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Abstract. The mortality rates of cancer patients decreased by 
~1.5% per year between 2001 and 2015, although the decrease 
depends on patient sex, ethnic group and type of malignancy. 
Cancer remains a significant global health problem, requiring 
a search for novel treatments. The most common property of 
malignant tumors is their capacity to invade adjacent tissue and 
to metastasize, and this cancer aggressiveness is contingent 
on overexpression of proteolytic enzymes. The components 
of the plasminogen activation system (PAS) and the metal-
loproteinase family [mainly matrix metalloproteinases 
(MMPs)] are overexpressed in malignant tumors, driving the 
local invasion, metastasis and angiogenesis. This is the case 
for numerous types of cancer, such as breast, colon, prostate 
and oral carcinoma, among others. Present chemotherapeutics 
agents typically attack all dividing cells; however, for future 
therapeutic agents to be clinically successful, they need to 
be highly selective for a specific protein(s) and act on the 
cancerous tissues without adverse systemic effects. Inhibition 
of proteolysis in cancerous tissue has the ability to attenuate 
tumor invasion, angiogenesis and migration. For that purpose, 
inhibiting both PAS and MMPs may be another approach, 
since the two groups of enzymes are overexpressed in cancer. 
In the present review, the roles and new findings on PAS 
and MMP families in cancer formation, growth and possible 
treatments are discussed.
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1. Introduction

Research on cancer formation and treatment has finally started 
to reduce the mortality of cancer patients. In general, mortality 
rates decreased by 1.5% per year from 2001 through 2015, 
although these rates may differ depending on patient sex, 
ethnic group and type of malignancy. Nevertheless, cancer 
remains a significant global health problem, requiring constant 
search for novel treatments (1). The most common property of 
the malignant tumors is their ability to invade adjacent tissue 
and to metastasize to distant sites (2,3). This is due to increased 
expression or increased activity of numerous proteases 
associated with carcinogenesis (4‑9). For example, cysteine 
proteases, such as cathepsin B and cathepsin D, can take part 
in dissolving of connective tissue and basement membrane 
needed for invasion and metastasis. However, these become 
activated at the low pH of lysosomes, requiring transporting 
into regions of tumor cell invasion (10‑13). Aspartate proteases 
and other protease enzymes also serve a role in cancer devel-
opment and metastasis (14‑16). Nevertheless, among all these 
proteolytic events, the plasminogen and metalloproteinase 
family members have an exceptional significance due to their 
ability to cleave virtually any element of the extracellular 
matrix and basement membrane (17‑20).

The components of the plasminogen activation system 
(PAS) and matrix metalloproteinase (MMP) families have 
been found to be overexpressed in malignant tumors, revealing 
that tumors are hijacking these systems and using them in the 
local invasion, metastasis and angiogenesis (21‑23). One of the 
hallmarks of this cancer aggressiveness is the overexpression 
of proteolytic enzymes (24‑27). For instance, prostate cancer 
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is the most common non‑cutaneous malignancy in men with 
>160,000 new cases in the United States each year, and the 
median age of diagnosis is 68 years. This cancer grows slowly, 
and is initially confined to the gland, requiring marginal 
or no treatment at all. However, certain types of prostate 
cancer are aggressive, can spread quickly and exhibit high 
proteolytic activity (28‑31). This is also a case for other types 
of cancer, such as breast, colon and oral carcinomas among 
others (32‑36).

In the present review, new findings on the role of plasmin-
ogen activation system (PAS) and metalloproteinase families 
in cancer formation and growth were summarized, and the 
study explored whether targeting these two protein families 
can serve as a possible treatment strategy.

2. PAS family

Plasminogen/plasmin. Plasminogen is synthetized as a 
zymogen in the liver and released into the systemic circula-
tion. In the circulation, plasminogen is resistant to activation 
by adopting a closed conformation. When bound to blood 
clots or to the cell surface, plasminogen changes to an open 
form that can be cleaved into active plasmin by a variety of 
enzymes. These enzymes are mainly plasminogen activators, 
namely tissue plasminogen activator (tPA) and urokinase 
plasminogen activator (uPA), while other enzymes include 
kallikrein and factor XII. Plasminogen is converted into 
plasmin by the cleavage of the peptide bond between Arg‑561 
and Val‑562 (37,38). Plasmin, a member of the serine protease 
family, was originally considered to only act to dissolve fibrin 
blood clots. However, in addition to fibrinolysis, plasmin 
cleaves proteins in numerous other systems. For instance, 
it activates collagenases, and cleaves fibronectin, throm-
bospondin, laminin and von Willebrand factor (26,35,38). 
Two major forms of plasminogen are detected in humans, 
including type I and type II. Notably, type I plasminogen has 
two glycosylation moieties, namely N‑linked to N289 and 
O‑linked to T346, which is preferentially recruited to the cell 
surface. Type II plasminogen contains only O‑linked sugar 
to T346, which appears to be more readily recruited to blood 
clots (39‑41).

To prevent premature or unnecessary proteolysis, the 
activity of plasmin needs to be tightly controlled. Two 
proteins, α2‑macroglobulin and α2‑antiplasmin, inacti-
vate plasmin, and the underlying mechanism involves the 
cleavage of α2‑macroglobulin at the bait region by plasmin. 
This initiates a conformational change resulting in the 
α2‑macroglobulin‑plasmin complex, where the active site of 
plasmin is sterically shielded, decreasing the access of plasmin 
to its substrates  (42). In addition, a major conformational 
change exposes a conserved COOH‑terminal receptor binding 
domain that allows the α2‑macroglobulin protease complex 
to bind to clearance receptors and consequently be removed 
from the circulation (43). Furthermore, α2‑antiplasmin forms 
an irreversible complex with plasmin by attaching to Arg‑376 
in the reactive center loop, resulting in the complete loss of 
plasmin activity (42).

A rare disorder in humans known as plasminogen deficiency 
type I may lead to thrombosis, as blood clots are not effec-
tively degraded. Plasminogen deficiency in humans is caused 

by numerous mutations and polymorphisms in plasminogen 
gene and is often manifested by ligneous conjunctivitis (44). 
Ligneous conjunctivitis is characterized by fibrin‑rich pseu-
domembranous lesions that develop mainly on the underside 
of the eyelid, which can be sight‑threatening (45). It may also 
influence the periodontal tissue, upper and lower respiratory 
tract, kidneys, middle ear and female genitalia, and affects 
wound healing (46‑50).

Plasminogen activators. There are two main plasminogen 
activators, uPA and tPA (35,51,52), which are weak but specific 
proteolytic enzymes that activate plasminogen to plasmin 
by proteolytic cleavage. tPA mainly mediates intravascular 
thrombolysis, while uPA is involved in pericellular proteolysis 
during cell migration, wound healing and tissue remodeling 
under a variety of physiological and pathological condi-
tions (35).

tPA. The encoded preprotein of tPA is proteolytically 
cleaved by plasmin or trypsin to produce heavy and light 
chains. These chains are linked by disulfide bridges to 
form an active heterodimeric enzyme that is able to activate 
plasminogen (53). Increased tPA activity triggers hyperfibri-
nolysis, which causes excessive bleeding and an increase of 
the vascular permeability (54‑57), while decreased activity 
leads to hypofibrinolysis, which can result in thrombosis or 
embolism (58‑60).

uPA. Similar to tPA, uPA is synthetized as a preprotein and is 
activated by cleavage at a Lys‑Ile bond by plasmin to form a 
two‑chain enzyme connected by a disulfide bond. In its active 
form, uPA contains the amino terminal A‑chain that is catalyti-
cally active, and the carboxy‑terminal B‑chain. This two‑chain 
derivative form is referred to as high molecular weight uPA 
(HMW‑uPA). HMW‑uPA can be cleaved at the A‑chain into 
a short chain A (A1), forming low molecular weight uPA 
(LMW‑uPA) and an amino‑terminal fragment. LMW‑uPA 
is able to activate plasminogen, however, it does not bind to 
the uPA receptor (uPAR)  (61,62). A C/T single‑nucleotide 
polymorphism (SNP) in codon 141 of urokinase (known as 
P141L) may be associated with late onset Alzheimer's disease, 
decreased affinity for fibrin‑binding (63) and reduced risk of 
Helicobacter pylori infection (64).

Urokinase receptor. uPAR, also known as cluster of differ-
entiation 87 (CD87), was originally identified as a saturable 
binding site for uPA and contains three domain glycoprotein 
bound to the cell surface with a glycosylphosphatidylinositol 
(GPI) anchor. All domains of uPAR are needed for high 
affinity binding of the urokinase (21,27,35). Urokinase receptor 
anchors uPA and therefore confines plasminogen activation in 
the vicinity of the cell membrane. However, when uPA is bound 
to its receptor, it may be cleaved in the proximity of the GPI 
anchor, and the uPAR is released as a soluble receptor (65‑67). 
Urokinase receptor has also been suggested to be involved 
in non‑proteolytic processes, such as cancer, cell migration, 
cell cycle regulation or cell adhesion (35,65‑67). A previous 
study reported that rs344781 (516 T/C) uPAR polymorphism 
was implicated in systemic sclerosis vasculopathy, impaired 
angiogenesis (68) and the severity of lung cancer (69).
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Inhibitors of plasminogen activators. Plasminogen activator 
inhibitor‑1 (PAI‑1), also known as endothelial PAI or serine 
protease inhibitor E1, is a fast‑acting, high‑affinity, principal 
inhibitor of tPA and uPA. The other PAI, namely PAI‑2, is 
only produced in physiologically significant amounts during 
pregnancy and secreted by the placenta. Protease nexin can 
also inhibit tPA and uPA, however, PAI‑1 remains a major 
inhibitor of plasmin‑driven proteolysis (35,70‑72). PAI‑1 is 
overexpressed in various diseases, such as obesity and meta-
bolic syndrome, and has been linked to risk of thrombosis 
in patients with these conditions (36,73,74). Also, it has been 
reported that a high activity of PAI‑1 is associated with 
recurrent pregnancy loss (75,76). By contrast, a low level of 
PAI‑1 leads to excessive plasmin fibrinolysis that is unop-
posed by PAI‑1 and rapid degradation of the fibrin, which 
may manifest in profuse bleeding. Indeed, it was reported 
that a life‑long bleeding tendency was caused by undetect-
able PAI‑1 activity and antigen levels in a 76‑year‑old man, 
while severe menorrhagia has been reported in patients with 
a low PAI‑1 antigen level (77‑79). Notably, in the case of low 
activity of PAI‑1, women have achieved pregnancy without 
difficulty, but experienced antenatal bleeding and preterm 
labor (80).

The promoter polymorphisms (844 A/G and 675 4G/5G) in 
the PAI‑1 gene yield higher plasma PAI‑1 levels (81). Another 
SNP with substitution of A15 to T15 and possibly V17 to Ile in 
the signal peptide leads to lower PAI‑1 activity compared with 
a control (78,82,83). In addition, a previous study reported 
that a young Amish girl and certain members of her extended 
immediate family had no PAI‑1 antigen and PAI‑1 activity. 
In addition, a previous study reported that a young Caucasian 

girl from an Amish congregation and certain members of 
her extended family had no PAI‑1 antigen and PAI‑1 activity, 
leading to excessive bleeding. They were found to be homozy-
gous for a dinucleotide insertion within exon 4 of PAI‑1 gene, 
producing a truncated, non‑functional protein (78,79). The 
diverse function of PAS, as discussed in the present study, is 
outlined in Fig. 1.

3. Metalloproteinase family

Matrix metalloproteinases (MMPs). MMPs also known 
as matrixins, are metal‑dependent (Ca and Zn) endopepti-
dases that belong to a larger family known as the metzincin 
superfamily  (84‑87). These enzymes degrade all types of 
extracellular matrix proteins and are differentiated from other 
endopeptidases by their dependence on metal ions as cofac-
tors (88,89). MMPs are synthesized as inactive zymogens with 
a domain that must be removed to activate enzymes. This 
domain is part of the cysteine switch, containing a cysteine 
residue that prevents metals binding and keeps the enzyme 
in an inactive form (90‑93). Matrix metalloproteinases are 
also involved in cell proliferation, migration, differentiation, 
angiogenesis and apoptosis (92,94).

MMP‑2 and MMP‑9, two members of the 25‑protein 
family of MMPs, are considered to be critical in local invasion 
and metastasis of cancer in humans (94,95). One of the most 
important functions of these enzymes in cancer progression is 
their ability of extracellular matrix degradation, which enables 
cancer cells to migrate out of the primary tumor site and to 
form metastases. Both MMP‑2 and MMP‑9 are capable of 
degrading type IV collagen, the most abundant component 

Figure 1. Diverse functions of plasminogen activation system.
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of the basement membrane, which is an essential step for the 
local invasion and metastatic progression of cancer (95,96). 
In addition, MMP‑2 and certain other MMPs can proteolyti-
cally activate transforming growth factor β, which promotes 
epithelial mesenchymal transition, an important step in cancer 
metastasis (96,97). Diverse functions of metalloproteinases 
are outlined in Fig. 2.

SNPs in the promoter region of MMP‑2 (1306C‑>T and 
735C‑>T) are associated with lower transcriptional activity, 
and the SNP in the promoter part of MMP‑9 gene (1562C‑>T) 
amplifies the transcription of this metalloproteinase gene. 
Others SNPs in the coding region of the MMP‑9 gene include 
836A>G, 1721G>C and 2003G>A, which produce a missense 
amino acid sequence, reducing the substrate and inhibitor 
binding ability of MMP‑9 (98,99).

Tissue inhibitor of metalloproteinase (TIMP). MMPs are 
inhibited by four different specific endogenous tissue inhibi-
tors: TIMP‑1, TIMP‑2, TIMP‑3 and TIMP‑4. All MMPs are 
inhibited by TIMPs when in their active form, with the excep-
tion of MMP‑2 and MMP‑9, which can form complexes with 
TIMPs in the latent form (99,100). Ricci et al (101) investi-
gated MMP‑2 and MMP‑9, as well as the inhibitors TIMP‑1 
and TIMP‑2 in the urine and sera of bladder cancer patients. 
The data revealed that urinary TIMP‑1 was significantly 
higher in high‑grade patients, as compared with the levels 
in the low‑grade samples (101). The results also revealed a 
significantly differing distribution of TIMP‑1 expression 
between Ta and T1 stage specimens, and the authors concluded 

that urinary TIMP‑1 can be a useful, non‑invasive biomarker 
that may serve as a decision making tool for bladder cancer 
disease management  (101). Three SNPs were reported in 
TIMP‑1, including 261 C‑>T, 328+16 C‑>T and 372 T‑>C, (102), 
while six SNPs were reported in TIMP‑2, including rs2277698 
T‑>C, rs2009196 C‑>G, rs7342880 A‑>C, rs11654470 C‑>T, 
rs2003241 C‑>T, rs4789936 T‑>C (103).

4. Proteolysis in angiogenesis, invasion and metastasis

The hallmark of metastatic disease is an altered equilibrium 
between the synthesis and degradation of the extracellular 
matrix proteins during pathological angiogenesis, invasion 
and metastasis (35,102).

Angiogenesis. Angiogenesis is the physiological or patho-
logical development of revascularization from existing 
vessels. It is a normal process during growth and develop-
ment, and in wound healing; however, angiogenesis is also 
an essential step in malignant tumor growth (26,27,34,35). 
Sprouting angiogenesis occurs as angiogenic growth 
factors activate receptors on endothelial cells, followed by 
the release of proteases (PAS and MMP) that degrade the 
basement membrane, permitting cells to escape in tandems 
to or from the vessel walls (35,110). The endothelial cells 
then proliferate into the surrounding matrix and form solid 
sprouts, connecting neighboring vessels. These processes 
are basically the same in both normal and aberrant angio-
genesis (26,35,104).

Figure 2. Diverse functions of metalloproteinases. SNP, single‑nucleotide polymorphism; MMP, matrix metalloproteinase; TIMP, tissue inhibitor of metal-
loproteinase.
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Invasion and metastasis. Lah et al (105) introduced definition 
of ‘degradome’ that includes proteases associated with degra-
dation of adjacent tissue during cancer invasion and metastasis. 
The study stressed that invasion and metastasis were initially 
considered to occur as late events in cancer development. 
However, other studies have indicated that these processes are 
also highly depended on proteases activity that takes place 
during early stages of cancer development (105,106).

5. Inhibition of PAS in the treatment of cancer

It has previously been reported that receptor‑bound uPA 
on the cancer cell surface is overexpressed in final step of 
malignant cell transformation that is responsible for invasion 
and metastasis (107). In addition, uPA has been implicated 
in the basement membrane and interstitial protein degrada-
tion during carcinogenesis, and is responsible for the disease 
progression (108‑110). Therefore, inhibition of uPA may be 
beneficial in the treatment of cancer by limiting or preventing 
tumor growth and metastasis (26,111,112). Historically, one of 
the first uPA specific inhibitors identified was amiloride, which 
limits tumor growth and angiogenesis, as proven by in vitro 
and in vivo models (26,108,110,111,113). Amiloride has been 
approved by the Food and Drug Administration as a diuretic 
agent, however, it is not currently used in anticancer therapy.

The availability of the high resolution structure of uPA 
and sophisticated molecular modeling methods have aided 
the development of inhibitors binding to uPA. The specificity 
pocket of uPA is a part of this enzyme, which is responsible 
for the recognition of uPA substrates, therefore binding to 
the specificity pocket promises high specificity of inhibi-
tors (35,67,105). Several 8‑substituted 2‑naphthamidine‑based 
inhibitors with specific binding to uPA with high potency and 
selectivity were developed by Wendt et al (114). Among the 

multiple novel inhibitors developed by the Bruncko et al (115) 
and Katz et al (116) groups, only a limited number of inhibi-
tors were translated into clinical practice. One of these is 
WX‑UK1, also known as ethyl 4‑[3‑(3‑carbamimidoylphenyl)‑ 
2‑[[2,4,6‑tri(propan‑2‑yl)phenyl]sulfonylamino]propanoyl]
piperazine‑1‑carboxylate or Mesupron®, which is one of the 
most potent uPA inhibitors (0.41 µM), and is currently in 
Phase I clinical trial for pancreatic and breast cancer, with 
the possibility of application in ovarian and colon cancer as 
well (117‑120).

Another possibility for inhibiting uPA is through the 
use of antibodies. For instance, a number of studies by 
Ossowski (121,122) have reported that the ability to invade 
the chick chorioallantoic membrane and metastasize from it 
to the embryo was evidently reduced for human carcinoma 
cells expressing a high amount of uPA during treatment with 
the antibody against the active site of uPA, in comparison to 
non‑treated cells.

PAI‑1 is also an attractive molecule for anticancer therapy, 
since it is a fast‑acting, specific and high‑affinity inhibitor of 
uPA (35,123). However, only active PAI‑1 can be used to control 
angiogenesis, invasion and metastasis of malignant tumors. 
The half‑life of wild‑type PAI‑1 is very short (t1/2 = 1‑2 h), after 
which it converts into its inactive latent form. This transforma-
tion is associated with the insertion of part of the reactive loop 
(P4‑P10') into the central β‑sheet of the PAI‑1 molecule, where 
P1‑P1' amino acids are not accessible for reaction with tPA or 
uPA (35,124). For that reason, wild‑type PAI‑1 cannot be used 
in anti‑cancer therapy. Numerous engineered PAI‑1 molecules 
with two or more mutations were developed, which exhibited a 
half‑life extended from 2 h to >700 h, opening a possibility for 
their application in clinical settings (124‑126). For instance, 
VLHL PAI‑1 (t1/2 = >700 h) has been demonstrated to inhibit 
angiogenesis and reduce tumor size in different ex vivo and 
in vivo models (26,71,110).

Notably, PAI‑1‑deficient mice exhibited lower tumor 
proliferation and higher apoptosis of implanted tumors when 
compared with their wild‑type counterparts. Additionally, 
an elevated PAI‑1 level is a predictive factor of poor prog-

Figure 3. Ribbon model of (A) MMP‑9 and inhibitors, and (B) uPA and 
inhibitors. The inhibitors of MMP‑9 and uPA are shown as sticks models 
in red, while ions in MMP‑9 are shown as spheres (blue, Zn2+; light 
blue, Ca2+; green, Cl‑). Surface of active site of (C) MMP‑9 and (D) uPA. 
Epigallocatechin gallate is shown as a stick model in light brown. Polar con-
tacts are shown as the yellow dotted lines [reprinted with permission from 
the study of Jankun et al (113)]. MMP‑9, matrix metalloproteinase 9; uPA, 
urokinase plasminogen activator.

Figure 4. Typical microscopic appearance (reduced from x40 magnifica-
tion) of: (A) Control bladder with tumors; (B) tumor‑free bladder following 
treatment with 400 µM epigallocatechin gallate; (C)  tumor‑free bladder 
treated with 400 µM MMC; (D) bladder with tumors treated with 400 µM 
MMC at 3 days after surgery [reprinted with permission from the study of 
Jankun et al (113)]. MMC, mitomycin C.



WYGANOWSKA‑ŚWIĄTKOWSKA et al:  PROTEOLYSIS IN CANCER TREATMENT20

nosis in invasive breast cancer in humans  (34,127,128). 
When PAI‑1 was administrated in low concentrations, it 
was able to increase the metastatic potential and angiogen-
esis (34,127‑129). These observations contradict our previous 
statements suggesting that PAI‑1 is a potent inhibitor of angio-
genesis and tumor growth (26,125,128,130). This paradox can 
be explained by the interaction of PAI‑1 with vitronectin. 
This protein is a multifunctional glycoprotein present in the 
plasma, platelets and the extracellular matrix. PAI‑1 binds to 
vitronectin and then binds with uPA/uPAR, forming a four 
protein complex (namely uPAR/uPA/PAI‑1/vitronectin), 
which can be further combined with LDL receptor‑related 
protein. This interaction weakens the PAI‑1/vitronectin 
binding and triggers PAI‑1/uPA/uPAR internalization. PAI‑1 
and uPA are degraded, whereas uPAR is recycled to the cell 
surface. Subsequently, uPAR can bind to uPA again and form 
a new PAI‑1/uPA/uPAR/vitronectin complex. This process 
clears PAI‑1 in the immediate vicinity of the cell, forcing it 
to migrate toward increased concentration of PAI‑1 (131,132). 
Thus, PAI‑1 can have a dual function as a pro‑carcinogenic 
and anti‑cancer agent, depending on its concentration. PAI‑1 
in physiological concentration acts by utilizing the vitro-
nectin pathway. However, as it has been demonstrated in our 
previous studies and by other groups, when PAI‑1 is present 
in much higher supraphysiologic concentrations, it suppresses 
the vitronectin pathway and acts as a potent inhibitor of 
angiogenesis by utilizing primarily its inhibitory properties 
to block proteinase activity (133‑136).

uPAR (or CD87) is a multidomain glycoprotein attached 
to the cell membrane with a glycosylphosphatidylinositol 
(GPI) anchor. When binding to uPA, it creates high proteo-
lytic activity in the proximity of the cell surface (137‑139). 
Therefore, another approach to prevent invasion or metastasis 
is to block the binding of uPA to its receptor on the cancer cell 
surface. Similarly, limiting the binding of uPA to vascular cells 
would reduce cancer‑associated angiogenesis. An octapeptide 
A6 (amino acids 136‑143; nonreceptor‑binding domain) of 
uPA inhibits the interaction of uPA with its receptor uPAR, 
and was reported to inhibit endothelial cell motility and tumor 
cell invasion (117,140,141). Furthermore, the use of this poly-
peptide has been reported in Phase I and II clinical studies 
of gynecological cancer (142). Mani et al (143) synthesized 
a methyl 3‑aminobenzoate derivative that binds to uPAR 
with high affinity and demonstrated that this uPAR inhibitor 
lowers the invasion ability of breast MDA‑MB‑231 cells. In 
addition, female NSG mice inoculated with highly malignant 
TMD‑MDA‑MB‑231 cells presented impaired metastasis to 
the lungs when treated with this uPAR inhibitor (143). In a 
subsequent study by Wang et al (144), the affinity of a large 
number of derivatives was measured using structure‑based 
virtual screening. The synthesis of additional and cellular 
studies in cell lines (A549, H460 and H1299) revealed that 
these compounds blocked invasion, migration and adhe-
sion, while the effects of these compounds on invasion were 
consistent with their inhibition of uPAR (144). Treatment of 
metastatic liver cells with 1 or 4 g/ml lectin from Bandeiraea 
simplicifolia seeds significantly inhibited the cell migration 
and invasion, and downregulated MMP2, MMP9 and uPA 
production (145). Furthermore, the AKT/GSK‑3b/β‑catenin 
pathway, which is upstream of MMP2, MMP9 and uPA, was 

found to be involved in the inhibition of cell migration and 
invasion by lectin (145). In a similar manner, quercetin func-
tions on the uPA/uPAR system (146).

A total of 14 clinical studies can be found in the clinical-
trials.gov registry on PAS and cancer. However, results have 
been posted for only one of these studies, and this study was 
abandoned due to limited activity of the agent (https://ccr.
cancer.gov/news/clinical-trials). The diverse function of PAS 
is outlined in Fig. 1.

6. Inhibition of MMPs in the treatment of cancer

Inhibitors targeting MMP activity were initially intended 
to target the catalytic domain of these enzymes. The most 
clear approach was to synthetize polypeptides derived from 
the sequences of the amino acids of the MMP substrates, 
preventing hydrolysis of the scissile bond of proteins (147). 
Batimastat (INN/USAN, codenamed BB‑94), a broad‑spec-
trum, competitive, injectable drug was the first MMP inhibitor 
(MMPI) to go into clinical trials, acting as an angiogenesis 
inhibitor. While this agent reached Phase III trials, it was never 
marketed due to side effects (injection into the peritoneum 
caused peritonitis), poor solubility and very low oral bioavail-
ability (147‑149). Marimastat, another MMPI drug, exhibited 
some effects in delaying disease progression; however, it also 
had a dose‑limiting toxicity. Patients experienced significant 
musculoskeletal pain and inflammation, and the clinical study 
was discontinued (147,150). The small molecular inhibitors of 
MMPs failed for a variety of reasons, despite preclinical data 
demonstrating their great potential for therapeutic use, leading to 
cancelled phase I trials on Prinomastat, and cancelled phase III 
trials on Batimastat, Marimastat, Tanomastat and CGS 27023A, 
which is a doxycycline tetracycline derivative (147).

Using hybridoma methods against the MMP‑9 catalytic 
domain, Martens et al (151) generated the murine monoclonal 
antibody REGA‑3G12. This antibody recognizes the W116 to 
K214 of the human MMP‑9 catalytic domain, but not the Zn2+ 
binding site (151). The REGA‑3G12 antibody inhibits MMP‑9, 
but not MMP‑2 (151,152). However, while MMPs have been 
recognized as a marker of poor prognosis and are one of the 
major classes of proteolytic enzymes involved in tumor inva-
sion and metastasis, inhibitory monoclonal antibodies against 
MMPs have yet to find broad clinical applications.

Clinical studies on MMPs in cancer. In total, 62 clinical studies 
can be found in the clinicaltrials.gov registry on MMP and 
cancer. Several of these have been completed; however, none of 
the studies have posted results and numerous were abandoned 
(https://ccr.cancer.gov/news/clinical-trials) (135,147,148,150).

7. Conclusion

The mainstream of the presently used chemotherapeutic agents 
attack all dividing cells, leading to the adverse effects that are 
typically associated with cancer treatment, such as hair loss or 
loss of appetite. For future therapeutics to be clinically successful, 
they need to be highly selective for a specific protein or proteins, 
and able to act on the cancerous tissues without causing adverse 
systemic effects. Despite unsuccessful early clinical studies on 
the inhibition of proteolysis in cancer (particularly MMPs), this 
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approach still has great potential for therapeutic use. Inhibition 
of proteolysis in cancerous tissue has the ability to attenuate 
tumor invasion, angiogenesis and migration, which are the most 
fundamental properties of malignant tumors, thus deserving 
future development (147,153). This includes application of inhib-
itors at the time and stage of malignancy for which regulation 
of pathological proteolysis will be most beneficial. For instance, 
inhibiting cancer proteolytic enzymes during or after surgery 
can prevent cancer cell implantation and consequently cancer 
reemission (113). Inhibiting both uPA and MMPs is another 
beneficial approach, since tumors overexpress these groups 
of enzymes; therefore, employing this simple concept can be 
equally beneficial as cancer cell killing (Fig. 3). Epigallocatechin 
gallate, an inhibitor of uPA and MMPs, has previously been 
used, and this agent had a weak lethality, but prevented cancer 
cell implantation into the bladder wall following surgery and 
was slightly better in reducing cancer growth when compared 
with mitomycin C (Fig. 4) (113). Inhibition of PAS and MMPs 
simultaneously by a cocktail of inhibitors or a single inhibitor 
that is active against both proteolytic enzymes in all other types 
of cancer remains unexplored, but is a promising therapeutic 
approach deserving future development.
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