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Abstract. The present study investigated the anti‑cholestatic 
effect of melatonin (MT) against α‑naphthyl isothiocyanate 
(ANIT)‑induced liver injury in rats and screened for poten-
tial biomarkers of cholestasis. Rats were administered ANIT 
by intraperitoneal injection and then sacrificed 36 h later. 
Serum biochemical parameters were measured and liver 
tissue samples were subjected to histological analysis. Active 
components in the serum were identified by gas chromatog-
raphy‑mass spectrometry, while biomarkers and biochemical 
pathways were identified by multivariate data analysis. The 
results revealed that the serum levels of alanine aminotrans-
ferase, aspartate aminotransferase, total bilirubin, direct 

bilirubin, γ‑glutamyl transpeptidase, and alkaline phosphatase 
were reduced in rats with ANIT‑induced cholestasis that were 
treated with MT. The histological observations indicated that 
MT had a protective effect against ANIT‑induced hepatic 
tissue damage. Metabolomics analysis revealed that this effect 
was likely to be associated with the regulation of compounds 
related to MT synthesis and catabolism, and amino acid 
metabolism, including 5‑aminopentanoate, 5‑methoxytryp-
tamine, L‑tryptophan, threonine, glutathione, L‑methionine, 
and indolelactate. In addition, principal component analysis 
demonstrated that the levels of these metabolites differed 
significantly between the MT and control groups, providing 
further evidence that they may be responsible for the effects 
induced by MT. These results provide an insight into the 
mechanisms underlying cholestasis development and highlight 
potential biomarkers for disease diagnosis.

Introduction

Cholestasis is characterized by a reduction in bile flow and 
bile acid accumulation  (1), and a higher incidence of this 
condition is observed in hepatopathy. A previous study in 
Shanghai revealed that the total incidence of cholestasis was 
10.26% among chronic liver disease patients (2). Cholestasis is 
classified as intrahepatic or extrahepatic (3), and mechanisms 
associated with the former type can be broadly classified as 
hepatocellular or obstructive. Plugging of interlobular bile 
ducts, portal expansion and bile duct proliferation, along 
with centrilobular cholate injury, are observed in the obstruc-
tive subtype (3,4). Cholestasis can be caused by pre‑existing 
medical conditions including infections, drug treatments, and 
metabolic or genetic disorders (5); therefore, it is considered 
as a secondary disease (6). Without appropriate treatment, 
liver cells (such as portal myofibroblasts and hepatic stellate 
cells) are hyperactivated, leading to biliary fibrosis or even 
cirrhosis (7,8). To date, there are few therapeutic options avail-
able for the treatment of cholestasis (9).

Ursodeoxycholic acid (UDCA) is currently the only 
drug approved by the U.S. Food and Drug Administration 
for cholestasis treatment, which acts by relieving disease 
symptoms and restoring liver enzyme levels (10). However, 
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approximately one‑third of patients present little or no 
response to UDCA therapy  (11,12). Melatonin (MT) is a 
methoxyindole synthesized and secreted at night by the pineal 
gland under normal light/dark conditions (13,14). It is widely 
distributed in human tissues (13) and serves an important role 
in a number of physiological processes (15,16). For instance, 
MT exerts an anti‑inflammatory effect by scavenging reactive 
oxygen species and inhibiting lipid peroxidation (13,17‑19). In 
addition, oral administration of MT was reported to abolish 
the increase in the total cholesterol concentration in the serum 
of rats with α‑naphthyl isothiocyanate (ANIT)‑induced acute 
liver injury and cholestasis by restoring cholesterol metabo-
lism and transport in the liver (20). However, few studies have 
investigated the effects of orally administered MT on serum 
metabolome profiles in rats with cholestasis.

Metabolomics analysis has been widely used to evaluate 
the therapeutic effects of herbal medicines (21), as it provides a 
global view of low molecular weight metabolites in biological 
samples, reflecting physiological changes in biochemical 
networks and signaling pathways. It has been suggested that 
the development of cholestasis may be associated with altera-
tions in endogenous metabolite profiles (22). Metabolomics 
has previously been applied to investigate the therapeutic 
effects of Paeonia lactiflora Pall (23), yinchenhao (24) and 
rhubarb (25) as treatment approaches for cholestasis.

ANIT is a well‑known hepatotoxicant that causes bile 
duct epithelial cells to release factors that attract neutrophils, 
leading to hepatic injury (26‑30). ANIT‑induced intrahepatic 
cholestasis shares similarities with drug‑induced cholangio-
litic hepatitis in humans. Transient intrahepatic cholestasis 
can be induced in animal models with a single dose of ANIT, 
which has been demonstrated in rats (30‑34) as well as mice 
and guinea pigs (31).

The present study investigated the anti‑cholestatic effect of 
MT in rats. Gas chromatography‑mass spectrometry (GC‑MS) 
analysis was conducted to evaluate the metabolite profiles, 
while multivariate data analysis was performed in order to 
identify biomarkers and biochemical signaling pathways asso-
ciated with cholestasis.

Materials and methods

Materials and reagents. Carboxymethyl cellulose sodium salt 
(CMC) was obtained from Yuanye Biological Technology 
Co., Ltd. (Shanghai, China). ANIT and MT were purchased 
from Sigma‑Aldrich (Merck KGaA; Darmstadt, Germany). 
ANIT was dissolved in olive oil and administered at a dose 
of 75 mg/kg body weight [1 ml ANIT solution in olive oil 
(75 mg/ml) per 100 g body weight] to induce liver injury 
with cholestasis  (35). MT (100  mg/kg body weight) was 
resuspended in 1 ml of 0.25% CMC (20). Colorimetric assay 
kits were purchased to determine serum alkaline phos-
phatase (ALP; cat. no. A059‑1), aspartate aminotransferase 
(AST; cat.  no. C 010‑2), alanine aminotransferase (ALT; 
cat.  no. C 0009‑2) and γ‑glutamyl transpeptidase (GGT; 
cat. no. C017‑1) levels. total bilirubin (TBIL; cat. no. C019‑1), 
direct bilirubin (DBIL; cat. no. C019‑2) and were detected 
by chemical oxidation assays. All assay kits were purchased 
from Nanjing Jiancheng Bioengineering Institute (Nanjing, 
China). Methanol, acetonitrile, methoxylamine hydro-

chloride, n‑hexane, pyridine and N,O‑bis(trimethylsilyl)
trifluoroacetamide (BSTFA) with 1% trimethylchlorosilane 
(TMCS) were purchased from CNW Technologies GmbH 
(Düsseldorf, Germany). In addition, 2‑chloro‑l‑phenylalanine 
was obtained from Shanghai Hengchuang Biotech Co., Ltd. 
(Shanghai, China). All other chemicals were of analytical 
grade and were purchased from commercial sources.

Animals and treatments. A total of 30 male Sprague‑Dawley 
rats (7‑8 weeks old; weighing 260±20 g) were obtained from 
SPF‑JD‑SPF Biotech Co., Ltd. (Beijing, China; certification 
no. SCXK‑JING 2016‑0002). All animals were allowed to 
acclimate for 1 week prior to experiments, were maintained 
at a constant temperature (25±2˚C) and 50% humidity with 
a 12:12‑h light/dark cycle, and had free access to water 
and food. The study protocol was in strict accordance with 
the recommendations of the Guidelines for the Care and 
Use of Laboratory Animals of the Ministry of Science and 
Technology of China, and was approved by Beijing University 
of Chinese Medicine Medical and Experimental Animal 
Ethics Committee (Beijing, China).

Table I presents the experimental design employed for the 
animal studies. The animals were randomly divided into three 
groups of 10 rats each, including the control, model and MT 
groups. The rats were fasted for 12 h prior to injections. Rats 
in the control group were injected with the vehicle (olive oil), 
while the other two groups received an intraperitoneal injec-
tion of ANIT at a dose of 75 mg/kg body weight. The rats were 
injected with the same volume of vehicle or ANIT. Rats in 
the MT group were orally administered MT (100 mg/kg body 
weight) 12 h after the initial ANIT injection. The model and 
control groups received the same volume of 0.25% CMC at 
12 h after the initial injection. Each rat was weighed prior to 
treatment with intraperitoneal injections and oral administra-
tion.

Sample collection and liver function assays. The rats were 
provided with standard chow and water following the comple-
tion of the treatments. Rats were then fasted for 12 h prior to 
being sacrificed at 36 h after the initial ANIT or vehicle injec-
tion. Blood samples were collected from the inferior vena cava, 
and the liver was removed from each rat immediately after 
sacrifice. The blood samples were collected and centrifuged 
at 3,500 x g and 4˚C for 15 min to obtain the serum. Sterile, 
hemolysis‑free serum samples were stored at ‑80˚C prior to 
determination of biochemical parameters and metabolomics 
analysis. All serum samples were used within 1 month. Serum 
ALT, AST, TBIL, DBIL, GGT and ALP levels were measured 
with commercial test kits according to the manufacturer's 
protocol.

Histological analysis of liver damage. Liver tissues were 
excised and fixed in 10% phosphate‑buffered formalin. 
Fixed issues were cut into 1x1x0.3 cm sections. Sections 
were dehydrated in a gradient alcohol series, and embedded 
in paraffin wax blocks. The embedded wax blocks were fixed 
to the slicer and were cut into 4‑5 µm thick slices. Following 
dewaxing slides in xylene, The slides were dipped into 
hematoxylin and agitated for 30 sec, rinsed in H2O for 1 min, 
followed by staining with 1% eosin Y solution for 30 sec with 
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agitation, all at room temperature (20‑25˚C). Slides were 
examined under a BX53 microscope (Olympus Corporation, 
Tokyo, Japan).

Sample preparation for metabolome profiling. Serum samples 
stored at ‑80˚C were thawed at room temperature, and then 50 µl 
of each serum sample was added to a 1.5‑ml Eppendorf tube 
with 10 µl of 2‑chloro‑l‑phenylalanine (0.3 mg/ml) dissolved 
in methanol as an internal standard. The tube was vortexed 
for 10 sec, and 150 µl of an ice‑cold mixture of methanol and 
acetonitrile (2:1, v/v) was added, followed by vortexing for 
1 min and ultrasonication at an ambient temperature (25‑28˚C) 
for 5 min before storage at ‑20˚C for 10 min. The samples 
were then centrifuged at 12,000 x g and 4˚C for 10 min. The 
quality control (QC) sample was prepared by mixing aliquots 
of all samples to obtain a pooled sample. A 150‑µl volume of 
supernatant was then transferred to a glass sampling vial and 
vacuum‑dried at room temperature. Following the addition of 
80 µl of 15 mg/ml methoxylamine hydrochloride in pyridine, 
the sample was vortexed for 2 min and incubated at 37˚C for 
90 min. An 80‑µl volume of BSTFA (with 1% TMCS) and 20 µl 
n‑hexane were added to the mixture, followed by vortexing for 
2 min and derivatization at 70˚C for 60 min. The samples were 
allowed to stand at ambient temperature for 30 min prior to 
GC‑MS analysis.

GC‑MS analysis. Derivatized samples were analyzed on a 
7890B gas chromatograph paired with a 5977A mass‑selective 
detector system (Agilent Technologies, Inc., Santa Clara, 
CA, USA). A DB‑5MS fused‑silica capillary column (30 m x 
0.25 mm x 0.25 µm; Agilent Technologies, Inc.) was used to 
separate the derivatives. Helium (>99.999%) was used as the 
carrier gas at a constant flow rate of 1 ml/min through the 
column. The injector temperature was maintained at 260˚C, 
the injection volume was 1 µl in the splitless mode, and the 
solvent delay time was set to 5 min. The oven temperature 
was initially set at 60˚C, and was then increased to 125˚C at 
a rate of 8˚C/min, 210˚C at a rate of 5˚C/min, 270˚C at a rate 
of 10˚C/min and 305˚C at a rate of 20˚C/min, and was finally 
held at 305˚C for 5 min. The temperature of the MS quad-
rupole and electron impact ion source were set to 150˚C and 
230˚C, respectively. The collision energy was 70 eV. MS data 
were acquired in full‑scan mode (m/z 50‑500). The QC was 
injected at regular intervals (every 10 samples) throughout the 
analytical run to obtain a set of data for assessing reproduc-
ibility.

Data pre‑processing and statistical analysis. Chem Station 
version E.02.02.1431 software (Agilent Technologies, Inc.) 
was used to convert the file format (D) of raw data to a 
common data format. ChromaTOF version 4.34 software 
(LECO Corporation, St. Joseph, MI, USA) was used to analyze 
the data. Metabolites were identified using Fiehn databases 
(http://fiehnlab.ucdavis.edu/projects/fiehnlib) in ChromaTOF. 
After alignment with the Statistic Compare component 
in ChromaTOF, a raw data array (cvs) was obtained from 
three‑dimensional datasets, including sample information, 
peak names, retention time, m/z and peak intensities. A total 
of 952 peaks were detected in all the samples and the QC. 
Internal standards and any known pseudo‑positive peaks 
(attributed to background noise, column bleeding or caused by 
the BSTFA derivatization procedure) were removed from the 
data array. The data were normalized to the total peak area 
of each sample and multiplied by 10,000, and peaks from the 
same metabolite were combined. The total number of detected 
metabolites was 366.

The data were log2‑transformed using Excel 2007 software 
(Microsoft Corporation, Redmond, WA, USA), with 0 peak 
area replaced with 0.000001 prior to transformation. The 
transformed data were imported into the SIMCA version 
14.0 software package (Umetrics, Umeå, Sweden). Principle 
component analysis (PCA) and orthogonal partial least‑squares 
discriminant analysis (OPLS‑DA) were conducted to visualize 
the differences in the levels of metabolites between groups 
after mean centering and unit variance scaling. The Hotelling's 
T2 region (seen as an ellipse in score plots of the models) 
defined the 95% confidence interval of the modelled variation. 
Variable influence on projection (VIP) was used to rank the 
overall contribution of each variable to the OPLS‑DA model, 
and variables with a VIP value of >1 were considered relevant 
to group discrimination. Default seven‑round cross‑validation 
and 200 response permutation test were applied, with 
one‑seventh of the samples excluded from the mathematical 
model in each round in order to avoid overfitting.

Identif ication of dif ferentially expressed metabolites. 
Differentially expressed metabolites were selected based 
on the combination of a statistically significant threshold of 
VIP values obtained from the OPLS‑DA model and P‑values 
from one‑way analysis of variance (followed by Tukey's test) 
of normalized peak areas by SIMCA version 14.0 (Umetrics, 
Umeå, Sweden). Metabolites with VIP>1 and P<0.05 were 
considered to be significantly differentially expressed.

Table I. Details of the animal experimental design.

	 Treatment at each time point
	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
Group	 0 h	 12 h	 24 h	 36 h	 48 h

Control	 Fasting	 Olive oil	 0.25% CMC	 Fasting	 Sacrifice
Model	 Fasting	 75 mg/kg ANIT	 0.25% CMC	 Fasting	 Sacrifice
MT	 Fasting	 75 mg/kg ANIT	 100 mg/kg MT	 Fasting	 Sacrifice

MT, melatonin; ANIT, α‑naphthyl isothiocyanate; CMC, carboxymethyl cellulose sodium salt.
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Identification of pathways. Pathways were identified with the 
Kyoto Encyclopedia of Genes and Genomes (https://www.kegg.
jp/kegg/) and MBRole (http://csbg.cnb.csic.es/mbrole2/). The 
candidate biomarkers were mapped to KEGG by MBRole ID 
number shifting function. Pathways containing the candidate 
biomarkers were considered by KEGG pathway enrichment 
result.

Results

Therapeutic effect of MT on cholestasis in rats. ANIT admin-
istration resulted in significantly increased ALT and AST 

serum levels in rats compared with those in the control group 
(Fig. 1). However, treatment with 100 mg/kg MT was observed 
to reverse this effect (Fig. 1). Similarly, TBIL, DBIL, ALP and 
GGT levels were markedly increased in the ANIT group when 
compared with the control group. The high serum levels of 
these molecules indicated that ANIT successfully induced 
cholestasis. However, this effect was significantly reduced by 
MT treatment (Fig. 1).

Histological observations. Representative photomicrographs 
of HE‑stained liver tissue from control rats and the cholestasis 
rats with or without MT (100 mg/kg) treatment are presented 

Figure 1. Effects of MT on serum biochemical parameters. Rats were treated with α‑naphthyl isothiocyanate (75 mg/kg) with or without MT, and liver function 
was assessed by measuring (A) ALT, (B) AST, (C) TBIL, (D) DBIL, (E) ALP, and (F) GGT levels. Data are expressed as the mean ± standard error of the mean 
(n=10 per group). ##P<0.01; *P<0.05 and **P<0.01. MT, melatonin; ALT, alanine aminotransferase; AST, aspartate aminotransferase; TBIL, total bilirubin; 
DBIL, direct bilirubin; ALP, alkaline phosphatase; GGT, γ‑glutamyl transpeptidase.
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in Fig. 2. The liver in the control group had a normal lobular 
architecture with central veins and radiating hepatic cords 
(Fig.  2A‑C). By contrast, rats with cholestasis exhibited 
marked changes in liver morphology, including acute infiltra-
tion of polymorphonuclear neutrophils, fatty metamorphosis, 
sinusoid congestion and necrotic inflammation (Fig. 2D‑F). 
Rats treated with MT exhibited mild bile duct epithelial 
damage and hydropic degeneration of hepatocytes with fewer 
invading neutrophils (Fig. 2G‑I).

Multivariate statistical analysis. PCA was conducted to assess 
the differences in the metabolome profiles of the three groups. 
A score plot allowed for visualization of observational clusters, 
which differed significantly between the control, ANIT, MT 
and QC groups (Fig. 3A). The results of PCA indicated that 
multivariate statistical analysis was necessary to clarify the 
differences among the groups.

OPLS‑DA was applied to eliminate and classify uncor-
related noise and identify potential biomarkers based 
on differences in metabolome profiles. The ANIT, MT 
(100 mg/kg) and control groups were distinguished in the 
models (Fig. 3B and C). The R2X, R2Y and Q2(cum) of the 
ANIT and control groups were 0.437, 0.996 and 0.974 respec-
tively, as compared with the values of 0.349, 0.983 and 0.909 

respectively which from ANIT group and MT group. These 
results indicated that the model was of good quality and 
provided reliable confidence predictions. Permutation tests 
with 200 iterations and validation plots indicated that the 
original models were valid (Fig. 3D and E). An analysis of 
OPLS‑DA loading and score plots revealed several critical 
variables that were far removed from the center of the coordi-
nate of the loading plot (Fig. 3F and G), suggesting that they 
were important for clustering.

Metabolite identification in MT‑treated rats with cholestasis. 
Metabolites whose concentration varied among groups were 
selected based on the combination of a statistically significant 
threshold of VIP values obtained from the OPLS‑DA model 
and P‑values from a two‑tailed Student's t‑test of normalized 
peak areas. Metabolites with values of VIP>1 and P<0.05 were 
included. The number and trend of metabolites in different 
groups were presented in Fig. 4. Candidates that significantly 
differed among the groups with P<0.05 and log |fold change|>2 
were identified as candidate biomarkers for cholestasis 
and MT treatment (Table  II). Variations in the trends of 
seven biomarkers, which included 5‑aminopentanoate, 
5‑methoxytryptamine, l‑tryptophan, threonine, glutathione 
(GSH), l‑methionine and indolelactate, were presented in 

Figure 2. MT reverses histological damage in the liver tissues of rats with α‑naphthyl isothiocyanate‑induced cholestasis. Control group images at magnifica-
tion of (A) x50, (B) x100 and (C) x200; cholestasis model group images at magnification of (D) x50, (E) x100 and (F) x200; and MT treatment group images 
at magnification of (G) x50, (H) x100 and (I) x200. Liver tissues histological damage is indicated by black arrows. MT, melatonin.
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Fig. 5. Cholestasis model rats had markedly elevated serum 
l‑tryptophan, l‑methionine and threonine levels, as well as 
significantly lower levels of the other four metabolites, when 
compared with the control group. By contrast, the MT group 

exhibited markedly elevated serum 5‑methoxytryptamine, 
indolelactate, GSH and 5‑aminopentanoate levels, and reduced 
levels of the other three metabolites when compared with the 
model group.

Figure 3. OPLS‑DA, 200‑permutation test and OPLS‑DA score plot of cholestasis rats with or without MT treatment. (A) Principle component analysis score 
plot of the Con, Mod (ANIT), MT and QC groups. (B) OPLS‑DA of Cholestasis model (ANIT) vs. Con group. (C) OPLS‑DA of MT treatment vs. ANIT 
group. (D) 200‑permutation test of Cholestasis model (ANIT) and Con group. (E) 200‑permutation test of MT treatment and ANIT group. (F) OPLS‑DA score 
plot of Cholestasis model (ANIT) and Con group. (G) OPLS‑DA score plot of MT treatment and ANIT group. OPLS‑DA, orthogonal partial least‑squares 
discriminant analysis; MT, melatonin; Con, control; Mod, model; QC, quality control; ANIT, α‑naphthyl isothiocyanate.
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Pathway analysis in MT‑treated rats with cholestasis. Bubble 
diagrams of the control, ANIT and MT groups are presented 
in Fig. 6, where the x‑axis shows the Rich factor, which is 
the ratio of the differential metabolite number to the total 
number of metabolites in model organisms in each pathway. 
The color and size of each circle reflect the P‑value and the 
variation in the metabolite number in each pathway, respec-
tively. The results revealed that the seven metabolites with a 
significantly different expression among the groups appeared 
in the following four KEGG pathways: i) Glycine, serine and 
threonine metabolism; ii) cysteine and methionine metabo-
lism; iii) tryptophan metabolism; and iv) arginine and proline 
metabolism. Specifically, those associated with amino acids 
were focused on.

Discussion

Cholestasis is characterized by intrahepatic accumulation 
of potentially toxic bile acids resulting from hepatocellular 

dysfunction or bile duct obstruction (2). However, the detailed 
mechanism underlying this condition has not been fully 
elucidated. Identifying sensitive and specific biomarkers 
is important for the early detection of hepatic fibrosis. In 
the present study, the GC‑MS‑based serum metabolomics 
analysis revealed significant changes in pathways associated 
with the metabolism of the amino acids arginine/proline, 
glycine/serine/threonine, tryptophan and cysteine/methionine. 
Significant differences were also observed in the levels of 
5‑aminopentanoate, 5‑methoxytryptamine, l‑tryptophan, 
threonine, glutathione (GSH), l‑methionine and indolelactate 
among the control rats and the cholestasis model rats with or 
without MT treatment.

Based on the KEGG database results, l‑tryptophan, 
5‑methoxytryptamine and indolelactate in the serum are 
by‑products of tryptophan metabolism, while GSH and 
l‑methionine are by‑products of the cysteine and methionine 
metabolism. In addition, threonine is a by‑product of the glycine, 
serine and threonine metabolism, and 5‑aminopentanoate is 

Figure 4. Volcano plot of metabolites in the serum and liver tissue of the (A) cholestasis model (α‑naphthyl isothiocyanate‑treated) vs. the control group, and 
(B) melatonin treatment vs. model group. The y‑axis shows the‑log10 (P‑value), while the x‑axis presents log2 (fold change). Red, blue and grey circles represent the 
upregulated, downregulated and non‑significant changes, respectively, while the size of the circles reflects the VIP value. VIP, variable influence on projection.

Table II. Identified metabolites in the serum of the different groups.

		  Model and control	 MT and model
	 ANOVA analysis	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ 
	 Mass		  ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑		  Fold	 P‑value of		  Fold	 P‑value of
RT (min)	 (Da)	 Metabolite	 F‑value	 P‑value	 VIP	 change	 Tukey's test	 VIP	 change	 Tukey's test

13.11 	 174	 5‑Aminopentanoate	 24.711	 <0.001	 1.52	 0.78	 0.002	 1.71	 1.50	 <0.001
7.41 	 174	 5‑Methoxytryptamine	 29.066	 <0.001	 1.51	 0.79	 <0.001	 1.21	 1.10	 0.029
28.57 	 202	 Tryptophan	 24.329	 <0.001	 1.44	 1.75	 <0.001	 1.62	 0.65	 <0.001
12.60 	 218	 Threonine	 31.933	 <0.001	 1.43	 1.72	 <0.001	 1.72	 0.64	 <0.001
5.87 	 107	 Glutathione	 14.065	 <0.001	 1.40	 0.79	 <0.001	 1.45	 1.20	 0.002
15.42 	 176	 Methionine	 12.485	 <0.001	 1.32	 1.44	 <0.001	 1.35	 0.78	 0.005
17.04 	 202	 Indolelactate	 11.250	 <0.001	 1.10	 0.55	 0.130	 1.46	 2.92	 <0.001

RT, retention time; MT, melatonin; VIP, variable influence on projection.
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Figure 5. Changes in metabolome profiles in the cholestasis rats with or without melatonin treatment. The levels of (A) 5‑aminopentanoate, (B) 5‑methoxy-
tryptamine, (C) L‑tryptophan, (D) threonine, (E) glutathione, (F) L‑methionine, and (G) indolelactate are displayed. The squares indicate the mean value of 
expression. **P<0.01 vs. control group; ^P<0.05 and ^^P<0.01 vs. cholestasis model group.
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Figure 6. Bubble diagrams of the control, cholestasis model and MT treatment groups. (A) Cholestasis model (α‑naphthyl isothiocyanate‑treated) vs. control 
group; and (B) MT treatment vs. model group. The x‑axis shows the Rich factor, the color of each circle indicates the P‑value, and the size of each circle reflects 
the varying metabolite number of each pathway. MT, melatonin.
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a by‑product of the arginine and proline metabolism. Levels 
of these metabolites were also demonstrated to be altered in 
serum. These results suggested that the metabolism of arginine, 
proline, glycine, serine, threonine, tryptophan, cysteine and 
methionine may be disrupted in cholestasis (Fig. 7).

GSH is a thiol compound that is associated with catabolism 
and intracellular transport. Alterations in plasma GSH levels 
are associated with Parkinson's and Alzheimer's diseases, 
diabetes, macular degeneration and human immunodeficiency 
virus infection (36). GSH participates in a number of cellular 
functions, including protection from free radicals during 
oxidative stress  (37). It has been reported that, for partial 
hepatectomy in rats, hepatic GSH levels have increased after 
24 h (38,39). however, due to the short half‑life of GSH, liver 
GSH levels return to baseline despite this elevation within 
48  h  (40). 5‑Methoxytryptamine is the main metabolite 
produced in the transformation of MT by MT deacetylase, which 
is subsequently metabolized to 5‑methoxyindoleacetaldehyde, 
5‑methoxyindole acetic acid or 5‑methoxytryptophol (41). A 

previous study reported that only a small fraction (approxi-
mately 0.3‑0.8%) of the concentration of the MT present in 
the incubation medium was converted to 5‑MT (42). This 
indicates that deacetylation of MT is one possible pathway for 
the biosynthesis of 5‑MT. Indolepropionic acid is a product 
of the microbial degradation of l‑tryptophan (43). MT and 
indolepropionic acid function as endogenous electron donors, 
primarily detoxifying reactive radicals; however, they do not 
undergo autooxidation in the presence of transition metals (44). 
Furthermore, previous results have indicated that indolepro-
pionic acid is effective in protecting rat hepatic microsomal 
membranes against rigidity and against lipid peroxidation 
caused by iron (45). Additionally, 5‑aminopentanoate has been 
reported to serve an important role in proline metabolism and 
may participate in lysine degradation in Phaeobacter inhibens 
DSM 17395 (46). Lee et al (47) also found that lysine degra-
dation is specifically associated with stroke occurrence, and 
that low expression of 5‑aminopentanoate may increase the 
risk of thrombotic stroke. In the present study, serum GSH, 

Figure 7. Schematic illustration of metabolic pathways associated with cholestasis that were altered by MT treatment. Red and light blue boxes indicate metab-
olites with significantly higher and lower levels, respectively, in the cholestasis model when compared with the control group. Boxes bordered in red and blue 
represent metabolites with significantly higher and lower levels, respectively, in the MT treatment group when compared with the control rats. MT, melatonin.
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5‑methoxytryptamine, indolepropionic and 5‑aminopen-
tanoate levels were decreased in cholestasis model rats when 
compared with the control rats; however, these level were 
increased by MT treatment. Thus, these four metabolites may 
be useful biomarkers for diagnosing cholestasis and evaluating 
responses to MT treatment.

l‑Tryptophan, a precursor of serotonin and MT, serves a 
role in depression, schizophrenia and somatization (48). Lower 
levels of plasma tryptophan are associated with enhanced pain, 
autonomic nervous system responses, gut motility, peripheral 
nerve function, and ventilation and cardiac dysfunction (49,50). 
Threonine is an essential amino acid that is incorporated into 
intestinal mucosal proteins and is required for the synthesis of 
secretory glycoproteins (51). Threonine and alanine share the 
same amino acid transporter, which is responsible for threonine 
uptake into different cell types, including hepatocytes (52). 
This is the rate‑limiting step for threonine utilization by the 
liver (53,54). Methionine is a metabolite that is important for 
GSH synthesis in the liver (55). Oral administration of methio-
nine at high doses was reported to markedly elevate the level 
of homocysteine in rat plasma, while long‑term MT adminis-
tration significantly reduced homocysteine levels (56). Based 
on this observation, the close association between methionine 
and GSH is confirmed. Furthermore, homocysteine may be 
the intermediate metabolite between MT and methionine. In 
the present study, serum l‑tryptophan levels were increased 
in the cholestasis model rats; however, this was abolished by 
MT treatment, suggesting that l‑tryptophan may be associ-
ated with MT secretion and, thus, may serve as a biomarker 
in cholestasis.

In conclusion, the results of the present study demonstrated 
that MT has a significant anti‑cholestatic effect. Seven metab-
olites, including 5‑aminopentanoate, 5‑methoxytryptamine, 
l‑tryptophan, threonine, GSH, l‑methionine and indolelac-
tate, were identified as potential biomarkers of cholestasis, 
which may be useful for disease diagnosis and for assessing 
the therapeutic efficacy of MT treatment.
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