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Abstract. Ovarian cancer is the most lethal gynaecological
malignancy. The cancer initially presents with non-specific
symptoms; thus, it is typically not discovered until the
patient has reached the late, considerably more lethal, stages
of the disease. Research focus is currently on finding novel
biomarkers, especially for early detection and stratification
of the disease. One promising approach has been to focus on
mutations or variations in the genetic code that are associated
with the risk of developing ovarian cancer. A certain heritable
component is already known regarding genes such as BRCA1/2,
TP53, MSH6, BRIPI and RADSIC, yet these are estimated to
only account for ~3.1% of the total risk. Recent advances in
sequencing technologies have enabled the investigation of
hundreds of thousands of genetic variants in genome-wide
association studies in tens of thousands of patients, which has
led to the discovery of 108 (39 loci with P<5.0x10-®) novel
susceptibility loci for ovarian cancer, presented in this review.
Using the published variants in a patient cohort screening,
together with variants identified in our ongoing whole exome
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sequencing project, future aims are to ascertain whether
certain of the novel variants could be used as biomarkers for
early diagnosis and/or treatment decisions.
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1. Introduction

Ovarian cancer (OC) is the 5th most common cancer and
the most lethal gynaecological malignancy in European
women (1). The International Federation of Gynaecology and
Obstetrics characterises four major stages of OC, with stages I
and II constituting tumours localised and mainly confined
to the ovaries, which are associated with a good prognosis
[5-year overall survival for stage I, 87.0-89.5% (2)], and the
late stages III and IV, with confirmed spread to the perito-
neum and/or distant metastasis, and poorer outcome [5-year
overall survival for stage IV, 13.2-17.9% (2)]. Early-stage
OC presents with non-specific symptoms [including pelvic
or abdominal pain, loss of appetite, fatigue and unexplained
weight loss (3,4)] commonly associated with other diseases or
ailments. Additionally, OC is a relatively rare disease, meaning
that general practitioners will encounter a small number of OC
cases throughout their career (5). Combined, this means that
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most patients with malignant growth in the pelvic region are
diagnosed in the late stages of OC.

2. OC subtypes and biomarkers

OC is commonly divided into two major groups, epithelial
and non-epithelial. Epithelial OC (EOC) comprises four main
subtypes, based on the tissue of origin: Serous adenocarcinoma
[high-grade (HGSC) and low-grade]; endometrioid adeno-
carcinoma; ovarian clear cell adenocarcinoma (OCCC); and
mucinous adenocarcinoma. Non-epithelial OC is subdivided
into germ cell and sex chord/stromal OC. Overall, ~86% of OC
cases are epithelial, and of these, 76% are serous histological
subtype, with HGSC counting 83% (2). The characteristics
of particularly the four main EOC types differ markedly in
origin tissue, gene and microRNA (miRNA) expression, and
morphology, and there is emerging consensus that they should
be recognised as four distinct diseases (6-8).

Established biomarkers for OC include CA-125 (9) and
human epididymis protein 4 (10), and various multivariate
index assays measuring serum concentrations of these and
other proteins, as well as taking ultrasound examination of
the pelvic region, menopausal state, patient age and/or family
history into account, have also been devised (11-15). While
these schemes have increased the likelihood of differentiating
malignant OC from a benign growth in the pelvis, they have not
proved sufficient to decisively decrease mortality rates (16,17).
Consequently, there is still a clear requirement for finding
robust biomarkers, especially those capable of detecting OC
at the early stages that can be used prognostically and to guide
targeted treatment.

OC has a significant heritable component. Mutations
in particularly BRCAI and BRCA2, but also in other genes,
including TP53, BRIPI, MSH6 and RADS5IC, have been
described as risk factors (18,19), yet the known and familial
genetic factors are estimated to only account for 3.1% of the
risk of developing EOC (20). Therefore, it is proposed that
there are additional OC susceptibility loci yet to be discovered,
and this has been a major focus area in the past decade, as
genomic research and sequencing techniques have improved
significantly.

This review will present the advances in applying
next-generation sequencing (NGS) in large cohort studies in
the search for genetic variants that act as susceptibility loci
and/or driver mutations for OC.

3. Literature search and inclusion/exclusion criteria

This review was carried out according to the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses
guidelines (21). Studies were selected based on the search
criteria ‘ovarian cancer’ and ‘susceptibility loci’ in the
biomedical databases Medline, EMBASE and Scopus. Studies
reporting genome-wide association studies (GWAS) in large
cohorts were preferred. The aim was to cover as much of the
published literature as possible; however, studies reporting
variants associated with low malignant potential (borderline)
OC subtypes were omitted, and only studies reported in
English were included. In total, 108 susceptibility loci from
28 studies published from 2008 to 2018 were included (Fig. 1).
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4.NGS as a tool in searching for ovarian cancer biomarkers

Only adecade ago, sequencing the genome of a single individual
took months, if not years. Subsequent advances in micro-
array and sequencing technologies prompted by large-scale
sequencing efforts such as the Human Genome Project (22)
and the 1,000 Genomes Project (23) have revolutionised the
field of genomic research, and today this can be accomplished
over ~1 week using high-throughput sequencing (24). Targeted
sequencing of only parts of the genome, such as transcriptome
or whole exome sequencing, or sequencing of a subset of genes
known to be involved in tumorigenesis, have enabled scientists
and clinicians to develop and tailor research and treatment to
the individual patient, a fundamental premise for precision
medicine initiatives, and the overall goal for the treatment of
patients with OC (25).

As high-throughput sequencing evolved into NGS (also
known by the more appropriate term, massively-parallel
sequencing), several hundred thousand genetic variants in
thousands of patients can now be investigated in only a frac-
tion of the time (26). Naturally, this has spawned large cohort
studies, often with participation of clinics across the world,
as well as the invention of specific arrays or chips focused on
variants or genes suspected to be the cause of specific diseases.
The Cancer Genome Atlas (TCGA) Research Network
investigated 33 different cancer forms using high-throughput
single nucleotide polymorphism (SNP), exome and genome
sequencing, as well as gene expression, copy number varia-
tion, DNA methylation and miRNA profiling; these findings
were recently summarised (27). OC was one of the three
cancer types selected for the pilot project, and a cohort of
489 patients with HGSC were selected for analysis. Among
other findings, the researchers found 7P53 to be mutated in
almost all cases, and were able to classify tumours into several
subtypes depending on transcription, miRNA and methylation
profiles (28).

NGS studies of OC have been reported in the last five
years, mainly stemming from two large global initiatives with
significant overlaps: The US-based OncoArray Network and its
eponymous genotyping array chip (29); and the mega-consor-
tium Collaborative Oncological Gene-environment Study
(COGS) with the iCOGS array, and updated OncoChip (30).
Established in 2005, the Ovarian Cancer Association
Consortium (OCAC) is a major collaboration, with contribu-
tors from the United States, United Kingdom, Australia,
The Netherlands, Denmark, Poland, Germany and numerous
other countries, and consists of 25,509 population-based
EOC cases and 40,941 controls (31). The consortium was
included in COGS together with Breast Cancer Association
Consortium (BCAC), Prostate Cancer Association Group to
Investigate Cancer-Associated Alterations in the Genome and
The Consortium of Investigators of Modifiers of BRCA1/2
(CIMBA), with the aim of studying the genetics and risk
factors of these three hormone-related cancers [summarised
in (30)]. For this collaboration, a custom genotyping array
chip called iCOGS capable of genotyping >211,000 SNPs
was developed and used on >250,000 subjects (30). Like
COGS, the OncoArray Network's research and the OncoArray
chip capable of genotyping 570,000 SNPs have resulted in
numerous articles on glioblastoma, breast, ovarian, prostate
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Records from 4 scientific literature depositories with
search terms “ovarian cancer” and “susceptibility loci”

=329

Duplicate records, or excluded

|

Potentially relevant records
for further analysis

=45 =11

Records for manual assessment
=56

* based on Title/Abstract
=284

Records from other
sources/reference lists

. Records excluded based on:
- No OR or Cl reported, or p-value of variants
larger than 0.05 =10

Records included in systematic review
=28

» - No GWAS performed =7
- Small population size =5
- Technical/methodical report = 6
=28

Figure 1. Systematic literature search according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Search criteria ‘ovarian
cancer’ and ‘susceptibility loci’ were used in the databases PubMed/Medline, EMBASE, Web of Science and Scopus. Only studies in English were included.

OR, odds ratio; CI, confidence interval; GWAS, genome-wide association study.

and lung cancers, using, among others, the OCAC and BCAC
cohorts (31-35).

5. GWAS identifies numerous susceptibility loci for ovarian
cancer

In total, 108 susceptibility loci for OC were identified
following a systematic literature search (summarised in Table I
and Table SI for variants with P<5.0x10"® and P>5.0x108,
respectively). These loci were mainly found via GWAS, in
which genetic variations in a cohort of patients are compared
to a cohort of healthy controls to isolate variants that may
contribute to developing the disease. Variants are given an
odds ratio (OR) score, depending on whether the variant is
found predominantly in the patient cohorts (OR >1) or in the
healthy controls (OR <1).

In total, >50% of the OC susceptibility loci were found to
be involved in HGSC (59/108), which was perhaps expected,
as this is by far the most prevalent subtype of OC and thus
the one most frequently encountered. Certain variants have
been reported in >1 subtype, most notably rs757210, which
seems to be linked with poor prognosis in HGSC (odds ratio
1.12), but predicts superior outcomes in OCCC (OR 0.80),
demonstrating the importance of stratifying GWAS find-
ings by OC subtype (36-38). rs757210 sits in the promoter
region of HFNIB, which is known to be overexpressed
in OCCC (39) and downregulated in serous OC (36), as

well as being a susceptibility gene for diabetes type II (40),
prostate cancer (41,42), uterine corpus cancer (43) and endo-
metrial cancer (44.,45). Shen et al (36) hypothesised that the
difference in expression levels could be due to promoter meth-
ylation of HNFIB in proximity to this variant, which was later
confirmed (46).

Mutation hotspots are a common feature in cancer
genomics, and some of the identified susceptibility loci
were situated in or near genes that are frequently altered in
cancer cells. As such, Pooley et al and Bojesen et al (47,48)
investigated the telomerase gene TERT, which maintains
chromosome telomeres. Somatic mutations, especially in the
promoter region of TERT, have been found in cancers of the
brain, thyroid gland, bladder and skin (49). Bojesen et al (48)
reported a locus associated with HGSC (rs10069690) in intron
4 with the minor allele conferring increased risk of disease
and creates an alternative splice site that results in a truncated
protein and impaired telomerase function. This reinforces the
hypothesis that shorter telomeres increase cancer risk.

Bolton et al (50) examined a known breast cancer locus
on chromosome 19p13, and found susceptibility loci that were
significantly associated with risk of serous OC. Presumably,
the SNP rs8170 located in the BABAM1 (previously MERIT40)
gene may explain this risk, as BABAMI has been shown to
interact with, and stabilise, BRCA interactions with a complex
including RAP80, BRCC45 and CCDC98 (51-53). Although
counterintuitive, as breast cancer and OC frequently present
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Table I. Continued.

Refs.

eQTLS!

P-value/BF¢ Gene®

Clys

Position® EA® EAF* OR

Locus

SNP

(50)

ANKLE1, BABAMI,

BABAM1, USHBP1
ABHDS8

2.7x10°

(1.12-1.25)

1.18

0.19

19p13.11 17278895

rs8170

HGSC

(54)
(38)

ABHDS8, BABAM1

PAXS8

USHBP1, BABAM1

9.2x102
PAXS

(1.14-123)
(121-1.49)

(1.20-1.40)

1.19
1.34
1.30

0.3

17279482
113215368

19p13.11
02q13

rs4808075
1s752590
rs711830

HGSC

3.3x10°®

0.21
0.32

G
A

MOC

(38)

HOXD3, HOXD9

HOXD3,

7.5x10"2

176172583

02q31.1

oC

AC009336.2
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BPESC1, MRPS22

1.5x10"

insCCA 0.33 1.29 (1.20-1.37)

GATTCA

rs112071820 03q22.3 139130269

MOC

GAAT

(€2Y)
(33)

1.7x10% GRIN3A
6.8x10°" IFNL3 IFNL3, IFNL4

(1.18-1.41)
(0.60-0.75)

1.29

0.88
0.32

102180944
39242112

09q31.1
19q13.2

rs320203
rs688187

oC
oC

Susceptibility loci with an OR P<5.0x10® are included. *Human genome reference assembly GRCh38/hg38. "EA is not necessarily on the leading strand. Preferably quoted by original publication, otherwise the minor allele, or

with frequency corresponding to EAF. EAF, preferably in case cohort, otherwise in the European ancestry population in the 1,000 Genomes Project. “BF >10 is considered strong confidence that the result will withstand further

investigation. °Gene(s) in closest proximity to the most significant ovarian cancer risk variant at each locus. ‘Gene with published functional association with phenotype and thus the likely gene responsible. Preferably quoted by

reference; otherwise Ensembl's Biomart database (‘Associated gene with phenotype’). eBF. BF, Bayes factor; CI, confidence interval; EA, effect allele; EAF, EA frequency; EnOC, endometrioid ovarian cancer; EOC, epithelial
ovarian cancer (no subtype specified); EOC-BRCA1, EOC cases including BRCAI carriers (The Consortium of Investigators of Modifiers of BRCA1/2); eQTL, expression quantitative trait loci; HGSC, high grade serous

carcinoma; MOC, mucinous ovarian cancer; NR, not reported; OR, odds ratio; SNP, single nucleotide polymorphism.

with inactivating mutations in BRCAI, the authors speculated
that an overexpressed BABAM1 leads to stabilisation of the
breast cancer susceptibility protein (BRCA) complex, and thus
an increased tolerance to DNA damage. Lawrenson et al (54)
fine-mapped the region near rs8170 in the BCAC, OCAC and
CIMBA cohorts, and found rs4808075 to be the strongest candi-
date causal variant. Further investigation led to the discovery
of rs4808616, in strong linkage disequilibrium (LD) with
rs4808075, that has significant expression quantitative trait loci
(eQTL) association with ABHDS, a gene neighbour of BABAM1,
in serous OC. Functional analyses revealed an association
between the ABHDS promoter and rs4808616 via chromatin
conformation capture, whereas overexpression of ABHDS, but
not BABAM 1, affected ovarian epithelial cells in vitro. Therefore,
BABAMI and rs8170 identified by Bolton et al may have been
a proxy for the real driver variant, potentially either rs4808075
or rs4808616 in ABHDS. ABHDS is a notable gene that has
recently been speculated to be involved in the migration and
invasion of OC tumour cells through a homeobox-containing
transcription factor network (55,56).

Ghoussaini et al (57) used cohorts that were later included
in COGS (Studies of Epidemiology and Risk Factors in Cancer
Heredity, MALignant OVArian cancer study, Family Registry
for Ovarian Cancer Study, United Kingdom Ovarian Cancer
Population Study and United Kingdom Genetic Prostate Cancer
Study) to examine the 8q24 gene desert, where the two closest
genes are well-known cancer susceptibility genes (c-MYC and
FAM84B). c-MYC was functionally validated to be implicated
in OC (Table I)) and was also identified in the TCGA dataset (28).

6. GWAS statistical significance threshold

GWAS analyses have become the golden standard for finding
disease susceptibility loci, but there are certain limitations as well.
With hundreds of thousands of variants examined on a single chip,
the risk of false positives increases dramatically, and stringent data
processing must be employed. In general, GWAS studies favour
common variants in the population, meaning that fine-mapping
and additional filtering are required to discover variants with a
minor allele frequency (MAF) of <5% (58). Genetic variation
occurs semi-randomly and is widespread throughout the genome,
and large cohort sizes in the thousands are required to obtain
statistically significant and reliable results. There is an ongoing
debate regarding which P-value threshold should be the standard
for GWAS, or whether Bayesian approaches should be employed
instead (59). The generally accepted P-value is P<5.0x10® for
common variants, as first introduced by The International
HapMap Project (60) and subsequently by Pe'er et al (61), and
which has been recently evaluated and confirmed (62). This latest
study concluded that this threshold is too relaxed for rare variants
(MAF <0.5%), and cut-offs for these should be: 3x10® for MAF
>1%, 2x10°® for MAF =0.5% and 1x10® for MAF =0.1% (condi-
tions: Whole-genome sequencing studies in European populations
with all variants having an LD r2>0.8). For the present review,
and contrary to two recent reviews of GWAS susceptibility
loci (63,64), it was determined that all variants reported by the
original articles would be included, with a more relaxed cut-off of
P<0.05. Variants meeting the threshold criteria discussed above
(P<5.0x10®) are presented in Table I; the remaining variants are
included in Table SI. For simplicity, for articles fine-mapping a
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susceptibility loci region and finding additional SNPs with lower
P-values, but in strong LD with the index SNP (48,54), only the
novel variant with the strongest association was included.

7. Susceptibility loci region fine-mapping

Genetic variants are not randomly distributed in the genome,
but often aggregate in the same populations (23). Genomic
research has taken advantage of this, by examining only those
variants or polymorphisms already reported in large popula-
tion studies. Nevertheless, the number of genetic variants in
the human genome amounts to tens of millions, which is not
feasible to investigate in a research setting on a large number
of patients. Instead, an array of representative or index SNPs
are frequently used to cover all variants in a genomic region,
utilising the fact that neighbouring SNPs are often in tight
LD and thus inherited together (65,66). Data from The 1,000
Genomes Project estimates that any given trait-associated
variant in the National Human Genome Research Institute
GWAS database will have 56 neighbouring variants in LD with
r?20.5 (28). It follows that fine-mapping of the region is required
to determine if the index SNP is indeed the causal variant, or
merely a proxy for other SNPs in the region. Three examples
of this have been described in the subsection ‘Genome-wide
association studies identify numerous susceptibility loci
for ovarian cancer’: Bojesen et al fine-mapped the TERT
locus and SNPs in LD with rs10069690 and rs7705526 (48);
Lawrenson et al examined the ABHDS8/ANKLEI locus and
rs4808075 (54); and Shen et al investigated the HNFIB region
and rs7405776 and rs11651755 (36). Following the initial find-
ings of the COGS initiative, Earp et al (67) analysed 11 known
susceptibility regions and found novel associated variants with
more robust P-values and ORs than those previously reported
(Table I) (20,37,48,50,68-71).

Several studies over the last few years have fine-mapped
the 9p22.2 region by rs3814113 first reported by Song et al in
2009 (68). eQTL analyses concluded the nearby zinc finger
protein basonuclin-2 (BNC?2), which has been implicated
in oocyte differentiation (72), to be the most likely causal
candidate gene (69,73). Additional SNPs were found to be
associated with abnormal ovarian ultrasound results (74)
and to modify OC risk in BRCAI/2 mutation carriers (75).
BNC?2 was reported to contribute to a HOX-centric network
of transcription factors associated with serous OC risk (55),
and Carter et al (76) found a significant association between
germline rs3814113 and tumour formation in OC. Finally, a
recent study by Buckley er al (73) reported additional SNPs
in LD with rs3814113, as well as SNPs located in the regula-
tory regions of BNC2, including some in this gene's scaffold/
matrix attachment region, suggesting that they influence chro-
mosomal three-dimensional organisational optimization for
transcription in an allele-specific manner.

Finally, the cluster of OC-related variants in the TIPARP/
LEKRI region on chromosome 3q25 is of note in an OC
disease setting and has been studied thoroughly (37,67,69,77).
TIPARP (also known as PARP?7) codes for a poly ADP ribose
polymerase (PARP), a group of proteins that have been the
target of PARP inhibitor cancer treatments showing great
promise in the targeted treatment of patients with breast, pros-
tate and OC carrying BRCA1/2 mutations (78).
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8. Several variants cause potentially functionally relevant
amino acid changes

The potential impact of a genetic variant is associated with its
location in the gene. Only 1% of the human genome codes for
proteins; the remaining regions are intra/intergenic, promoters,
enhancers and long stretches of ‘gene deserts’, where genes are
tens or hundreds of kilobases apart (79). It follows that a variant
within a protein-coding region is potentially more detrimental to
the cell than one located in a gene desert. In the present study, 21 of
the 108 identified variants alter amino acid sequences (Table II).
Two algorithms have been developed to evaluate the potential
damage caused by these changes: SIFT (80) and PolyPhen-2 (81)
scores. Both have values between O and 1, but the values have
reciprocal interpretation. A variant with a SIFT score approaching
0 is considered deleterious, while one with a PolyPhen-2 score
approaching 1 is considered damaging. Several variants in
Table II are located in notable genes from an OC perspective:
ANKLE] and BRCA2, as discussed earlier in this review; BTD,
which has shown promise as a biomarker for breast (82) and
cervical (83) cancers; ZFHX3, which is a tumour suppressor gene
frequently mutated in prostate (84) and endometrial (85) cancer;
and LEKR, which, although the variant rs62273959 is considered
benign, was found to be in tight LD (1*=0.90) with rs7651446 in
the aforementioned TIPARP gene (77). Finally, it is worth noting
that rs587778134 causes a frame shift mutation in the DNA repair
gene BRIPI (also known as FANCJ), which is a well-known OC
susceptibility gene that interacts with BRCA1 (19,86). Although
it is not found in the SIFT/PolyPhen-2 databases, it does have an
entry for OC susceptibility (RCV000409984.1) in the ClinVar
database of potentially clinically relevant genetic variants and is
designated as ‘Likely pathogenic’ (Table II) (87).

9. OC as a hormone-related disease

OC is suspected to be a hormonal disease and related to breast
and prostate cancers (88,89). Three new susceptibility loci
were found by investigating a cohort of patients with breast or
ovarian cancer harbouring mutations in BRCAI (90). As part
of the COGS initiative, the three cancers were examined in
individual GWAS projects (20,32,91), whereas Kar er al (92)
combined the results from the three projects in a single
three-cancer meta-analysis, as well as one-by-one compari-
sons. The findings showed clear pleiotropy among the diseases,
with three susceptibility loci identified in all three cancers
(rs17041869, rs7937840 and rs1469713), and four loci shared
between breast and ovarian cancers (rs635634, rs11571833,
rs200182588 and rs8037137). No shared loci were found for
prostate and ovarian cancer alone.

10. Most susceptibility loci are found outside classic OC
causal genes

Surprisingly few of the susceptibility loci were found in genes
commonly associated with OC, such as TP53 (93), BRCA2 (92)
or HNFIB (36,37). This may be explained by the fact that
a GWAS only detects susceptibility loci of a single or few
nucleotides, often conferring subtle differences in gene expres-
sion, whereas some mutations in the classic causal genes are
large deletions or inactivating mutations that are detrimental
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to normal protein function. Additionally, most of the variants
have relatively low ORs (<2.0), meaning that they only have
moderate effects on OC risk. Incidentally, the variant with the
second-highest OR (rs587778134, OR=8.13) was located in
BRIPI, and mutations in this gene have been established to
confer a moderate to high risk of developing OC (19,86).

11. Future directions

Much attention has been focused on finding isolated suscepti-
bility loci on a genome-wide scale over the past decade. A large
number of the identified variants were situated in intergenic
regions far from the genes they potentially affect, and while
several GWAS have been performed and analysed, few studies
have fine-mapped and functionally validated any of the find-
ings. With most loci situated in genes not previously associated
with OC, including hits in long noncoding RNAs (94), there is
an urgent requirement and potential for examining these further,
particularly those that are near or in genes implicated in oocyte
and ovary development, or tumour progression.

The focus must be on finding candidate causal genes for
OC. Promising studies have been released in recent years,
including the transcriptome-wide association study by
Lu et al (95).In this study, they performed a ‘reverse GWAS’ by
cross-matching existing OC-specific gene expression profiles
with all known susceptibility loci and candidate SNPs, and
reported the Frizzled gene FZD4 as a novel candidate causal
gene. This is an area that complements and overlaps well with
the search for novel susceptibility loci.

We are currently performing whole exome sequencing of
patients with HGSC and OCCC, to identify variants that are
subtype- and survival-specific. Combined with the published
variants summarised in this review, a screen of a large number
of patients with OC will be performed to identify potential
biomarkers for the early detection of OC that may decrease the
mortality rates for patients.
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