnormalities in liver function parameters. In
previous studies, the single dose of Adriamycin generally used
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Figure 5. Target gene counts of GO biological processes. The GO analysis results demonstrated that the clock system protein-coding genes were significantly
enriched in the circadian regulation of gene expression (GO:0006351), negative regulation of glucocorticoid receptor signaling pathway (GO:2000323) and
DNA-templated (GO:0045892) under BPs (light blue bar). Under MF (purple), the genes were enriched in E-box binding (GO:0070888), transcription factor
activity, transcription factor binding (GO:0000989) and transcription regulatory region sequence-specific DNA binding (GO:0000976). Additionally, GO CC
(dark blue bar) analysis revealed genes significantly were enriched in the nucleus, chromatoid body and the intracellular membrane-bounded organelle. GO,
Gene Ontology; BP, biological process; CC, cellular component; MF, molecular function.
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Figure 6. Functional characterization of differentially and rhythmically expressed protein-coding genes. GOCircle plot: The outer circle shows a scatter plot
of the expression levels of rhythmically expressed clock-associated genes in each enriched GO term. Red circles indicate upregulation and blue circles indicate
downregulation. The inner ring is a bar plot, where the height of the bar indicates the significance of the GO term (logl0-adjusted P-value), and the color
corresponds to the z-score: blue, decreased; red, increased; and white, unchanged. GO, Gene Ontology.

in rats to induce NS is between 5.0 and 7.5 mg/kg (16,45,46). damage, intravenous injection provides direct access to
Since complete absorption of the drug may induce organ the drug and eliminates the absorption dependence on the
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Figure 7. Specific clock genes are involved in pathways. (A) GOChord plot: A plot indicated the association between statistically significant clock genes and
their associated GO terms; the genes are associated via ribbons to their assigned terms. Blue-to-red coding next to the selected genes indicates the amplitude
change (the difference between the expression amplitude in the two groups divided by the amplitude of the control group). A negative sign indicates a decrease
and a positive sign indicates an increase. The outer ring shows the assigned functional terms. (B) GOCluster plot: A circular dendrogram of the clustering
of the expression profiles. The inner ring shows the color-coded amplitude changes and the outer ring shows the assigned functional terms. The details are

provided in Table I'V.

peritoneal membrane (46). Therefore, the present study used
a single tail vein injection dose of 6.5 mg/kg the day after
2 weeks of adaptation and particular caution was taken due to
the risk of extravasation during injection. The ADR-induced
nephropathy rats exhibited significantly higher blood lipid
levels and a disturbed blood lipid circadian rhythm (P<0.05).
Notably, the activities of AST and ALT in the ADR group
were not pathologically increased, whereby the levels were
within the normal range of male rats aged 12-13 weeks (normal
ranges: AST, 87-144 U/1; ALT, 28-40 U/l) (23). The NS rats in
the present study may not have experienced deterioration in
hepatic function, because the levels of ALT and AST remained
within the normal range compared with the control group, and
the total dose of Adriamycin was less than the dose required
to induce liver damage. Dyslipidemia may be attributed to
the compensatory liver dysfunction under the nephritic state.
However, the lack of histological staining of liver tissue in the
same set of experiments was a limitation of this study.
Multiple regulators of lipid metabolism and rate-limiting
enzymes in TG accumulation exhibit circadian rhythmicity
during nutrient metabolism, and the clock system is indis-
pensable for these processes in the liver. Mice lacking the
liver-specific core clock gene BMALI exhibit abnormalities in
blood TGs, GLU and gluconeogenesis. Furthermore, a previous
study revealed the metabolism-associated clock-controlled
genes altered rhythms; however, the rhythm of GLU remained
consistent in the asynchronous dietary (47). Human plasmalipid
levels, including those of TGs and cholesterol, are rhythmic

over a 24-h period (48), independent of feeding and waking
conditions (42). Furthermore, Chua et al (42) did not detect a
circadian rhythm in blood GLU and LDL-C; however, a trend
was observed for higher levels of LDL-C during the daytime,
this may be due to substantial individual differences in timing
of the rhythm. Their results are consistent with the present
study; however, they did not evaluate a rhythmic component
via the Fourier transform method. Significant daily variations
in the HDL-C levels were detected by Rivera-Coll er al (48)
and Van den Berg et al (49). However, Van Den Berg et al (49)
did not evaluate a rhythmic component. Notably, different
analytical methods in other studies make it difficult to compare
the result that lack of circadian rhythm associated with HDL-C
levels in the present study; a fact that may explain, in part, the
observed differences in timing and daily amplitude between the
present research and other studies. A previous study indicated
CLOCK knockout mice exhibit hyperlipidemia and hepatic
steatosis, and PERI regulates PPARa mRNA expression and
the development of obesity (41). Furthermore, PER2 has been
suggested to be involved in PPAR-associated pathways and
white adipose tissue mobilization (3). The aforementioned
studies suggested that different circadian clock genes serve a
role in the regulation of lipid regulation.

In the present study, the mRNA expression of six hepatic
core clock genes in the normal control group was associated
with stable rhythmic features, with minimums during the day
and maximums at night (activity period), which is consistent
with previous studies on mice (50,51). Furthermore, the cycle
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Table I'V. Continued.

FDR

Benjamini

Fold enrichment  Bonferroni

Pop hits  Pop total

List total

Genes

P-value

%

Count

Term

Category

46.89

9.88x10°"  1.90x10™

30.09
27.65

16881
16881

102

11
11

18.18 5.88x10"> BHLHE41,CRY1
6.39x10

18.18

2
2

ylase binding

GOTERM_MF_DIRECT  GO:0001078~transcri

GOTERM_MF_DIRECT GO:0042826~histone deacet

49.78

1.97x10"

9.92x10!

111

BHLHE40, BHLHE41

ptional repressor

activity, RNA polymerase II core promoter

proximal region sequence-specific binding
GO0:0071222~cellular response to

lipopolysaccharide

GOTERM_MF_DIRECT  GO:0005515~
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55.19

9.99x10°"  2.65x10!

27.02

16792

113

ABCA1,NR1H3

18.18  6.53x10%

2

GOTERM_BP_DIRECT

2.07x10°" 5338

1.57 9.95x10"!

16881

8785

11

CRY2, PER2, BHLHE40,

ARNTL, ABCAL,

81.82  7.05x10™

9

protein binding

BHLHEA41,CRY1,

CLOCK, NR1H3
PER2, ARNTL

58.57
60.62

2.80x10!

9.99x10!

24.62

16792
16881

124
150

7.15x10

18.18

2
2

GO:0051726~regulation of cell cycle

GOTERM_MF_DIRECT GO:0046983~

GOTERM_BP_DIRECT

9.99x10°"  2.38x10

2046

ARNTL, CLOCK

8.55x10

18.18

protein dimerization activity

GO, Gene Ontology; FDR, false discovery rate.

duration was 24 h for five core clock genes (CLOCK, BMALI,
PER2, CRYI and CRY2) and 12 h for PERI in the control
group. However, extended or abnormal rhythms were exhib-
ited in the ADR group. Although PERI mRNA was expressed
in the ADR group, the rhythm was absent (P<0.05). In addi-
tion, disordered rhythms were revealed in the downstream
lipid-associated clock-controlled genes of core hepatic clock
genes (LXR, DECI, DEC2, SREBP-1, ABCAI and CYP7AI).
Among these, the rhythmic expression of functional clock
genes (DECI and DEC?2), as well as PERI, was entirely absent
in the ADR group. Notably, the former two genes are down-
stream of the core clock gene PERI and regulate feedback of
PERI transcription (52). CYP7AI, SREBP-1 and ABCAI all
exhibit periodic oscillations, and are regulated by DECI and
DEC2 (53). CYP7a serves important roles in bile acid synthesis
and its rhythmic expression is inhibited by binding DEC2 via
E-box elements. The present finding supports that increasing
hepatic DEC2 mRNA expression may result in a reduction in
CYP7a mRNA expression in NS rats. This may hinder the
metabolism of cholesterol into bile acids, thereby inducing the
occurrence of hypercholesterolemia. LXRa increases CYP7a
expression and promotes bile acid synthesis (54). ABCAIl
typically mediates the transmembrane transport of lipids
metabolites (55), serving a key role in the reverse transport
of cholesterol in vivo. It also permits intracellular cholesterol,
phospholipid and free ApoA or ApoE binding to LXRa, which
then initiates HDL synthesis. In addition, several fatty acid
synthase genes are target genes of SREBP-1, and the activity
of SREBP-1 leads to an increase in blood TG synthesis. The
present study indicated that the circadian rhythmic expression
of lipid metabolism genes was regulated by the critical thythm
of key enzymes and transcription-associated factors, and the
associated fat synthase gene was simultaneously activated by
the core clock genes (Fig. 9).

Due to the limitation that human liver tissue cannot be
extracted six times within 24 h to monitor blood lipid rhythm
analysis, GO and KEGG enrichment assays were performed to
detect differentially expressed clock genes to provide a biologi-
cally meaningful explanation of the present results in humans.
Using bioinformatics methods, including the GOplot R
package, for visually combining expression data with func-
tional analysis and predicting the potential disease-causing
genes has been considered viable in various diseases (56,57).
The enrichment of GO annotation terms revealed that the
clock system protein-coding genes were significantly enriched
in specific biological processes, MFs and CCs. In particular,
the most representative functional processes of clock genes
were the circadian regulation of gene expression, E-box
binding, transcription factor activity and negative regulation
of the glucocorticoid receptor signaling pathway. These find-
ings were consistent with previous evidence that suggest the
essential role of these pathogenetic mechanisms in disease
states (4,5,9). However, the most significant limitation of the
current research is the observational nature of the study in vivo,
and the lack of specific knockdown and response experiments.

The functional interpretation of the GO- and
KEGG-based clock-specific ‘concept-and-gene networks’ in
the present study highlighted the possibility that core clock
genes exert pathogenic effects via different multifactorial
combinations, providing an important insight into clock core
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Figure 8. KEGG analysis was conducted using KOBAS 3.0 online software (http:/kobas.cbi.pku.edu.cn/). KEGG pathway enrichment of significant rhythmi-
cally expressed protein-coding genes. The green node represents significant rhythmically expressed protein-coding genes. The red node represents enriched
pathway symbols. The details are provided in Table V. KEGG, Kyoto Encyclopedia of Genes and Genomes.
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Clock-controlled genes' product: | &
Lipid and bile acid metablism £5

Figure 9. Diagram of liver clock gene and clock control gene association. The red line represents the promoting effect, the green line represents inhibition, and
the black line represents transcription into protein. CLOCK, circadian locomoter output cycles kaput; BMALI, brain and muscle ARNT-like protein 1; CRY,
cryptochrome; PER, period homologue; LXR, liver X receptor; CYP7A1, cholesterol 7a-hydroxylase; SREBP-1, sterol regulatory element binding protein-lc;
ABCAI, ATP binding cassette transporter Al; DEC, differentiated embryo chondrocyte.

genes that may have a fundamental influence in NS. The
transcriptional amplitude of clock genes was decreased or
absent in patients with NS included in this study, suggesting
that these proteins may represent susceptibility factors for
disordered rhythms.

To compensate for the difficulties and limitations of human
circadian rhythm research, multiple bioinformatics methods
were used to analyze the associations between the overall
human core clock (BMALI, CLOCK, CRYI, CRY2, PERI
and PER?2) and clock-controlled genes (LXR, DECI, DEC2,
SREBP-1, ABCAI and CYP7A1), including signaling pathway
and correlation prediction analyses. Their associations in the
co-expression network were determined (avg. local clustering
coefficient,0.849). Consistent with the KEGG pathway analysis

results, these genes were primarily enriched in the circadian
rhythm pathway, and governed the regulation of downstream
liver-specific, lipid-associated clock-controlled genes and
blood lipid homeostasis and rhythmicity. These results may
aid in providing a deeper understanding of rhythmic gene
expression in the human clock system.

From the publications reviewed, NS is one of the few
acquired conditions that alter the plasma levels of lipo-
protein (58). Once NS enters remission, lipoprotein levels
normalize quickly (38), and the changes in hepatic circadian
rhythm were demonstrated to be secondary to kidney disease
without any damage to liver tissue in the present study. Since
the molecular mechanism of the circadian rhythm of an
organism involves the clock gene system, and the activity of
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peripheral clock systems are independent from the central
clock system, the present study results suggested that renal
injury lead to local circadian system disorder, which may have
caused the impaired function of the core clock gene to affect
the liver, subsequently disrupting lipid metabolism. In order to
confirm the phenomenon observed in the present study, further
studies are required.

In conclusion, the present study reported that NS rats
exhibited dyslipidemia and circadian disorders of lipid
metabolism. The results suggested that these changes involve
the abnormal expression of hepatic core clock genes and
downstream clock-controlled genes. Furthermore, the find-
ings indicated that damage to the hepatic clock system is a
potential molecular mechanism for disordered blood lipid
circadian rhythm in the context of CKD. Such analyses offer
a starting point for understanding the crosstalk between
peripheral organs and peripheral clock systems. Further
investigations into the prevention and treatment of CKD by
resetting or repairing disturbed central or peripheral clock
systems are required.
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