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Abstract. Ischemic stroke is one of the main causes of death
and disablement globally. The NLR family pyrin domain
containing 3 (NLRP3) inflammasome is established as a
sensor of detecting cellular damage and modulating inflam-
matory responses to injury during the progress of ischemic
stroke. Inhibiting or blocking the NLRP3 inflammasome at
different stages, including expression, assembly, and secre-
tion, may have great promise to improve the neurological
deficits during ischemic stroke. The current review provides
a comprehensive summary of the current understanding
in the literature of the molecular structure, expression,
and assembly of the NLRP3 inflammasome, and high-
lights its potential as a novel therapeutic target for ischemic
stroke.
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1. Introduction

Stroke is the third-leading cause of death, following coronary
heart disease and cancer, and the main cause of permanent
adult disablement in most Western countries (1). In China, it
has become the first leading cause of death in recent years (2).
Generally, between two main types of stroke, ischemic and
hemorrhagic, ischemic stroke accounts for the majority
of cases (~80-90%) (3-5). Ischemic injury often leads to
irreversible cerebral infarction depending on the location,
severity, and duration of cerebral blood flow (CBF) reduc-
tion, causing cognitive and motor impairment. Based on the
pathophysiological characteristics of ischemic stroke, there
are currently two major therapeutic strategies: Reperfusion
and neuroprotection. Using thrombolytic, antithrombotic and
anti-aggregation agents, the blood flow of the compromised
region can be restored. However, only one drug, IV Alteplase,
is recommended to treat ischemic stroke, and the drug has
a very short therapeutic time window and a high risk of
hemorrhagic transformation, which severely limits its clinical
use (6). The second therapeutic strategy, neuroprotection, aims
at preventing neuronal death by regulating multiple intra- or
extracellular signals that lead to cell injury. The concept that
ischemic penumbra is potentially salvageable is the basis of
numerous searches for neuroprotective medications that can
save the penumbra tissue and limit the negative consequences
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of stroke (7). However, no drug with proven neuroprotective
efficiency and without harmful adverse side effects has been
discovered yet. Therefore, it is urgent to develop novel drugs
with potential and effective targets.

Inflammation is a defense response aiming at eliminating
the primary causes of cell damage. Although inflammation
aids in clearing infections and other toxic stimuli, inflamma-
tory responses in the cerebral tissue during an ischemic injury
increase the damage for a few hours following the onset of
cerebral ischemia (8). During transient or permanent vascular
obstruction, all the functions and molecules in the neurons,
glial cells (oligodendrocytes, microglia and astrocytes) and
vascular cells (endothelial cells and pericytes), identified
as components of the neurovascular unit, are affected (9).
Dangerous molecular signals are released from the damaged
cells following multiple types of cellular stress (10). These
signals, including danger signals denominated damage-asso-
ciated molecular patterns (DAMPs) and pathogen-associated
molecular patterns (PAMPs), activate the innate immune
system via intracellular and extracellular pattern recognition
receptors (PRRs), which have been highlighted recently as an
important inflammatory mechanism that may contribute to
cerebral ischemic injury (11). Inflammasomes are intracellular
protein complexes associated with innate immunity. Activated
inflammasomes are able to cleave the precursor of interleukin
(IL)-1P and IL-18 to mature forms and initiate a newly discov-
ered programmed inflammatory cell death, pyroptosis, via
cleaved caspase-1 (12). In specific, the nucleotide-binding
oligomerization domain (NOD)-like receptor (NLR) family
pyrin domain containing 3 (NLRP3), which is plentifully
expressed in the brain, is regarded as one of the predominant
inflammasomes, due to its critical role in recognizing cellular
damage and modulating inflammatory responses to ischemia
reperfusion injury during ischemic stroke (13). In the current
review, we survey the existing evidence for the structure of
NLRP3 inflammasome, its activation process in the ischemic
brain and the therapeutic potential of blocking or inhibiting
NLRP3 inflammasome signaling.

2. Overview of NLRP3 inflammasome complex

The inflammasome was first proposed in 2002 as an activator
complex of caspase-1 that generates IL-1 via cleavage of its
preform (14). Inflammation is now considered as an important
innate immune reaction to multiple types of infection and
tissue injury (15). Two kinds of inflammasomes have been
established to date: Pyrin and HIN domain-containing protein
(PYHIN) inflammasomes and NLR inflammasomes (12).
NLRP3 inflammasome is one of the best characterized
inflammasomes to date and the most relevant to aseptic
inflammation (16). NLRP3, also known as NALP3, is encoded
by the cold-induced auto-inflammatory syndrome-1 (CIAS-1)
gene and is plentifully expressed in cells of the nervous and
immune systems (17). It is commonly comprised of three
domains: A C-terminal domain containing leucine-rich
repeats (LRRs), a central NACHT domain, and an N-terminal
PYD. The LRR domain is implicated in the progress of
ligand sensing (18,19). The NACHT domain is responsible
for oligomerization and assembly of the central core of the
NLRP3 inflammasome, which depends on ATP (20). The
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N-terminal PYD domain encourages homotypic PYD/PYD
interactions with apoptosis-associated speck-like protein
containing CARD (ASC) (21,22), which comprises both PYD
and CARD domains and regulates inflammatory response
and cell death (23,24). Following danger signals, activation of
upstream signals and oligomerization of NLRP3 result in the
formation of NLRP3 inflammasome. The NLRP3 inflamma-
some consists of three cytoplasmic proteins: NLRP3, ASC and
the precursor of caspase-1 (25,26). Once binding to NLRP3
via PYD domain, ASC recruits the precursor of caspase-1
via homotypic CARD/CARD interactions (22). Subsequently,
activated caspase-1 is generated, which then cleaves the
precursor of proinflammatory cytokines IL-1f3 and IL-18, and
results in the maturation and secretion of these cytokines,
inducing cellular pyroptosis (Fig. 1) (27). Recently, multiple
studies have reported that excessive activation of NLRP3
inflammasome is closely associated with pathophysiological
changes in a majority of inflammatory and non-inflammatory
illnesses, including ischemic stroke (28-31).

3. Activation and role of NLRP3 inflammasome in ischemic
stroke

An increasing number of studies have indicated a key role of
NLRP3 inflammasome in recognizing cellular damage and
modulating inflammatory responses that eventually result
in cell death (19,32). The NLRP3 inflammasome was first
associated with ischemic injury in an animal model of renal
ischemic injury, which occurs as blockage of blood flow (33,34).
Following renal ischemic injury, plenty of evidence proves
that activation of NLRP3 is critical in mediating myocar-
dial and liver ischemic damage (35). In the central nervous
system (CNS), NLRP3 inflammasome was first reported to be
activated in cortical neurons under ischemic conditions and
the expression of NLRP3, ASC, caspase-1, IL-1p3 and IL-18
was upregulated in vitro and in vivo (36). The latter study
also demonstrated that suppression of NLRP3 inflamma-
some activity and neuroprotection resulted from intravenous
immunoglobulin (IVIg) and anti-caspase-1 treatment, respec-
tively (36). Another study indicated that deficiency of the
NLRP3 gene protected mice from ischemic damage with
improved functional outcomes, decreased infarction volume
and edema formation, preserved blood brain barrier (BBB)
permeability, and reduced inflammatory pathology in a
transient middle cerebral artery occlusion (tMCAO) mouse
model (37,38), which was first developed in 1986 to mimic
ischemic stroke in patients by Koizumi (39). However, several
researchers have questioned the role of NLRP3 in the progress
of cerebral ischemic injury (40). The conflict between these
results could be attributed to differences in ischemic time that
may modify the inflammatory response.

After the NLRP3 inflammasome is activated, caspase-1, an
evolutionarily conserved enzyme that proteolytically cleaves
other proteins, becomes mature. Following ischemic injury in
a permanent animal model of stroke, the levels of activated
caspase-1 increase at 30 min following surgery, and a second
wave of activation comes 12 h later (41). The upregulated levels
of cleaved caspase-1 have been observed in neurons and astro-
cytes following cerebral ischemia, and in microglia 24 h after
a stroke (42). Using transgenic mice, the role of caspase-1 has



INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE 42: 2979-2990, 2018

been highlighted in the progress of ischemic stroke. Knockout
or dominant-negative mutants of caspase-1 inhibited brain
damage in contrast to wild type, following experimental
stroke (43,44). The therapeutic effects of caspase-1 molecule
inhibitors have also been observed in an oxygen/glucose
deprivation model in rat hippocampal slices (45). Collectively,
these studies demonstrate a critical role of caspase-1 during
ischemic stroke.

Several studies have demonstrated upregulated concentra-
tions of pro-inflammatory factors in the blood, cerebrospinal
fluid, and location of blockages of the brain in both clinical
patients and experimental animals (46-49), suggesting a
localized CNS inflammatory response to ischemic injury.
In pathological conditions, premature IL-1 and IL-18
proteins without biological function need to be processed
and secreted to exert their pro-inflammatory effects (50).
Secreted IL-1 in extracellular space has a direct impact on
nearby neurons via IL-1 receptors. High concentrations
of IL-1P stimulates phosphorylation and activation of the
N-methyl-D-aspartate (NMDA) receptor, which induces
excessive calcium flux and excitatory toxicity (51).

4. Expression of the NLRP3 inflammasome complex in the
ischemic brain

The NLRP3 inflammasome complex, except for immune
organs, has also been recently found to be expressed in the
brain and spinal cord (47,50). Based on expression data from
11 types of tissues, it was demonstrated that the brain does
not express IL-1p and IL-18 constitutively, but expresses
NLRP3 inflammasome in a constitutive state, indicating
that the NLRP3 inflammasome can be assembled without
upregulation of one or two components (52). Expression of the
member proteins of the NLRP3 inflammasome complex and
IL-1P and IL-18 has been demonstrated to be upregulated in
post-mortal brain tissue from stroke patients. A higher level of
activated caspase-1 in ischemic brain tissues compared with
control brain tissues from patients was further confirmed by
immunohistochemical analysis (36,53). At the cellular level,
similar to bone marrow-derived macrophages, microglia is
the main cell type that expresses NLRP3, ASC and caspase-1
in the brain. However, neither NLRP3 nor ASC can be
detected in astrocytes, which highlights the important role of
microglia-dependent NLRP3 inflammasome activation under
neuroinflammatory conditions (54). In 2014, for the first time,
animals subjected to MCAO and cell cultures subjected to
oxygen-glucose deprivation (OGD) modeling ischemia/reper-
fusion injury in vivo and in vitro were used to confirm NLRP3
expression in ischemic stroke. Another study has demonstrated
that NLRP3-related proteins are expressed in endotheliocytes
and microglia instead of neurons, suggesting that they are
the main sources of NLRP3 in the location of the ischemic
incident (38). Others found that the levels of NLRP3 inflam-
masome proteins were also upregulated in primary cortical
neurons under ischemic injury (36). Although the specific
expression pattern of NLRP3-related proteins in different
types of cells in ischemic brain remains unclear, it is certain
that NLRP3 inflammasome signaling has an important role
in the pathogenesis of ischemic stroke, at the neurovascular
unit level. The underlying causes for the differences in the
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distribution may due to diverse models, ischemic duration and
different interventions.

5. Activation of the NLRP3 inflammasome pathway in
ischemic stroke

The specific intracellular and extracellular signals leading to
NLRP3 inflammasome activation are not yet fully understood.
Evidence has revealed that assembly of NLRP3 inflammasome
and activation of downstream signals depend on two comple-
mentary signals associated with cell injury: A priming signal,
required for upregulated expression of the NLRP3 inflamma-
some complex proteins and the precursors of IL-1§ and IL-18
through nuclear factor (NF)-kB and mitogen-activated protein
kinase (MAPK) signaling pathways (55); and a second signal
that results in NLRP3 activation and ASC phosphorylation,
thus triggering their assembly into the NLRP3 inflammasome
complex (Fig. 2). In addition, multiple activation mechanisms
have been described for the inflammasome, including K*
efflux, reactive oxygen species (ROS) overproduction, mito-
chondrial dysfunction, Ca** overload, and lysosome rupture.
Notably, these mechanisms also overlap with the two-step
activation of the NLRP3 inflammasome. It is well-established
that these mechanisms exist in the progress of ischemic
stroke. Several experts have confirmed that reducing the
ATP/ADP ratio following ischemic stroke opens the channel
and allows K* ions to exit the cells via potassium channels (56).
Mitochondrial dysfunction (57), ROS overproduction (58) and
Ca?* overload (59) are also known to have important roles in
the amplification and transmission of ischemic injury.

NLRP3, pro-IL-1f and pro-IL-18 do not abound in physi-
ological conditions, and therefore a priming signal, specifically
the upregulation of NLRP3-related proteins, is necessary for
the activation of NLRP3 inflammasome. In addition, several
plasma membrane pattern recognition receptors (PRRs), such
as toll-like receptors (TLRs) and receptor for advanced glyca-
tion end-products (RAGE), and downstream adaptor proteins,
such as myeloid differentiation primary response gene 88
(MyD88) and tumor necrosis factor receptor-associated
factor 6 (TRAF6), may serve a role in activation of two phos-
phorylation signaling pathways, NF-xB and MAPK (60-63).
Both of the latter signaling pathways are considered to regu-
late both the expression of the member proteins of the NLRP3
inflammasome complex, and the expression of the precursors
of IL-1p and IL-18 during the inflammatory response to
specific cellular stress (64-66).

As aforementioned, after the activating priming signal,
ASC, an adaptor protein, recruits NLRP3 proteins and forms
the NLRP3 inflammasome complex. Of all the intracellular
and extracellular factors, the best-studied stimulus, K* efflux,
has been demonstrated to have a role in activation of the
NLRP3 inflammasome (67). This non-selective K* cation
channel on the cell surface is able to change intracellular
ionic contents depending on ATP binding and to activate
downstream signals, inducing maturation and secretion of
IL-1pB (68). Previous studies have demonstrated that downregu-
lated levels of intracellular K* are indispensable for activation
of the NLRP3 inflammasome pathway when compared with
other known stimuli, which highlighted the role of K* efflux
in this process. P2X purinoceptor 7 (P2X7R) is one of the
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Figure 1. Structure of the NLRP3 inflammasome complex. The NLRP3 inflammasome complex consists of NLRP3, ASC and pro-caspasel. NLRP3 is
composed of three domains: A C-terminal domain containing LRRs, a central NACHT domain, and an N-terminal PYD. The ASC protein is composed
of a PYD and a CARD. Following DAMPs or PAMPs activating upstream signaling pathways, homotypic interactions between homotypic domains, such
as NATCH/NATCH, PYD/PYD and CARD/CARD, have a key role in assembly of the NLRP3 inflammasome. Finally, pro-caspasel is cleaved to form the
bioactive caspasel, which then induces the maturation and secretion of IL-18 and IL-18, and subsequently pyroptosis. NLRP3, NLR family pyrin domain
containing 3; ASC, apoptosis-associated speck-like protein containing CARD; LRRs, leucine-rich repeats; PYD, pyrin domain; CARD, caspase recruitment
domain; DAMPs, danger associated molecular patterns; PAMPs, pathogen-associated molecular patterns; IL, interleukin.
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Figure 2. Activation of the NLRP3 inflammasome signaling pathway in ischemic stroke. Two steps of activation have been recognized: The priming and
the activating. For the priming step, PRRs, such as TLRs and RAGE, are major initiative signals that upregulate the expression of the NLRP3 inflam-
masome complex proteins and of pro-inflammatory cytokines, via transcription factors such as NF-kB and MAPK. Following the priming step, ASC, an
adaptor protein, recruits NLRP3 and forms the NLRP3 inflammasome complex. Finally, intracellular and extracellular stimuli, including disruption of K*
and Ca* homeostasis, and mtDNA and mtROS release from mitochondrial dysfunction and lysosomal rupture, have been demonstrated to have important
roles in activation of the NLRP3 inflammasome. NLRP3, NLR family pyrin domain containing 3; PRRs, plasma membrane pattern recognition receptors;
TLRs, toll-like receptors; RAGE, receptor for advanced glycation end-products; NF-kB, nuclear factor-kB; MAPK, mitogen-activated protein kinase; ASC,
apoptosis-associated speck-like protein containing CARD; mt, mitochondrial; ROS, reactive oxygen species; IL, interleukin; P2X7R, P2X purinoceptor 7;
ASICs, acid-sensing ion channels; CASR, calcium-sensing receptor; VDAC, voltage-dependent anion channels; IP3R, inositol 1,4,5-trisphosphate receptor.
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best-characterized receptors associated with K* efflux, whose
activation might induce release of pro-inflammatory cytokines
and amplify ischemic injury via ATP. Experimental evidence
from P2X7R knockdown mice confirmed the role of this
receptor in NLRP3 inflammasome response (69).

Mitochondrial damage is another important activation
mechanism of the NLRP3 inflammasome. The mitochondrion
is a double-membrane-bound intracellular organelle and the
predominant location in the cell that produces both energy
and reactive oxygen species (ROS) (70). Previous research
has indicated that high levels of ROS under multiple kinds
of cellular stress, particularly those produced by mitochon-
dria (mtROS), activates the NLRP3 inflammasome signal
pathway (71-74). In detail, high levels of ROS induce the ROS
scavenging protein thioredoxin resolving from thioredoxin
interacting/inhibiting protein (TXNIP), which then directly
binds with NLRP3 proteins and modulates its assembly via
oligomerization (75-77). Although several investigations
have demonstrated that TXNIP is necessary for NLRP3
inflammasome assembly, a cell type-specific modulation of
TXNIP occurs, which limits its mediation of inflammatory
response ROS signaling pathway activation to particular cell
types (78-80). In addition to mtROS, dysfunctional mito-
chondria also release mitochondrial DNA (mtDNA) into the
cytoplasm, directly inducing the assembly of NLRP3 inflam-
masome complex via molecular self-association (81-83). Of
note, appropriate amount of nitric oxide, another kind of free
radical, is able to trigger a cascade to modulate mitochondrial
permeability, limit mtROS releases and suppress NLRP3
inflammasome activation (84,85).

Previous evidence has demonstrated that intracellular level
of Ca* is associated with the activation of NLRP3 inflam-
masome, which highlights the role of calcium homeostasis
in NLRP3 inflammasome signaling. An early study reported
that increased levels of intracellular Ca** along with decreased
levels of K* activate the NLRP3 inflammasome pathway and
release mature IL-13 and IL-18 via P2X7R, as aforemen-
tioned (86). Later, it was demonstrated that both suppression
of extracellular Ca** influx via membrane receptor and inhibi-
tion of intracellular Ca** overload depending on endoplasmic
reticulum (ER) were able to block NLRP3 inflammasome
activation and IL-1f maturation and secretion by ATP,
nigericin, and alum (87), indicating a key role of Ca?* level
in NLRP3 inflammasome activation (88). Notably, via Ca?*
overload, mitochondrial damage and ER stress are among
the best-described pathological factors activating the NLRP3
inflammasome pathway. Extracellular Ca** may enter the
cell trough plasma membrane-resident Ca®* channels called
acid-sensing ion channels (ASICs) (89,90). The calcium-sensing
receptor (CASR) has also been reported to increase the
concentration of intracellular Ca*, initiate the phospholipase
C pathway via the intracellular side and induce assembly of the
NLRP3 inflammasome complex (91). Mitochondria-associated
membranes (MAM), a mechanism resulting from crosstalk
between ER and mitochondria, are involved in Ca?* flux
from ER to mitochondria via inositol 1,4,5-trisphosphate
receptor (IP3R) and mitochondrial voltage-dependent anion
channels (VDAC) (92,93). Pathologically high levels of
Ca?* can induce NLRP3 inflammasome activation via two
different mechanisms: By enhancing mtROS production,
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with associated mitochondrial destabilization (94); and by
inducing lysosomal rupture, resulting in lysosome contents
being released into the cytosol, particularly cathepsin B, which
binds to the LRR domain of NLRP3 and triggers NLRP3
signaling (95,96). Cathepsin B is also activated by the TAK1
kinase and is involved in the activation of MAPKSs, one of
which participates in the priming step to activate the NLRP3
inflammasome (97-99).

6. Inhibitors targeting the NLRP3 inflammasome pathway
for ischemic stroke treatment

Accumulating evidence indicates that the NLRP3 inflamma-
some has an important role in ischemic brain injury. Targeting
upstream or downstream of the NLRP3 inflammasome
pathway at the molecular level, including modulating protein
expression, assembly, activation and/or secretion, may have
a promising prospect in developing novel therapeutic agents
for ischemic stroke (Table I). Core proteins involved in the
NF-xB and MAPK pathways, proteins of the NLRP3 inflam-
masome complex, plasma membrane receptors or channels,
cytokines (IL-1p and IL-18) and their receptors may serve
as potential therapeutic targets for ischemic stroke (19). A
previous study focused on the effect of Bay-11-7082 (an
NF-kB inhibitor), SB 203580 (a P38-MAPK inhibitor), JNK
Inhibitor V (a JNK inhibitor), and U-0126 (an ERK inhibitor)
on a mice tMCAO model and in neurons undergoing OGD,
and demonstrated that all of these inhibitors protected
neurons during simulated ischemia, via attenuating the
levels of NLRP3 inflammasome complex, and via inhibiting
activation of NLRP3 inflammasome and maturation of IL-13
and IL-18 (100). Probenecid, a pannexin 1 inhibitor, has
also been found to induce astrocyte death and ROS genera-
tion, attenuate expression levels of NLRP3 and inhibit the
extracellular release of IL-1f3 (101). MCC950 and glyburide,
both NLRP3 oligomerization inhibitors, reduce infarction
volume, neuronal apoptosis, and neurological impairment,
and have anti-oxidative stress and anti-inflammatory effects,
respectively (102-105). Recently, several natural compounds,
including resveratrol, paeoniflorin and sinomenine, were also
demonstrated to reduce cerebral infarction volume, decrease
brain water content, improve neurological scores and grip
strength, and prevent neuronal cell death following ischemic
stroke, through downregulating the expression of the compo-
nents of the NLRP3 inflammasome and their downstream
proteins and attenuating its activation (106-108). However,
there is little clinical data on the effects of these agents to date.
Further studies are required to examine the efficiency and
safety of these agents in the clinic in the future.

Although targeting the NLRP3 inflammasome pathway
rather than anti-ischemic systems may develop promising
therapeutic strategies to treat ischemic stroke, several aspects
of this potential treatment must be clarified. Firstly, the
specific expression pattern of NLRP3 activation in specific
cell types and brain regions following ischemic injury require
further investigation. Additionally, whether the upstream
pathways are different among various cell types remains to
be elucidated. Secondly, it is well known that whether inflam-
mation will have destructive or beneficial effects depends on
the severity, frequency, and duration of ischemic injury. It is
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possible that early immune responses may aggravate ischemic
injury, while late responses may help to repair the damaged
region. Therefore, early inhibition of the NLRP3 inflamma-
some pathway may be a beneficial and reasonable choice. On
the other hand, using animal models, some anti-neuroinflam-
mation agents have been demonstrated to protect ipsilateral
brain against ischemic injury up to 7 days following ischemic
induction (109-111), which highlights the long-term effect and
application prospect of immunotherapy. Of note, intermittent
fasting has been reported to attenuate NLRP3 pathway activity
and repair damaged tissues up to 4 months following ischemic
stroke (112). Future studies should focus on the optimal timing
of NLRP3 inhibitor administration and explain the mecha-
nisms behind damaging and protective actions of the immune
system in ischemic stroke.

Finally, after glyburide was first found to selectively
inhibit activation of the NLRP3 inflammasome without
interfering with other inflammasome pathways (113), two
other selective and direct NLRP3 inhibitors, CY-09 (114) and
CP-456,773 (115,116), were recently identified. These drugs
might provide a novel avenue toward therapeutic inhibition of
the NLRP3 inflammasome, although their effect in ischemic
stroke remains to be determined. Many NLRP3 inhibitors
found to have benefits following ischemic stroke were identified
as natural compounds, and further research should elucidate
the relationship between molecular structure and anti-NLRP3
inflammasome function. Furthermore, several microRNAs
have been demonstrated to influence the NLRP3 inflamma-
some pathway, including miR-22 (117), miR-132 (118), and
long non-coding RNA XLOC_000647 (119). Further studies
should consider the modulation of the NLRP3 inflammasome
post-stroke via epigenetic approaches.

7. Conclusions

In conclusion, illuminating the role of NLRP3 inflammasome
signaling pathways in ischemic injury will provide signifi-
cant knowledge and opportunities to clarify the relationship
between the innate immune system and the nervous system
in the pathophysiology of ischemic stroke. Above all, more
and larger clinical studies examining the associations between
clinical symptoms and signs and the expression levels of
NLRP3 inflammasome network proteins in brain parenchyma
and body fluids are urgently needed. Research to identify and
design compounds and therapeutic strategies to target the
NLRP3 inflammasome and modulate the detrimental inflam-
matory processes without excessively disturbing the immune
defense progress may be essential for the treatment of ischemic
stroke. Extensive clinical trials are required to develop safer
and more effective agents targeting the NLRP3 inflammasome
pathway in humans.
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