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Identification of 13 novel susceptibility loci for early-onset
myocardial infarction, hypertension, or chronic kidney disease
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Abstract. Early-onset cardiovascular and renal diseases have
a strong genetic component. In the present study, exome-wide
association studies (EWASs) were performed to identify
genetic variants that confer susceptibility to early-onset
myocardial infarction (MI), hypertension, or chronic kidney
disease (CKD) in Japanese individuals. A total of 8,093
individuals aged <65 years was enrolled in the study. The
EWAS:s for MI, hypertension, and CKD were performed in
6,926 subjects (1,152 cases, 5,774 controls), 8,080 subjects
(3,444 cases, 4,636 controls), and 2,556 subjects (1,051 cases,
1,505 controls), respectively. Genotyping of single nucleotide
polymorphisms (SNPs) was performed with Illumina Human
Exome-12 DNA Analysis BeadChip or Infinium Exome-24
BeadChip arrays. The associations of allele frequencies for
31,245, 31,276, or 31,514 SNPs that passed quality control to
MI, hypertension, and CKD, respectively, was examined with
Fisher's exact test. Bonferroni's correction for statistical signif-
icance of association was applied to compensate for multiple
comparisons of genotypes with M1, hypertension, or CKD. The
EWASs of allele frequencies revealed that 25, 11, and 11 SNPs
were significantly associated with MI (P<1.60x10%), hyper-
tension (P<1.60x107%), or CKD (P<1.59x1079), respectively.
Multivariable logistic regression analysis with adjustment
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for covariates showed that all 25, 11, and 11 SNPs were
significantly associated with MI (P<0.0005), hypertension
(P<0.0011), or CKD (P<0.0011), respectively. On examination
of the results from previous genome-wide association studies
and linkage disequilibrium of the identified SNPs, 11 loci
(TMOD4, COL6A3, ADGRL3-CXCLS-MARCHI, OR52EA4,
TCHP-GIT2, CCDC63, 12q24.1, OAS3, PLCB2-VPS33B,
GOSR2, ZNF77), six loci (MOB3C-TMOD4, COL6A3,
COL6AS5, CXCLS8-MARCHI, NFKBILI-6p21.3-NCR3,
PLCB2-VPS33B), and seven loci (MOB3C-TMOD4,
COL6A3, COL6AS5, ADGRL3-CXCL8-MARCHI, MUCI7,
PLCB2-VPS33B, ZNF77) were identified as novel loci
significantly associated with MI, hypertension, and CKD,
respectively. Furthermore, six genes (TMOD4, COL6A3,
CXCLS8, MARCH1, PLCB2, VPS33B) were significantly asso-
ciated with MI, hypertension and CKD; two genes (ADGRL3,
ZNF77) with MI and CKD; and two genes (COL6AS,
MOB3C) with hypertension and CKD. Therefore, 13 novel loci
(MOB3C-TMOD4, COL6A3, ADGRL3-CXCLS8-MARCHI,
OR52E4, TCHP-GIT2, CCDC63, 12q24.1, OAS3,
PLCB2-VPS33B,ZNF77,COL6A5,NFKBILI-NCR3,MUCI7)
were identified that confer susceptibility to early-onset MI,
hypertension, or CKD. The determination of genotypes for the
SNPs at these loci may provide informative for assessment of
the genetic risk for M1, hypertension, or CKD.

Introduction

Coronary artery disease (CAD) and myocardial infarc-
tion (MI) are serious clinical conditions that remain the
leading causes of mortality in the United States (1). Disease
prevention is an important strategy for reducing the overall
burden of these conditions, with the identification of
biomarkers for disease risk being key for risk prediction
and for potential intervention to reduce the chance of future
coronary events.
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In addition to conventional risk factors for CAD and MI,
including hypertension, diabetes mellitus, and dyslipidemia,
the importance of genetic factors has been highlighted (2).
The heritability of CAD has been estimated to be 40-60%
on the basis of family and twin studies (2,3). Genome-wide
association studies (GWASs) in European-ancestry popula-
tions (4-10), African Americans (11), or Han Chinese (12,13)
have identified various genes and loci that confer susceptibility
to CAD or MI. A meta-analysis of GWASs for CAD among
European-ancestry populations, which included low-frequency
variants, identified 202 independent genetic variants at 129
loci with a false discovery rate of <5% (14). These genetic
variants together account for ~28% of the heritability of CAD,
showing that genetic susceptibility to this condition is largely
determined by common variants with small effect sizes (2,14).
A more recent meta-analysis for CAD in European-ancestry
populations identified 304 independent genetic variants with
a false discovery rate of <5%, with these variants explaining
21.2% of CAD heritability (15). Although several single nucleo-
tide polymorphisms (SNPs) have been found to be significantly
associated with MI in Japanese individuals (16,17), genetic
variants that contribute to susceptibility to MI in the Japanese
population remain to be fully elucidated.

Hypertension is a complex multifactorial disorder that
results from an interaction between genetic background and
both lifestyle and environmental factors (18). The heritability
of hypertension has been estimated to be 84% and that of
systolic blood pressure (BP) and diastolic BP has been esti-
mated to be 53 and 49%, respectively (19). As hypertension
is a major risk factor for CAD and stroke (20), personalized
prevention of hypertension is an important public health goal.

GWAS:s have implicated various loci and genes as influ-
encing BP or conferring susceptibility to hypertension in
populations in Europe (6,21-24) and African (25,26) and in
individuals from East Asia (27). A trans-ancestry GWAS in
individuals of European and East or South Asian ancestry
identified 12 loci associated with BP (28). A previous
trans-ancestry meta-analysis in individuals of European and
South Asian ancestry identified 30 susceptibility loci for BP
or hypertension (29). Although an SNP in ADD2 was shown
to be a susceptibility locus for hypertension in Japanese indi-
viduals (30), genetic variants that confer susceptibility to this
condition in Japanese individuals await definitive identification.

Chronic kidney disease (CKD) is also a global public health
problem, with affected individuals being at increased risk for
end-stage renal disease (ESRD), cardiovascular disease and
premature death (31,32). The identification of biomarkers for
CKD risk is important to prevent progression to ESRD and to
reduce the chance of future cardiovascular adverse events (33).
In addition to conventional risk factors for CKD, including
diabetes mellitus and hypertension (34), studies have shown
the importance of genetic factors in renal function and in
the development of CKD (35). The heritability of glomerular
filtration rate for creatinine clearance has been estimated to be
52% (36).

GWASs have implicated several genes and loci in renal
function or predisposition to CKD or ESRD in popula-
tions of European (37-42) or African (43) ancestry, and in
renal function-related traits in East Asian populations (44).
A meta-analysis of GWASs in European populations
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identified 53 loci that were significantly associated with esti-
mated glomerular filtration rate (¢GFR) (45). Although several
SNPs have been shown to be associated with renal function in
East Asian populations (44), genetic variants that contribute to
predisposition to CKD in the Japanese population remain to
be fully elucidated.

A previous study of monozygotic and dizygotic twins
found that CAD-associated mortality rate at younger ages
was significantly influenced by genetic factors in men and
women, whereas the genetic effect was less pronounced at
older ages (46). A family history of MI is also more apparent
in individuals with early-onset MI compared with those
with late-onset MI, suggestive of increased heritability in
the former individuals (47,48). Similar to early-onset MI,
early-onset forms of hypertension (49) and CKD (35) have
been found to have a strong genetic component. As the genetic
contribution may be higher in early-onset than in late-onset
MI, hypertension and CKD, the statistical power of genetic
association studies may be increased by focusing on subjects
with early-onset disease (2,35,49).

In the present study, exome-wide association studies
(EWASs) for MI, hypertension, and CKD were performed
with the use of human exome array-based genotyping methods
in order to identify genetic variants that confer susceptibility
to these conditions in Japanese individuals. To increase the
statistical power of the EWASs, subjects with early-onset
disease were examined.

Materials and methods

Study subjects. In our previous EWASs, the median (mean)
ages of subjects with MI, hypertension, and CKD were 67
(67.0), 68 (67.2), and 70 (69.9) years, respectively (50-52).
Therefore patients with an age of <65 years were defined
as individuals with early-onset forms of these conditions in
the present study. A total of 8,093 Japanese individuals aged
<65 years (subjects with M1, hypertension, or CKD and corre-
sponding controls) was enrolled in the present study. In the
EWASs for MI, hypertension, and CKD, 6,926 individuals
(1,152 subjects with MI, 5,774 controls), 8,080 individuals
(3,444 subjects with hypertension, 4,636 controls), and 2,556
individuals (1,051 subjects with CKD, 1,505 controls) were
examined, respectively. The individuals were recruited as those
who visited outpatient clinics or were admitted to participating
hospitals in Japan (Gifu Prefectural Tajimi Hospital, Tajimi;
Gifu Prefectural General Medical Center, Gifu; Japanese
Red Cross Nagoya First Hospital, Nagoya, Japan; Northern
Mie Medical Center Inabe General Hospital, Inabe, Japan;
and Hirosaki University Hospital and Hirosaki Stroke and
Rehabilitation Center, Hirosaki, Japan) due to the presence of
various symptoms or for an annual health checkup between
2002 and 2014, or who were community-dwelling individuals
recruited to a population-based cohort study in Inabe between
2010 and 2014 (53).

For the MI study, the diagnosis of MI was based on
typical electrocardiographic changes and on increases in
the serum activity of creatine kinase (MB isozyme) and in
the serum concentration of troponin T. The diagnosis was
confirmed by identification of the responsible stenosis in any
of the major coronary arteries or in the left main trunk by
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coronary angiography. The control individuals had no history
of MI, CAD, aortic aneurysm, or peripheral artery disease; of
ischemic or hemorrhagic stroke; or of other atherosclerotic,
thrombotic, embolic, or hemorrhagic disorders. Although
certain control individuals had conventional risk factors for
MI, including hypertension, diabetes mellitus, dyslipidemia,
and CKD, they did not have cardiovascular complications.

In the hypertension study, the subjects with hypertension
either had a systolic BP of =140 mmHg or diastolic BP of
=90 mmHg (or both), or had taken antihypertensive medica-
tion. Individuals with severe valvular heart disease, congenital
malformations of the heart or vessels, renal or endocrinologic
diseases that cause secondary hypertension, or drug-induced
hypertension were excluded from the study. The control
individuals had a systolic BP of <140 mmHg and diastolic
BP of <90 mmHg and no history of hypertension or of taking
antihypertensive medication. BP was measured at least twice
by a skilled physician or nurse, with subjects having first rested
in the sitting position for >5 min.

For the CKD study, glomerular filtration rate was estimated
with the use of the simplified prediction equation derived from
amodified version of that described in the Modification of Diet
in Renal Disease Study, as suggested by the Japanese Society
of Nephrology (54): eGFR (ml min™ 1.73 m?) = 194 x [age
(years)] %7 x [serum creatinine (mg/d)]1%* x [0.739 if female].
The National Kidney Foundation-Kidney Disease Outcomes
Quality Initiative guidelines recommend a diagnosis of CKD
if eGFR is <60 ml min™! 1.73 m? (55). Nonlinear relations
between eGFR and the risk of adverse events, including
mortality, cardiovascular episodes, and hospitalization, have
been demonstrated, with an increased risk being associated
with an eGFR of <60 ml min" 1.73 m? and the risk markedly
increasing further when values fall <45 ml min™ 1.73 m? (56).
Therefore, the criterion of an eGFR of <60 ml min”! 1.73 m?
was used for the diagnosis of CKD. The control individuals
for the CKD study had an eGFR of =90 ml min" 1.73 m? and
had no functional or structural abnormalities of the kidneys
or a history of renal disease. Although certain control indi-
viduals had hypertension, diabetes mellitus, dyslipidemia, or
hyperuricemia, they had no renal complications.

A total of 785 subjects with both MI and hypertension
and 3,946 controls overlapped between the corresponding
studies, as did 324 subjects with both MI and CKD and 1,127
controls, and 750 subjects with both hypertension and CKD
and 955 controls.

EWASs. Venous blood (5 or 7 ml) was collected into tubes
containing 50 mmol/l ethylenediaminetetraacetic acid (diso-
dium salt), peripheral blood leukocytes were isolated, and
genomic DNA was extracted from these cells with the use of
a Genomix DNA extraction kit (Talent Srl, Trieste, Italy) or
SMITEST EX-R&D kit (Medical & Biological Laboratories,
Co., Ltd., Nagoya, Japan). The EWASs for MI (1,152 cases,
5,774 controls), hypertension (3,444 cases, 4,636 controls),
and CKD (1,051 cases, 1,505 controls) were performed with
the use of a Human Exome-12 v1.2 DNA Analysis BeadChip
or Infinium Exome-24 v1.0 BeadChip (Illumina, San Diego,
CA, USA). These exome arrays include putative functional
exonic variants selected from ~12,000 individual exome
and whole-genome sequences. The exonic content consists
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of ~244,000 SNPs from European, African, Chinese, and
Hispanic individuals (57). SNPs contained in only one of the
exome arrays (~2.6% of all SNPs) were excluded from analysis.
Quality control was performed (58) as follows: 1) Genotyping
data with a call rate of <97% were discarded, with the mean
call rate for the remaining data being 99.9%j; ii) sex specifica-
tion was checked for each sample, and those for which sex
phenotype in the clinical records was inconsistent with genetic
sex chromosomes were discarded; iii) duplicate samples and
cryptic relatedness were assessed by calculation of identity
by descent; all pairs of DNA samples showing an identity
by descent of >0.1875 were inspected and one sample from
each pair was excluded; iv) the frequency of heterozygosity
for SNPs was calculated for all samples, and those with low
or high heterozygosity (>3 standard deviations from the mean)
were discarded; v) SNPs in sex chromosomes or mitochondrial
DNA were excluded from the analysis, as were nonpolymor-
phic SNPs or SNPs with a minor allele frequency of <1.0%;
vi) SNPs with genotype distributions deviating significantly
(P<0.01) from Hardy-Weinberg equilibrium in control indi-
viduals were discarded; vii) genotype data were examined for
population stratification by principal components analysis (59),
and population outliers were excluded from the analysis. A
total of 31,245, 31,276, or 31,514 SNPs passed quality control
for the EWASs of MI, hypertension, and CKD, respectively,
and these SNPs were subjected to analyses.

Statistical analysis. For analysis of the characteristics of the
study subjects, quantitative data were compared between
subjects with MI, hypertension, or CKD and corresponding
controls with an unpaired t-test. Categorical data were
compared between the two groups with Pearson's i test. Allele
frequencies were estimated by the gene counting method,
and Fisher's exact test was applied to identify departure from
Hardy-Weinberg equilibrium. In the EWASs, the relation of
allele frequencies of each SNP to MI, hypertension,or CKD was
examined with Fisher's exact test. To compensate for multiple
comparisons of genotypes with MI, hypertension, or CKD,
Bonferroni's correction was applied for statistical significance
of association. As 31,245, 31,276, and 31,514 SNPs that passed
quality control were examined in the EWASs for MI, hyper-
tension, and CKD, respectively, P<1.60x10-¢ (0.05/31,245 and
31,276) for MI and hypertension or P<1.59x10° (0.05/31,514)
for CKD was considered statistically significant. The inflation
factor (A) was 0.95 for M1, 1.03 for hypertension, and 1.07 for
CKD. Multivariable logistic regression analysis was performed
with MI as a dependent variable and independent variables
included age, sex (0, woman; 1, man), the prevalence of hyper-
tension, diabetes mellitus, and dyslipidemia (0, no history of
these conditions; 1, positive history), and the genotype of each
SNP. Similar analysis was performed with hypertension as a
dependent variable and independent variables of age, sex, and
the genotype of each SNP; and with CKD as a dependent vari-
able and independent variables of age, sex, the prevalence of
hypertension and diabetes mellitus, and the genotype of each
SNP. The genotypes of the SNPs were assessed according
to dominant [0, AA; 1, AB + BB (A, major allele; B, minor
allele)], recessive (0, AA + AB; 1, BB), and additive genetic
models, and the P-value, odds ratio, and 95% confidence
interval were calculated. Additive models comprised additive
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Table I. Characteristics of subjects with MI and control individuals.

Characteristic Control Myocardial infarction P-value
Subjects (n) 5,774 1,152

Age (years) 50.6+10.2 55.6+74 <0.0001
Sex (men/women, %) 52.1/47.9 85.4/14.6 <0.0001
Smoking (%) 42.5 46.7 0.0105
Obesity (%) 310 42.7 <0.0001
Body mass index (kg/m?) 232435 24.6£3.5 <0.0001
Hypertension (%) 31.7 68.9 <0.0001
Systolic BP (mmHg) 121£18 139+£26 <0.0001
Diastolic BP (mmHg) 75+13 78+16 <0.0001
Diabetes mellitus (%) 12.7 61.3 <0.0001
Fasting plasma glucose (mmol/l) 5.66+1.78 7.66+3.39 <0.0001
Blood hemoglobin Alc (%) 5.72+0.96 6.88+1.70 <0.0001
Dyslipidemia (%) 56.9 84.9 <0.0001
Serum triglycerides (mmol/l) 1.32+0.98 1.77£1.25 <0.0001
Serum HDL-cholesterol (mmol/1) 1.65+£0.45 1.17+£0.34 <0.0001
Serum LDL-cholesterol (mmol/1) 3.18+0.83 3.15+0.98 0.8593
Chronic kidney disease (%) 103 29.1 <0.0001
Serum creatinine (xmol/l) 69.8+61.0 91.9+98.1 <0.0001
eGFR (ml min' 1.73 m™) 78.7x17.1 71.2+£27.8 <0.0001
Hyperuricemia (%) 152 25.6 <0.0001
Serum uric acid (zmol/l) 321+89 356+105 <0.0001

Quantitative data are presented as the mean + standard deviation and were compared between subjects with MI and controls using the unpaired
t-test. Categorical data were compared between the two groups with Pearson's ¥ test. Based on Bonferroni's correction, P<0.0025 (0.05/20)
was considered statistically significant. Obesity was defined as a body mass index of =25 kg/m?; hypertension as a systolic BP of =140 mmHg,
diastolic BP of =90 mmHg, or the taking of anti-hypertensive medication; diabetes mellitus as a fasting plasma glucose level of =6.93 mmol/l,
blood hemoglobin Alc content of =6.5%, or the taking of antidiabetic medication; dyslipidemia as a serum triglyceride concentration of
=1.65 mmol/l, serum HDL-cholesterol <1.04 mmol/l, serum LDL-cholesterol =3.64 mmol/l, or the taking of anti-dyslipidemic medication;
chronic kidney disease as an eGFR of <60 ml min 1.73 m%; and hyperuricemia as a serum uric acid concentration of >416 gmol/l or the taking
of uric acid-lowering medication. MI, myocardial infarction; BP, blood pressure; HDL, high density lipoprotein; LDL, low density lipoprotein;

eGFR, estimated glomerular filtration rate.

1 (0, AA; 1, AB; 0, BB) and additive 2 (0, AA; 0, AB; 1, BB)
scenarios, which were analyzed simultaneously with a single
statistical model. The association between the genotypes
of SNPs and intermediate phenotypes of MI was examined
with Pearson's y* test. The association between genotypes of
SNPs and systolic or diastolic BP, the serum concentration
of creatinine, or eGFR was examined by one-way analysis of
variance (ANOVA). Bonferroni's correction was also applied
to other statistical analysis as indicated. Statistical tests were
performed with JMP Genomics version 9.0 software (SAS
Institute, Cary, NC, USA).

Results

Characteristics of subjects. The characteristics of the 6,926
subjects enrolled in the MI study are shown in Table 1. The
age, the frequency of men, and the prevalence of obesity,
hypertension, diabetes mellitus, dyslipidemia, CKD, and
hyperuricemia, in addition to body mass index (BMI), systolic
and diastolic BP, fasting plasma glucose (FPG) level, blood
glycosylated hemoglobin (hemoglobin A,)) content, and the

serum concentrations of triglycerides, creatinine, and uric
acid were higher, whereas the serum concentration of high
density lipoprotein (HDL)-cholesterol and eGFR were lower,
in subjects with MI than in controls.

The characteristics of the 8,080 subjects enrolled in
the hypertension study are shown in Table II. The age, the
frequency of men, and the prevalence of obesity, diabetes
mellitus, dyslipidemia, CKD, and hyperuricemia, in addi-
tion to the BMI, FPG level, blood hemoglobin A, content,
and the serum concentrations of triglycerides, creatinine,
and uric acid were higher, whereas the serum concentration
of HDL-cholesterol and eGFR were lower, in subjects with
hypertension than in controls.

The characteristics of the 2,556 subjects enrolled in the CKD
study are shown in Table III. The age, the frequency of men, and
the prevalence of obesity, hypertension, diabetes mellitus, dyslip-
idemia, and hyperuricemia, in addition to the BMI, systolic and
diastolic BP, FPG level, blood hemoglobin A, content, and the
serum concentrations of triglycerides and uric acid were higher,
whereas the serum concentration of HDL-cholesterol was lower,
in subjects with CKD than in controls.
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Table II. Characteristics of subjects with hypertension and control individuals.
Characteristic Control Hypertension P-value
Subjects (n) 4636 3444
Age (years) 49.2+10.3 55.8+7.6 <0.0001
Sex (men/women, %) 52.0/48.0 67.8/32.2 <0.0001
Smoking (%) 41.7 429 0.2829
Obesity (%) 243 44 4 <0.0001
Body mass index (kg/m?) 22.6+£3.3 24.5+3.7 <0.0001
Systolic BP (mmHg) 114£12 144+24 <0.0001
Diastolic BP (mmHg) 70x10 85+14 <0.0001
Diabetes mellitus (%) 11.1 395 <0.0001
Fasting plasma glucose (mmol/l) 5.61£1.78 6.72+2.83 <0.0001
Blood hemoglobin Alc (%) 5.71+£0.96 6.30+1.48 <0.0001
Dyslipidemia (%) 51.3 75.5 <0.0001
Serum triglycerides (mmol/l) 1.25+0.98 1.69+1.19 <0.0001
Serum HDL-cholesterol (mmol/I) 1.63+0.46 1.41+0.45 <0.0001
Serum LDL-cholesterol (mmol/I) 3.15+£0.85 3.15+0.88 0.9206
Chronic kidney disease (%) 8.1 24.0 <0.0001
Serum creatinine (¢ mol/l) 65.4+23.9 89.3x117.6 <0.0001
eGFR (ml min"' 1.73 m™) 80.4+18.8 7254213 <0.0001
Hyperuricemia (%) 11.3 252 <0.0001
Serum uric acid (zmol/l) 31186 349+99 <0.0001

Quantitative data are presented as the mean + standard deviation and were compared between subjects with hypertension and controls with the
unpaired t-test. Categorical data were compared between the two groups with Pearson's ¥ test. Based on Bonferroni's correction, P<0.0026
(0.05/19) was considered statistically significant. Obesity was defined as a body mass index of =25 kg/m?; hypertension as a systolic BP of
=140 mmHg, diastolic BP of =90 mmHg, or the taking of antihypertensive medication; diabetes mellitus as a fasting plasma glucose level
of =6.93 mmol/l, blood hemoglobin Alc content of =6.5%, or the taking of antidiabetic medication; dyslipidemia as a serum triglyceride
concentration of =1.65 mmol/l, serum HDL-cholesterol <1.04 mmol/l, serum LDL-cholesterol =3.64 mmol/l, or the taking of anti-dyslipidemic
medication; chronic kidney disease as an eGFR of <60 ml min 1.73 m; and hyperuricemia as a serum uric acid concentration of >416 ymol/l
or the taking of uric acid-lowering medication. BP, blood pressure; HDL, high density lipoprotein; LDL, low density lipoprotein; eGFR,

estimated glomerular filtration rate.

EWASs for MI, hypertension, and CKD. The association
between allele frequencies for the 31,245, 31,276, and 31,514
SNPs that passed quality control to MI, hypertension, and
CKD, respectively, were examined using Fisher's exact test.
Following Bonferroni's correction, 25 and 11 SNPs were
significantly (P<1.60x10°) associated with MI (Table IV)
or hypertension (Table V), respectively, and 11 SNPs were
significantly (P<1.59x10-6) associated with CKD (Table VI).

Multivariable logistic regression analysis of the association
between SNPs and M1, hypertension, or CKD. The association
of the 25 SNPs identified in the EWAS for MI with this condi-
tion was further examined by multivariable logistic regression
analysis with adjustment for age, sex, and the prevalence of
hypertension, diabetes mellitus, and dyslipidemia (Table VII).
All 25 SNPs were significantly [P<0.0005 (0.05/100) in at least
one genetic model] associated with MI. The association between
the 11 SNPs identified in the EWAS for hypertension and this
condition was examined by multivariable logistic regression
analysis with adjustment for age and sex (Table VIII). All 11
SNPs were significantly [P<0.0011 (0.05/44)] associated with
hypertension. The association between the 11 SNPs identified

by the EWAS for CKD and this condition was also examined
by multivariable logistic regression analysis with adjustment
for age, sex, and the prevalence of hypertension and diabetes
mellitus (Table IX). All 11 SNPs were significantly [P<0.0011
(0.05/44)] associated with CKD.

Association between SNPs associated with MI and interme-
diate phenotypes. The present study examined the associations
between the 25 SNPs associated with MI and intermediate
phenotypes of this condition, including hypertension, diabetes
mellitus, hypertriglyceridemia, hypo-HDL-cholesterolemia,
hyper-low density lipoprotein (LDL)-cholesterolemia, CKD,
obesity, and hyperuricemia, using Pearson's * test. The SNPs
rs200787930 of PLCB2, rs188378669 of CXCLS, rs61734696
of MARCHI, 15199921354 of VPS33B, rs115287176 of
TMODA4, 15146092501 of COL6A3, rs146879198 of ZNF77,
and rs192210727 of ADGRL3 were significantly [P<0.0003
(0.05/200)] associated with hypo-HDL-cholesterolemia,
hyper-LDL-cholesterolemia, and CKD, with rs61734696
also being associated with hypertension. The SNPs rs671
of ALDH?2, rs11066015 of ACADI0, and rs11066280 and
rs2074356 of HECTD4 were significantly associated with
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Table III. Characteristics of subjects with CKD and control individuals.

Characteristic Control CKD P-value
Subjects (n) 1,505 1,051

Age (years) 48.5+10.3 57.7+£6.5 <0.0001
Sex (men/women, %) 53.8/46.2 68.9/31.1 <0.0001
Smoking (%) 432 373 0.0028
Obesity (%) 29.1 38.9 <0.0001
Body mass index (kg/m?) 23.1+3.8 241435 <0.0001
Hypertension (%) 36.5 714 <0.0001
Systolic BP (mmHg) 126+23 141+29 <0.0001
Diastolic BP (mmHg) 76+14 80x16 <0.0001
Diabetes mellitus (%) 24.8 452 <0.0001
Fasting plasma glucose (mmol/l) 6.27£2.72 6.88+3.16 <0.0001
Blood hemoglobin Alc (%) 6.08+1.51 6.42+1.51 <0.0001
Dyslipidemia (%) 56.4 75.3 <0.0001
Serum triglycerides (mmol/l) 1.35+1.21 1.69+1.07 <0.0001
Serum HDL-cholesterol (mmol/I) 1.56+0.47 1.38+0.48 <0.0001
Serum LDL-cholesterol (mmol/I) 3.08+0.85 3.13+0.93 0.0738
Serum creatinine (¢ mol/l) 51.749.3 150.3+198.0 <0.0001
e¢GFR (ml min! 1.73 m?) 103.0+19.1 46.9+14.6 <0.0001
Hyperuricemia (%) 8.5 40.6 <0.0001
Serum uric acid (zmol/l) 297+80 381+106 <0.0001

Quantitative data are presented as the mean + standard deviation and were compared between subjects with CKD and controls with the unpaired
t-test. Categorical data were compared between the two groups with Pearson's %* test. Based on Bonferroni's correction, P<0.0026 (0.05/19)
was considered statistically significant. Obesity was defined as a body mass index of 225 kg/m?; hypertension as a systolic BP of 2140 mmHg,
diastolic BP of =90 mmHg, or the taking of antihypertensive medication; diabetes mellitus as a fasting plasma glucose level of =6.93 mmol/l,
blood hemoglobin Alc content of =6.5%, or the taking of antidiabetic medication; dyslipidemia as a serum triglyceride concentration of
>1.65 mmol/l, serum HDL-cholesterol <1.04 mmol/l, serum LDL-cholesterol =3.64 mmol/l, or the taking of anti-dyslipidemic medication;
chronic kidney disease as an eGFR of <60 ml min™! 1.73 m; and hyperuricemia as a serum uric acid concentration of >416 pgmol/l or the
taking of uric acid-lowering medication. CKD, chronic kidney disease; BP, blood pressure; HDL, high density lipoprotein; LDL, low density

lipoprotein; eGFR, estimated glomerular filtration rate.

hypo-HDL-cholesterolemia, hyper-LDL-cholesterolemia,
and hyperuricemia. The SNPs rs3782886 of BRAP and
1512229654 at 12q24.1 were significantly associated with
hypo-HDL-cholesterolemia and hyperuricemia. The
SNP rs11823828 of OR52E4 was significantly associ-
ated with diabetes mellitus, rs12231744 of NAA25 with
hypo-HDL-cholesterolemia, rs7969300 of ATXN2 with hyper-
triglyceridemia, and rs10774610 and rs10849915 of CCDC63
with hyperuricemia (Table X).

Association between SNPs associated with hypertension
and systolic or diastolic BP. The present study examined the
associations between genotypes for the 11 SNPs associated
with hypertension and systolic or diastolic BP by one-way
ANOVA (Table XI). All 11 SNPs were significantly [P<0.0023
(0.05/22)] associated with systolic BP, whereas only rs2071593
of NFKBILI was associated with diastolic BP.

Association between SNPs associated with CKD and the
serum concentration of creatinine or eGFR. The present
study examined the associations between the 11 SNPs asso-
ciated with CKD and the serum concentration of creatinine

or eGFR by one-way ANOVA (Table XII). All 11 SNPs were
significantly [P<0.0023 (0.05/22)] associated with eGFR,
however, none were associated with the serum concentration
of creatinine.

Linkage disequilibrium analyses. The linkage disequilibrium
(LD) among SNPs associated with MI, hypertension, or CKD
was examined. For the MI study, rs192210727 of ADGRL3,
rs188378669 of CXCLS, and rs61734696 of MARCHI were
in LD [square of the correlation coefficient (%), 0.907-0.972].
Two SNPs (rs2596548, rs2523644) at chromosome 6p21.3
were also in LD (r*=0.624). LD plots of the 13 SNPs located at
chromosome 12q24.11 to 12q24.13 are shown in Fig. 1. There
was significant LD between rs74416240 of TCHP and rs925368
of GIT2 (r*=0.937); between rs10849915 and rs10774610
of CCDC63 (r*=0.992); and among rs3782886 of BRAP,
rs11066015 of ACADIO0, rs671 of ALDH?2, and rs2074356 and
rs11066280 of HECTD4 (r*=0.814-0.994). A significant LD
(r*=0.994) was also apparent between rs200787930 of PLCB2
and rs199921354 of VPS33B.

For the hypertension study, there was significant LD
between rs139537100 of MOB3C and rs115287176 of TMOD4



INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE 42: 2415-2436, 2018 2421

Table IV. 25 SNPs significantly (P<1.60x10) associated with myocardial infarction in the exome-wide association study.

Nucleotide ~ Amino acid P-value

Gene SNP substitution® substitution Chromosome Position MAF (%) Allele OR (allele frequency)
PLCB2 rs200787930 C/T E1106K 15 40289298 1.2 0.01 8.81x10%
CXCLS8 rs188378669 G/T E31%* 4 73741568 1.2 0.01 1.33x10%
MARCHI1 161734696 G/T Q137K 4 164197303 1.2 0.01 1.50x10%
VPS33B 15199921354 C/T R80Q 15 91013841 1.2 0.01 2.07x10%
TMOD4  rs115287176 G/A R277TW 1 151170961 1.2 0.01 9.03x10%
COL6A3  r1s146092501 C/T E1386K 2 237371861 1.2 0.02 1.27x10%
ZNF77 rs146879198 G/A R340%* 19 2934109 1.2 0.02 1.27x10%
ADGRL3 1s192210727 G/T R5801 4 61909615 1.3 0.07 1.12x10%°
ALDH? rs671 G/A E504K 12 111803962 27.6 1.54 2.67x107%°
ACADIO rs11066015 G/A 12 111730205 27.5 0.65 3.35x10"°
BRAP rs3782886 A/G 12 111672685 29.3 1.49 5.52x10"
HECTD4 1511066280 T/A 12 112379979 29.0 1.49 6.48x10"
HECTD4 152074356 C/T 12 112207597 254 1.48 4.24x10°1
OR52E4  rs11823828 T/G F227L 11 5884973 36.6 143 1.86x10712

rs12229654 T/G 12 110976657 22.5 1.39 1.45x1071°
NAA2S5 rs12231744 C/T R876K 12 112039251 35.1 0.74 1.07x10°
ATXN2 rs7969300 T/C N248S 12 111555908 38.8 0.76 8.46x10°
GOSR2 rs1052586 T/C 17 46941097 48.7 0.78 1.80x107
TCHP rs74416240 G/A 12 109904793 13.3 1.37 2.47x107
GIT2 rs925368 A/G N389S 12 109953174 12.5 1.37 441x107

rs2523644 A/G 6 31374707 8.1 1.49 4.75x107
OAS3 rs2072134 C/T 12 112971371 17.6 1.33 5.28x107
CCDC63 1510774610 T/C 12 110902439 23.7 1.30 5.42x107

rs2596548 G/T 6 31362769 54 1.60 6.01x107
CCDC63 r1s10849915 T/C 12 110895818 23.6 1.28 7.71x107

Allele frequencies were analyzed using Fisher's exact test. “Major allele/minor allele. SNP, single nucleotide polymorphism; MAF, minor allele

frequency; OR, odds ratio.

(r*=0.984); between 15188378669 of CXCLS8 and rs61734696
of MARCHI (r*=0.972); among rs2071593 of NFKBILI,
rs769177 at 6p21.3, and rs2515920 of NCR3 (r*=0.883-0.980);
and between rs200787930 of PLCB2 and rs199921354 of
VPS33B (r*=0.994).

For the CKD study, complete LD (+?=1.000) was apparent
between rs139537100 of MOB3C and rs115287176 of TMODA4,
and between rs200787930 of PLCB2 and rs199921354 of
VPS33B. Significant LD (r*=0.905-0.952) was also observed
among rs192210727 of ADGRL3, rs188378669 of CXCLS, and
rs61734696 of MARCHI.

Associations between the genes, chromosomal loci and SNPs
identified in the present study and the phenotypes examined
in previous GWASs. The present study examined the associa-
tion of the genes, chromosomal loci and SNPs identified in the
present study with the phenotypes previously investigated
by GWASs available in the Genome-Wide Repository of
Associations Between SNPs and Phenotypes Search data-
base (https://grasp.nhlbi.nih.gov/Search.aspx) developed by
the Information Technology and Applications Center at the
National Center for Biotechnology Information (National

Heart, Lung, and Blood Institute, National Institutes of Health,
Bethesda, MD, USA) (60,61).

For the MI study, chromosomal region 6p21.3, ATXN2,
BRAP, ACADIO, ALDH2, NAA25, and HECTD4 were previ-
ously shown to be associated with MI or CAD (Table XIII).
The remaining 15 genes or loci identified in the present study
have not been previously found to be associated with MI or
CAD, although GOSR2 was previously found to be associ-
ated with systolic BP. For the hypertension study, none of the
genes, chromosomal loci, or SNPs identified were found to be
associated with systolic or diastolic BP or with hypertension in
previous GWASs, although 6p21.3 was previously shown to be
associated with CAD (Table XIV). For the CKD study, none
of the genes or SNPs identified were shown to be associated
with renal function-related traits or CKD in previous GWASs
(Table XV).

Gene Ontology (GO) analysis of genes identified in the present
study. The potential biological functions of the 18 genes
(MOB3C, TMOD4, COL6A3, ADGRL3, CXCLS, MARCHI1,
OR52E4, TCHP, GIT2, CCDC63, OAS3, PLCB2, VPS33B,
ZNF77,COL6A5, NFKBILI, NCR3, MUC17) identified in the
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Table V. 11 SNPs significantly (P<1.60x107) associated with hypertension in the exome-wide association study.

Nucleotide Amino acid P-value

Gene SNP substitution® substitution Chromosome  Position = MAF (%) Allele OR (allele frequency)
MARCH1 161734696 G/T Q137K 4 164197303 1.2 0.54 1.30x107
PLCB2 rs200787930 C/T E1106K 15 40289298 1.2 0.55 3.33x107
COL6A3 15146092501 C/T E1386K 2 237371861 1.2 0.55 3.50x107
COL6AS 15200982668 G/A E2501K 3 130470894 1.3 0.56 3.52x107
MOB3C  1s139537100 C/T R24Q 1 46615006 1.2 0.56 4.76x107
VPS33B 15199921354 C/T R80Q 15 91013841 1.2 0.55 4.84x107
NCR3 rs2515920 T/A 6 31594838 173 0.81 5.02x107
TMOD4  rs115287176 G/A R277TW 1 151170961 1.2 0.55 5.49x107
CXCLS8 rs188378669 G/T E31%* 4 73741568 1.2 0.56 6.93x107

rs769177 G/A 6 31579834 17.2 0.81 1.35x10°¢
NFKBILI 152071593 C/T 6 31545022 18.8 0.82 1.59x10°¢

Allele frequencies were analyzed using Fisher's exact test. “Major allele/minor allele. SNP, single nucleotide polymorphism; MAF, minor allele

frequency; OR, odds ratio.

Table VI. 11 SNPs significantly (P<1.59x107) associated with chronic kidney disease in the exome-wide association study.

Nucleotide Amino acid P-value
Gene SNP substitution® substitution Chromosome Position MAF (%) Allele OR (allele frequency)
COL6AS5 15200982668 G/A E2501K 3 130470894 1.3 0.21 5.08x10°
MARCHI1 161734696 G/T Q137K 4 164197303 1.2 0.22 1.97x108
MUCI7 178010183 A/T T1305S 7 101035329 1.8 0.29 2.04x108
MOB3C 15139537100 C/T R24Q 1 46615006 1.2 0.23 491x10°®
PLCB2 rs200787930 C/T E1106K 15 40289298 12 0.23 4.94x10°8
CXCLS rs188378669 G/T E31* 4 73741568 1.2 023 7.83x10°®
VPS33B 15199921354 C/T R80Q 15 91013841 1.2 0.23 7.86x10°8
TMOD4  rs115287176 G/A R277TW 1 151170961 1.2 0.23 1.25x107
ADGRL3 1s192210727 G/T R5801 4 61909615 1.3 0.25 1.88x107
ZNF77 rs146879198 G/A R340%* 19 2934109 1.2 0.24 2.95x107
COL6A3 15146092501 C/T E1386K 2 237371861 12 0.24 2.99x107

Allele frequencies were analyzed using Fisher's exact test. “Major allele/minor allele. SNP, single nucleotide polymorphism; MAF, minor allele

frequency; OR, odds ratio.

present study were examined with the use of the QuickGO data-
base of Gene Ontology and GO Annotations (https://www.ebi.
ac.uk/QuickGO; European Bioinformatics Institute, European
Molecular Biology Laboratory, Hinxton, UK) (62,63). The GO
analysis predicted various biological functions for the 18 genes,
including those associated with muscle contraction (TMOD4),
cell adhesion (COL6A3, COLG6AS), G protein-coupled receptor
signaling (ADGRL3, OR52E4, PLCB?2), the inflammatory
response (CXCLS8), the immune response (MARCHI, OAS3,
NCR?3), apoptosis (TCHP), GTPase activity (GIT2), protein
transport (VPS33B), NF-kB signaling (NVFKBILI), and lectin
receptor signaling (MUC17) (Table XVI).

Network analysis of genes identified in the present study.
Network analysis of the 18 genes identified in the present

study was performed to predict functional gene-gene
interactions with the use of the GeneMANIA Cytoscape
plugin (http://apps.cytoscape.org/apps/genemania; Donnelly
Centre for Cellular and Biomolecular Research, University
of Toronto, Toronto, ON, Canada) (64-66) and Cytoscape
v3.4.0 software (http://www.cytoscape.org; The Cytoscape
Consortium, San Diego, CA, USA) (67). Three sets of
50 genes were selected from the DisGeNET database
(http://www.disgenet.org/web/DisGeNET; Integrative
Biomedical Informatics Group, Research Programme on
Biomedical Informatics, Barcelona Biomedical Research
Park, Barcelona, Spain) (68,69) according to the rank order
(high to low) of scores for association with MI, hypertension,
or CKD (Fig. 2). The network analysis revealed that the 13
(Fig. 2A), 10 (Fig. 2B), and 11 (Fig. 2C) genes found to be
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Table XI. Association between SNPs associated with hypertension and systolic or diastolic BP.

Gene SNP Systolic BP (mmHg) P-value Diastolic BP (mmHg) P-value
MARCHI1 161734696 G/T GG GT <0.0001 GG GT 0.0239
128+24 119+16 T7+14 75+12
PLCB2 rs200787930  C/T cC CcT <0.0001 cc CcT 0.0482
128+24 119+16 7714 75+12
COL6A3 rs146092501 C/T cC CT <0.0001 cC CT 0.0584
128+24 119+15 77+14 75+12
COL6AS rs200982668  G/A GG GA <0.0001 GG GA 0.0341
128+24 119+16 77+14 75+12
MOB3C rs139537100  C/T cc CcT <0.0001 cc CcT 0.0359
128+24 119+16 7714 75+12
VPS33B rs199921354  C/T cC CT <0.0001 cC CT 0.0348
128+24 119+16 77+14 75+12
NCR3 rs2515920 T/A T TA AA <0.0001 T TA AA 0.0062
128+24 12522 126+23 77+14 7613  76x13
TMODA4 rs115287176  G/A GG GA <0.0001 GG GA 0.0793
128+24 119+16 77+14 75+12
CXCLS8 rs188378669  G/T GG GT <0.0001 GG GT 0.0703
128+24 119+16 77+14 75+12
rs769177 G/A GG GA AA 0.0001 GG GA AA 0.0094
128+24 12522 12623 77+14 7613  76x13
NFKBILI 152071593 C/T cC CT T <0.0001 cC CT T 0.0012
128+24 125422 127+£23 7714 7613  76x13

Data are presented as the mean + standard deviation and were compared among genotypes by one-way analysis of variance. Based
on Bonferroni's correction, P<0.0023 (0.05/22) was considered statistically significant and are shown in bold. SNP, single nucleotide

polymorphism; BP, blood pressure.

associated with MI, hypertension, and CKD, respectively, in
the present study have potential direct or indirect interactions
with the corresponding sets of 50 genes previously shown to
be associated with these conditions.

Discussion

As the prevalence of cardiovascular and renal diseases
is increasing and is therefore a key public health
concern (1,20,31,32), the identification of genetic variants that
confer susceptibility to MI, hypertension, and CKD is impor-
tant to prevent these conditions. In the present study, EWASs
for M1, hypertension, and CKD were performed in subjects
with early-onset forms of these conditions, with genetic factors
likely to be more important in these individuals compared
with those with late-onset forms.

In the MI study, it was found that 25 SNPs of 20 genes
and two chromosomal loci were significantly associated with
early-onset MI. Among these genes and loci, 6p21.3 (16),
ATXN2 (9), BRAP (16), ACADIO (9), ALDH2 (9), NAA25 (9),
and HECTD4 (9) have previously been shown to be associ-
ated with MI or CAD. Therefore, 16 SNPs of 14 genes and
one locus were newly identified. However, significant LD
was detected among three SNPs in ADGRL3, CXCLS, and
MARCHI; between two SNPs in TCHP and GIT?2; between
two SNPs in CCDC63; and between two SNPs in PLCB2

and VPS33B. Therefore, 11 novel loci (TMOD4, COL6A3,
ADGRL3-CXCL8-MARCHI, OR52E4, TCHP-GIT2,
CCDC63, 12q24.1, OAS3, PLCB2-VPS33B, GOSR2, ZNF77)
were identified that confer susceptibility to MI.

In the hypertension study, 11 SNPs of 10 genes and
one chromosomal locus were significantly associated with
early-onset hypertension. None of these genes or loci have
been found to be associated with systolic or diastolic BP or
with hypertension in previous GWASs. However, there was
significant LD between two SNPs in MOB3C and TMOD4,
between two SNPs in CXCL8 and MARCHI; among three
SNPs of NFKBILI, 6p21.3, and NCR3; and between two
SNPs in PLCB2 and VPS33B. Therefore six novel loci
(MOB3C-TMOD4, COL6A3, COL6AS5, CXCL8-MARCHI,
NFKBILI-6p21.3-NCR3, PLCB2-VPS33B) were identified
that confer susceptibility to hypertension.

In the CKD study, 11 SNPs in 11 genes were significantly
associated with early-onset CKD. None of these genes have
been shown to be associated with renal function-related
traits or CKD in previous GWASs. However, there was
significant LD between two SNPs in MOB3C and TMOD4,
between two SNPs in PLCB2 and VPS33B; and among
three SNPs in ADGRL3, CXCLS8, and MARCH 1. Therefore,
seven new loci (MOB3C-TMOD4, COL6A3, COL6AS,
ADGRL3-CXCL8-MARCHI, MUCI7, PLCB2-VPS33B,
ZNF77) were identified that confer susceptibility to CKD.
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Table XII. Association between SNPs associated with chronic kidney disease and the serum concentration of creatinine and

eGFR.

Gene SNP Serum creatinine (zmol/l) P-value e¢GFR (ml min™! 1.73 m?) P-value

COL6A5 15200982668 G/A GG GA 0.0281 GG GA <0.0001
93.6+138.5 61.8+344 7934329 9524202

MARCHI 1561734696 G/T GG GT 0.0352 GG GT <0.0001
93.5+138.3 62.4+35.0 7934329 94.7+20.3

MUCI17 rs78010183 A/T AA AT 0.0068 AA AT <0.0001
93.8+139.0 59.2+18.8 7944330 93.0+199

MOB3C rs139537100 C/T cc CT 0.0374 cc CcT <0.0001
93.5+1384 6244355 79.3£329 9494208

PLCB2 rs200787930 C/T cc CcT 0.0380 cc CcT <0.0001
93.5+138.3 62.5+£354 7934329  94.8+20.8

CXCLS8 rs188378669 G/T GG GT 0.0397 GG GT <0.0001
93.5+138.3 62.6+35.6 793329  95.0+20.9

VPS33B rs199921354 C/T cc CT 0.0406 cc CcT <0.0001
93.5+1384 62.6+35.8 79.3+£32.9 94.8+21.1

TMOD4 rs115287176  G/A GG GA 0.0426 GG GA <0.0001
934+138.2 62.8+35.8 794+329  94.6+20.9

ADGRL3 18192210727 G/T GG GT T 0.1294 GG GT T 0.0002
93241375 63.0+£358 645 793329 94.4+214 943

ZNF77 rs146879198 G/A GG GA 0.0491 GG GA <0.0001
934+138.1 63.1£364 7944329 94.3+21.1

COL6A3 rs146092501 C/T cc CcT 0.0466 cc CcT <0.0001
93.4+138.2 62.8+36.4 794+329  94.6+21.2

Data are presented as the mean + standard deviation and were compared among genotypes by one-way analysis of variance. Based
on Bonferroni's correction, P<0.0023 (0.05/22) was considered statistically significant and are shown in bold. SNP, single nucleotide

polymorphism; eGFR, estimated glomerular filtration rate.
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Figure 1. LD map of 13 SNPs at 12q24.11-12q24.13 associated with
myocardial infarction. LD was calculated as the square of the correlation
coefficient (r?), with the extent of LD increasing according to the color order
of blue < gray < red. LD, linkage disequilibrium.

Furthermore, rs115287176 of TMOD4, rs146092501 of
COLG6A3, rs188378669 of CXCLS, rs61734696 of MARCHI,
rs200787930 of PLCB2, and rs199921354 of VSP33B were
significantly associated with all three diseases (MI, hyperten-
sion, and CKD); rs192210727 of ADGRL3 and rs146879198

of ZNF77 were associated with both MI and CKD; and
rs200982668 of COL6AS5 and rs139537100 of MOB3C were
associated with both hypertension and CKD. In addition,
GOSR2, which was associated with MI, has previously been
shown to be associated with systolic BP (23); and 6p21.3,
which was associated with hypertension, has previously been
shown to be associated with CAD (16). Therefore, 13 loci
(MOB3C-TMOD4, COL6A3, ADGRL3-CXCLS8-MARCHI,
OR52E4, TCHP-GIT2, CCDC63, 12q24.1, OAS3,
PLCB2-VPS33B, ZNF77, COL6A5, NFKBILI-NCR3,
MUCI17) were newly identified that confer susceptibility to
MI, hypertension, or CKD. Genes, chromosomal loci, and
SNPs identified in the present study, in particular, those
significantly associated with two or three diseases, may prove
to be informative for clinical practice.

In the MI study, associations of CXCLS8 to plasma total
cholesterol (70), of MARCH] to serum adiponectin concentra-
tion (71), of 12q24.1 and OAS3 to plasma HDL-cholesterol (72),
of PLCB2 to plasma triglycerides (70), of VPS33B to type 2
diabetes mellitus (73), and of GOSR?2 to systolic BP (23) have
been shown in previous GWASs. In the present study, eight loci
(TMOD4, COL6A3, ADGRL3-CXCL8-MARCHI, OR52E4,
CCDC63, 12q24.1, PLCB2-VPS33B, ZNF77) newly associ-
ated with MI were significantly associated with one or more
intermediate phenotypes; in particular, five loci (TMOD4,
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Figure 2. (A) Network analysis of the 13 genes (TMOD4, COL6A3, ADGRL3, CXCLS, MARCHI, OR52E4, TCHP, GIT2, CCDC63, OAS3, PLCB2, VPS33B,
ZNF77) associated with MI in the present study (red circles) was performed to predict functional gene-gene interactions with the use of the GeneMANIA
Cytoscape plugin (http://apps.cytoscape.org/apps/genemania) and Cytoscape v3.4.0 software (http://www.cytoscape.org). A total of 50 genes (green circles)
selected from the DisGeNET database (http://www.disgenet.org/web/DisGeNET) according to the rank order (high to low) of scores for association with MI
were applied to the analysis. Interactions between red circles or between red and green circles are indicated by bold lines. Molecules represented by gray
circles are putative mediators of interactions between genes. (B) Network analysis of the 10 genes (MOB3C, TMOD4, COL6A3, COL6AS, CXCLS, MARCHI1,
NFKBILI, NCR3, PLCB2, VPS33B) associated with hypertension in the present study (red circles) was performed in the same manner; 50 genes (green circles)
selected from the DisGeNET database according to the rank order of scores for association with hypertension were applied to the analysis. MI, myocardial

infarction.
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database according to the rank order of scores for association with CKD were

COL6A3, ADGRL3-CXCL8-MARCHI, PLCB2-VPS33B,
ZNF'77) associated with two or three diseases were associ-
ated with three or four intermediate phenotypes. As these
intermediate phenotypes are important risk factors for MI,
the association between these loci and MI may be attributable,
at least in part, to their effects on intermediate phenotypes.
By contrast, three loci (TCHP-GIT2, OAS3, and GOSR2)
associated with MI were not associated with intermediate
phenotypes. The molecular mechanisms underlying the asso-
ciation between these loci and MI remain to be elucidated.

In the hypertension study, although the six loci
(MOB3C-TMOD4, COL6A3, COL6AS5, CXCL8-MARCHI,
NFKBILI-6p21.3-NCR3, PLCB2-VPS33B) identified in the
present study were all significantly associated with systolic BP,
they have not been shown to be associated with BP or hyper-
tension by previous GWASs. The associations of NFKBILI
and NCR3 to plasma total cholesterol (74), of 6p21.3 to plasma
total cholesterol and triglycerides (74), and of CXCLS (70),
MARCHI (71), PLCB2 (70), and VPS33B (73) to lipid or
glucose metabolism have been shown in previous GWASs. The
effects of these loci on lipid or glucose metabolism may influ-
ence BP or hypertension, although the functional relevance of
these loci to the pathogenesis of hypertension remains to be
fully elucidated.

Inthe CKD study,although the sevenloci (MOB3C-TMODA4,
COL6A3, COL6AS, ADGRL3-CXCL8-MARCHI, MUCI7,
PLCB2-VPS33B, ZNF77) identified in the present study were
all significantly associated with eGFR, they have not been

applied to the analysis. CKD, chronic kidney disease.

shown to be associated with renal function-related traits or
CKD in previous GWASs. The associations of CXCLS8 (70),
MARCH]I (71), PLCB2 (70), and VPS33B (73) to lipid or
glucose metabolism have been demonstrated in previous
GWAS:s. The effects of these loci on lipid or glucose metabo-
lism may contribute, at least in part, to renal function or the
development of CKD, although the molecular mechanisms
underlying the association between these loci and CKD remain
to be elucidated.

Previous GWASs have identified potential biological
pathways underlying the associations between genetic loci
and CAD (75,76). Network analysis of functional gene-gene
interactions may be informative with regard to the clarification
of biological processes underlying CAD and to the identifica-
tion of therapeutic targets for this condition (77). Therefore the
present study performed GO and network analyses to predict
biological processes associated with the identified genes, and
the interactions between these genes and those previously
shown to be associated with MI, hypertension, or CKD.

GO analysis of the 13 genes associated with MI suggested
that the functions of TMOD4 (actin filament organization);
COLG6A3 (cell adhesion and extracellular matrix organiza-
tion); ADGRL3, OR52E4, and PLCB2 (G protein-coupled
receptor signaling); CXCLS (angiogenesis and inflammatory
response); MARCH1 and OAS3 (immune response); TCHP
(apoptotic process); GIT2 (regulation of GTPase activity); and
VPS33B (vesicle-mediated transport and platelet a-granule
organization) may be associated with the pathogenesis
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Table XIII. Association between genes, chromosomal loci, and SNPs associated with MI in the present study and previously
examined cardiovascular disease-related phenotypes.

Gene/chr. locus SNP Chr. Position Previously examined phenotypes
TMOD4 rs115287176 1 151170961  None
COL6A3 rs146092501 2 237371861  None
ADGRL3 rs192210727 4 61909615  None
CXCLS rs188378669 4 73741568  Total cholesterol (23063622)
MARCHI rs61734696 4 164197303  Adiponectin concentrations (20887962)
6p21.3 1s2596548 6 31362769  MI (21971053)
1s2523644 31374707
OR52FE4 rs11823828 11 5884973  None
TCHP 1574416240 12 109904793  None
GIT2 1s925368 12 109953174  None
CCDCo63 rs10849915 12 110895818  None
rs10774610 110902439
12q24.1 1s12229654 12 110976657  HDL-cholesterol (21909109)
ATXN2 1s7969300 12 111555908  MI (19820697, 19198610), CAD (19820697, 23202125, 21060863)
BRAP rs3782886 12 111672685  MI (21971053, 19820697, 21107343), CAD (21971053, 21572416,
23202125, 19820697, 23364394, 21060863)
ACADIO rs11066015 12 111730205  CAD (23364394, 23202125)
ALDH?2 rs671 12 111803962  MI (21971053), CAD (21971053, 21572416, 23202125)
NAA25 rs12231744 12 112039251  MI (19820697, 23202125), CAD (21971053, 19820697)
HECTD4 1s2074356 12 112207597  MI (19820697), CAD (21971053, 21572416, 22751097, 19820697,
23364394, 23202125)
rs11066280 112379979
OAS3 1s2072134 12 112971371  HDL-cholesterol (21909109)
PLCB2 rs200787930 15 40289298  Triglycerides (23063622)
VPS33B rs199921354 15 91013841  Type 2 diabetes (22885922)
GOSR2 rs1052586 17 46941097  Systolic BP (21909110, 21909115)
ZNF77 rs146879198 19 2934109  None

Data were obtained from the Genome-Wide Repository of Associations Between SNPs and Phenotypes Search database (https://grasp.nhlbi.
nih.gov/Search.aspx) with P<1.0x10°. Numbers in parentheses are PubMed IDs. SNP, single nucleotide polymorphism; MI, myocardial infarc-
tion; Chr., chromosome; HDL, high density lipoprotein; CAD, coronary artery disease; BP, blood pressure.

of MI. For the 10 genes associated with hypertension, the
functions of TMOD4, COL6A3, COL6A5 (cell adhesion),
CXCL8, MARCHI, NFKBILI (NF-xB signaling), NCR3
(immune response), PLCB2, and VPS33B may be associated
with the pathogenesis of hypertension. Among the 11 genes
associated with CKD, the functions of COL6A3, COL6AS,
ADGRL3,CXCL8, MARCHI, MUCI7 (cellular homeostasis),
PLCB2, and VPS33B may be associated with the pathogen-
esis of CKD. Network analysis showed that the 13, 10, and
11 genes found to be associated with MI, hypertension, and
CKD, respectively, in the present study had direct or indirect
interactions with the corresponding sets of 50 genes selected
from the DisGeNET database (68,69). However, the under-
lying molecular mechanisms of these interactions remain to
be elucidated.

In our previous studies, it was shown that nine, nine, and
four SNPs were associated with MI (P<0.01), hypertension
(P<0.01), and CKD (P<0.05), respectively, as determined by
multivariable logistic regression analysis with adjustment

for covariates following an initial EWAS screening of allele
frequencies among subjects with early-onset and late-onset
forms of these conditions (50-52). The associations between
five of the nine SNPs [rs202103723 (P=0.0107), rs188212047
(P=0.0039), rs1265110 (P=0.0004), rs9258102 (P=0.0373),
rs439121 (P=0.0063)] and MI were replicated (P<0.05) in the
present study. The associations between six of the nine SNPs
[rs150854849 (P=0.0123), rs2867125 (P=0.0111), rs202069030
(P=6.40x10""7), rs139012426 (P=5.50x107%), rs12229654
(P=0.0003), rs201633733 (P=0.0356)] and hypertension were
replicated (P<0.05) in the present study. By contrast, none
of the associations between the four SNPs and CKD were
replicated in the present study, indicative of the importance
of age in the development of CKD. These results suggested
that genetic variants associated with MI, hypertension, and
CKD differ, in part, between individuals with early-onset and
late-onset disease.

There were several limitations to the present study: i) As
that the results were not replicated, their validation is necessary
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Table XIV. Association between genes, chromosomal loci, and SNPs associated with hypertension in the present study and
previously examined cardiovascular disease-related phenotypes.

Gene/chr. locus SNP Chr.  Position Previously examined phenotypes
MOB3C rs139537100 1 46615006 None

TMODA4 rs115287176 1 151170961 None

COL6A3 rs146092501 2 237371861 None

COL6AS rs200982668 3 130470894 None

CXCLS8 rs188378669 4 73741568 Total cholesterol (23063622)

MARCHI rs61734696 4 164197303 Adiponectin concentrations (20887962)

NFKBILI rs2071593 6 31545022 Total cholesterol (20686565)

6p21.3 rs769177 6 31579834 Total cholesterol (20686565), triglycerides (20686565), CAD (21971053)
NCR3 rs2515920 6 31594838 Total cholesterol (20686565)

PLCB2 rs200787930 15 40289298 Triglycerides (23063622)

VPS33B rs199921354 15 91013841 Type 2 diabetes (22885922)

Data were obtained from the Genome-Wide Repository of Associations Between SNPs and Phenotypes Search database (https://grasp.nhlbi.
nih.gov/Search.aspx) with a P<1.0x10. Numbers in parentheses are PubMed IDs. SNP, single nucleotide polymorphism; Chr., chromosome;

CAD, coronary artery disease.

Table XV. Association between genes and SNPs associated with chronic kidney disease in the present study and previously

examined cardiovascular and renal phenotypes.

Gene SNP Chr. Position Previously examined phenotypes
MOB3C rs139537100 1 46615006 None

TMOD4 rs115287176 1 151170961 None

COL6A3 rs146092501 2 237371861 None

COL6AS rs200982668 3 130470894 None

ADGRL3 rs192210727 4 61909615 None

CXCLS rs188378669 4 73741568 Total cholesterol (23063622)
MARCHI rs61734696 4 164197303 Adiponectin concentrations (20887962)
MUC17 rs78010183 7 101035329 None

PLCB2 rs200787930 15 40289298 Triglycerides (23063622)

VPS33B rs199921354 15 91013841 Type 2 diabetes (22885922)

ZNF77 rs146879198 19 2934109 None

Data were obtained from the Genome-Wide Repository of Associations Between SNPs and Phenotypes Search database (https://grasp.nhlbi.
nih.gov/Search.aspx) with a P<1.0x10°°. Numbers in parentheses are PubMed IDs. SNP, single nucleotide polymorphism; Chr., chromosome.

in independent study populations or in other ethnicities; ii) it
is possible that SNPs identified in the present study are in LD
with other genetic variants in the same gene or in other nearby
genes that are actually responsible for the development of MI,
hypertension, or CKD; iii) the functional relevance of identi-
fied SNPs to the pathogenesis of MI, hypertension, and CKD
remains to be elucidated. Due to the lack of experiments for
functional analyses, the association of the SNPs identified in
the present study with MI, hypertension, and CKD requires
careful interpretation.

In conclusion, the present study identified 13 loci
(MOB3C-TMOD4, COL6A3, ADGRL3-CXCL8-MARCHI,
OR52E4, TCHP-GIT2, CCDC63, 12q24.1, OAS3,
PLCB2-VPS33B, ZNF77, COL6A5, NFKBILI-NCR3,

MUCI7) that confer susceptibility to MI, hypertension, or
CKD. Determination of the genotypes for the SNPs at these
loci may provide informative for assessment of the genetic risk
for MI, hypertension, and CKD.
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